Math 211 Sample Final Examination questions Name:__________________

Answer 10 out of 11 questions.

1. (a) Determine h so that $b = \begin{bmatrix} 1 \\ 4 \\ h \end{bmatrix}$ lies in the linear span of the set \(\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \right\} \).

(b) Show that every $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ lies in the span of the set \(\left\{ \begin{bmatrix} 1 \\ 1 \\ \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\} \).

2. Suppose $A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}$, and $\det(A - \lambda I) = (1 + \lambda)^2(5 - \lambda)$. Determine an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

3. Find the orthogonal projection of $y = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$ on the subspace $W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$.

4. Let $T : \mathbb{P}_2(t) \to \mathbb{R}^2$ be the transformation $T(p(t)) = \begin{bmatrix} p(0) \\ p(1) \end{bmatrix}$.

(a) Determine the matrix of T relative to the standard bases $C_1 = \{1, t, t^2\}$, $C_2 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

(b) Determine the matrix of T relative to the standard bases $\tilde{C}_1 = \{1, t, t-t^2\}$, $\tilde{C}_2 = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

5. Let $T : \mathbb{P}_1(t) \to \mathbb{P}_1(t)$ defined by $T(a_0 + a_1t) = (a_0 - 2a_1) + (a_0 + 4a_1)t$.

(a) Find the matrix for T relative to the standard basis $C = \{1, t\}$.

(b) For $i = 1, 2, \ldots$, find eigenvalue λ_i and eigenvector $u_i \in \mathbb{P}_1(t)$ such that $T(u_i) = \lambda_i u_i$.

6. Let $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 0 & -1 \\ 0 & 1 & 4 \end{bmatrix}$.

(a) Apply the Gram-Schmidt process to the columns of A to get an orthonormal basis for \mathbb{R}^3.

(b) Find orthogonal matrix Q and upper triangular matrix R such that $A = QR$.

7. Let $A = \begin{bmatrix} 1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2 \end{bmatrix}$ and $b = \begin{bmatrix} 5 \\ -3 \\ -5 \end{bmatrix}$. Find the least-squares solution of $Ax = b$, and compute the associated least-squares error.

8. Suppose A is $m \times n$ and B is $n \times p$.

(a) Show that $\text{Col}(AB)$ is a subspace of $\text{Col}A$.

[It suffices to show that $\text{Col}(AB)$ is a subset of $\text{Col}A$.]

(b) If A and AB has the same rank, show that A and AB have the same column space.

9. Suppose W is a subspace of \mathbb{R}^n with an orthogonal basis $\{u_1, \ldots, u_p\}$ and W^\perp has an orthogonal basis $\{v_1, \ldots, v_q\}$.

(a) Show that $B = \{u_1, \ldots, u_p, v_1, \ldots, v_q\}$ is an orthogonal set.

(b) Show that B is a basis for \mathbb{R}^n, and deduce that $p + q = n$.

1
10. Suppose A is a 4×4 with eigenvalues $1, -1, 0$, and P is invertible such that $P^{-1}AP = D$ where D is a diagonal matrix with diagonal entries $d_1 \geq d_2 \geq d_3 \geq d_4$.
 (a) Determine all possible form of (d_1, d_2, d_3, d_4).
 (b) Determine A^{2014} and A^{2015} in terms of A.

11. Construct example of 2×2 matrices satisfying the following conditions.
 (a) A has no real eigenvalues.
 (b) B has real eigenvalue(s) but not diagonalizable.
 (c) C and P such that P is invertible and $P^{-1}CP \neq C$.