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Abstract

The orthogonal orbit O(A) of an n X n real matrix A is the set of real matrices of the
form P'AP where P'P = I,. We show that A/||A| is an affine sum of four orthogonal
matrices, and note that A’ can always be written as an affine combination of no more than
2n — 1 matrices in O(A). This improves some recent results of Zhan, and answers some of
his questions. Other related results are also discussed.

Keywords: Orthogonal matrices, orthogonal orbit.
AMS(MOS) subject classification: 15A18, 15A42

1 Introduction

Let M, (R) be the algebra of real n x n matrices. The orthogonal orbit O(A) of A € M,(R)
is the set of matrices of the form Q'AQ where @ € M,(R) is an orthogonal matrix, i.e.,
Q'Q = I,,. In studying matrices and matrix inequalities, it is useful to decompose a matrix
as a sum of special types of matrices. It is well known that if A is an n X n complex
matrix with ||A]| < 1, then A is the average of two unitary matrices (see [2]); consequently,
every n X n complex matrix is a linear combination of two unitary matrices. Zhan [3]
showed that if A € M,(R) then A is a linear combination of n orthogonal matrices, and
asked whether there is a fixed positive integer k such that every A can be written as the
real combination of at most k orthogonal matrices; see [3, Observation 7 and Question 3].
We give an affirmative answer to his question and improve his result by showing that if
A€ M,(R), then A/||A|| is an affine combination of no more than four orthogonal matrices
(see Proposition 1). Moreover, we also prove that if A € M,(R) satisfies ||A|| < 1, then
A can be written as a convex combination of a small number of orthogonal matrices (see

Proposition 2).
In the same paper [3], Zhan showed that if A € M,(R) then A’ is a linear combination
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of 2" + (n — 1)n2"~! matrices in O(A), and asked the following questions (Problems 1 and
2 in [3]).

Problem. Find the smallest positive integers k = k(n) and m = m(n) for which one can
find k(n) orthogonal matrices Q; (fixed independently of A) or m(n) orthogonal matrices
W; (which may depend on A) such that A" is a linear combination of Q% AQ; (or W/AW;).

We show that k(n) < 1(n* —n? — 2n + 2) and m(n) < 2n — 1; see Propositions 3 and 6.

Note that our bounds on k(n) and m(n) are polynomial in n whereas the bounds of Zhan
are exponential in n. Nonetheless, we believe that there is still much room for improvement.

Denote by
diag (dy,...,d,)

the n x n diagonal matrix whose (j, 7)-entry is d;. Let A = (a;;) € M,(R), and let
A(A) = diag (a11,- - nn)-

A related problem is to write A(A) as a combination of matrices in O(A). Zhan in [3]

showed that one can use such a combination to help express A’ as a combination of matrices
in O(A). We will also discuss improving this scheme and some related results.

2 Combinations of Orthogonal Matrices

Proposition 1 If A € M,(R) then A/||A|| is an affine combination of no more than four

orthogonal matrices. More precisely, there are orthogonal matrices X,Y, Z (depending on A)
such that
AllAll = (X + X' +Y - Z)/2. (1)

Proof. By the singular value decomposition, there are orthogonal matrices P, () such that

D = P(A/||A]|)@Q = diag (ai,...,a,) where 0 < a; <--- < a, = 1. First suppose n = 2k is
even. Let R be the direct sum of k copies of the matrix

L
Vv2\1l 1/)°
Then R is orthogonal and R'DR = B, & - -+ & By, where for j =1,...,k,

B, = (Zc)J z]> with  2b; = agj_1 + as; and  2¢; = ag; — agj—1. (2)
i 05

Let X,Y, Z € M, be such that

X=X186 08Xy, Y=Yia oY, Z=75& &2,



with
X<— ( b]‘ w/l—b?) Y<— ( 1—03 Cj )

;= 5 7 ’

—,/1—[)? bj C]‘ — 1—02

1—¢? —c;
Zj:( ’ ! ), fory=1,...,k.
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Thus X, Y, 7 are orthogonal matrices satisfying
Bi&-- @B =X+X'+Y - 2))2,

and so setting X = P'RXR'Q',Y = P'RYR'Q', Z = P'RZR'Q" shows that (1) holds.
If n =2k + 1 is odd, then there exists an orthogonal matrix R such that

RIDR=B, & - @ By @ [1],

where B, has the form (2). One can construct X, Y, Z as above by appending the one-by-one
identity matrix to X,Y, Z. One readily checks that (1) is valid. O

It is known that a matrix A € M, (R) with ||A|| < 1is a convex combination of orthogonal
matrices. The next result concerns the number of matrices needed in the combination. For
a nonnegative integer r, let

f(>_{7“—|—1 if r <4,
"= [log, r] +3 otherwise,

where [z] denotes the integral part of z € [0, 00).

Proposition 2 Suppose A € M,,(R) satisfies ||A|| < 1. If I — A*A has rank not larger than

r, then A is a conver combination of no more than f(r) orthogonal matrices.

In applying the above proposition, if there is no information about the rank of I — A*A,
one can let r = n; if ||A]| = 1, then one can let r =n — 1.

Proof. Let D = diag(ai,...,a,) with 0 < a3 < --- < a, <1 and P,Q € M,(R) be
orthogonal matrices such that A = PDQ.

First suppose that I — A*A has rank n, ie., a, < 1. Then v = (ay,...,a,)" € R”
satisfies [o(v) < 1. (Here l(v) = max; |a;|.) By the Caratheodory Theorem, v is a convex

combination of no more than n + 1 extreme points of B = {u € R" : [o(u) < 1}. It is well
known that the set of extreme points of B is the set

5:{u:(u1,...,un)tER":|uj|:1, ]:17,71}

It follows that v = 21;:1 t;w; for some k <n+1,w; € € and ty,...,t > 0 with t14- - - 41; =
1. Now, let W; be the diagonal orthogonal matrix such that W;(1,...,1)" = w; for each
je{l,...,k}. Then D = 2521 t;W;, and thus A = P(Z?Zl Q.
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Also, we can use the real version of [1, Proposition 2.2] (the proof for the real symmetric
case is exactly the same as the complex Hermitian case) to conclude that D = Y7, 5;0Q;,

where m < [logyn| 42, s1,...,8m >0, s1+ -+ 5, =1, and Q,...,Qm € M,(R) are real
symmetric idempotents. Note that P; = 2Q); — I is orthogonal for each j =1,...,m, and

m 1 SJ
g (I+P)/ 21+Z 2P,

71=1

It follows that

A:P(;IJrZSJP)Q

j=1

is a convex combination of m + 1 < [log, n| + 3 orthogonal matrices.
Now, suppose I — A*A has rank r, i.e., 4,41 =---=a, = 1. Then D =D, & I,_,. We
can apply the previous argument to Dy and write it as a convex combination of orthogonal
matrices Vi,...,V, with & < f(r). Then A is a convex combination of the orthogonal

matrices P(Vi & I,,,)Q, ..., P(Vi ® I,,_, )@, and the result follows. O

It would be nice to improve our bounds in Propositions 1 and 2, or show that they are
optimal.

3 Combinations of Matrices from Orthogonal Orbits

Recall that a generalized permutation matriz is a product of a permutation and a diagonal
matrix with diagonal entries in {1, —1}. The following result answers Problem 1 in [3] (see

also the problem in our introduction).

Proposition 3 There exist a positive integer k with k < %(n4 —n? —2n + 2), generalized

permutation matrices Qq,...,Qk, and real numbers ry,...,r, summing to 1 such that, for

any A € M,(R),

k
~ Y1040 g

We remark that (3) actually holds for n x n matrices over any field containing the rational
numbers.

Proof. Given P,Q € M,(R), let P ® @ denote the map defined by P ® Q(A) = PAQ'
for any A € M,,(R). Then the first assertion is equivalent to writing the transpose operator
T(A) = A" as an affine combination of at most %(n4 —n? — 2n 4 2) operators of the form
Q: ® Q;, where ; are generalized permutations. Lemma 2 in [3] shows that the transpose
operator lies in the span of {P ® P : P € M,(R), P is a generalized permutation} (with

rational coeflicients). This span is a subspace of (actually equals) the space M of operators



acting on M, (R) which fix I and leave the subspace of symmetric matrices of trace zero and
the subspace of skew-symmetric matrices invariant. Note that

24n-2\" [n*-n)" 1
dimMz(%) —I—(n 5 n) :§(n4—n2—2n—|—2).

To see this, one can write down the operator matrix of a linear operator in M with respect

to a basis which is a union of the bases of the symmetric matrices with trace zero, skew-
symmetric matrices, and the identity matrix. Now, taking A = I,, in (3), we see that the
coefficients sum up to one, i.e., the combination is affine. The first assertion follows. Note
that all the above arguments can be limited to the field of rational numbers. This justifies
our remark after the proposition. O

Recall that A(A) denotes the diagonal matrix obtained from A € M, (R) by setting its
off-diagonal entries to 0. It is interesting and useful to express A(A) as a combination of
matrices in O(A). First note that if the set of diagonal orthogonal matrices with (1, 1)-entry
equal to 1 is denoted by {Ry,..., Ryn—1}, then

1D
A(A) = ST Z RtAR (4)
7=1

So, A(A) belongs to the convex hull of O(A) C {X € M,(R) : tr X = tr A}. By the
Caratheodory Theorem, A(A) is a convex combination of no more than n? matrices in O(A4).
The situation will be much improved if M, (R) has a Hadamard matrix H, i.e., H € M,(R)
with entries in {1, —1} and H'H = nl,. In such a case, we have

1

= —Y H'AH

n i

where H; is the diagonal matrix such that H;(1,...,1)" equals the jth column of H. In

general, let m be the smallest integer larger than or equal to n such that there is a Hadamard

matrix in M, (R), and apply the above argument to A=A®0p_n to get

1 & ~
_ LS gan,
m 5
for some diagonal orthogonal matrices I:Ij € M,,(R). Let H; be the leading n X n submatrix
of I:Ij for y=1,...,m. Then
A(A) Z HIAH;.

] 1

In connection with the above discussion, we have the following definition and result.



Definition 4 For a positive integer n, let h(n) > n be the smallest integer such that there
is a h(n) x h(n) Hadamard matriz.

Proposition 5 For any A € M,,(R), the matriz A(A) can be written as the average of no
more than h(n) matrices in O(A).

It is known that M,(R) has Hadamard matrices if n = 2F, k > 0. Thus, Proposition
5 allow one to exhibit the diagonal of a matrix as an average of (much) fewer terms than
suggested in (4) and the bound n? in the discussion afterward. To see this, observe that if
n = 2% then h(n) = n, and if 28 < n < 28! then h(n) < 28! < 2(n — 1). One readily
verifies h(n) = 27! for n < 2 and h(n) < 2(n — 1) < 277! for n > 2. Similarly one can
check that h(n) < n®

We can use Proposition 5 to improve the result in [3] related to Problem 2 in the paper (see

also the problem in our introduction). We exclude the trivial case n = 1 in our statement.

Proposition 6 Let A € M,(R) and n > 1. Then A' can be expressed as an affine combi-
nation of no more than h(n) + 1 < 2n — 1 matrices in O(A).

Proof. Write A = A; + Ay where 4; = (A + A")/2, Ay = (A — A")/2. Then there is an
orthogonal matrix P and a diagonal matrix D such that A; = P*DP, and A = P'(D+ B)P,

where B is skew-symmetric and thus has all diagonal entries equal to zero. By Proposition
5, D = A(D + B) (and hence A; = P'DP) can be expressed as an affine combination of no
more than h(n) matrices in O(D + B) = O(A). It follows that A’ = 24; — A is an affine

combination of no more that A(n)+ 1 matrices in O(A). Finally, the inequality follows from
the argument preceding the proposition. O
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