1. (25 points, 5 points each) Give brief and complete answers to the following:

(a) Let \(A = \{ a, b, c \} \) and \(B = \{ \varnothing, \{ \varnothing \} \} \). Find \(A \times B \) and \(\mathcal{P}(B) \) (power set of \(B \)).
Solution. \(A \times B = \{(a, \varnothing), (b, \varnothing), (c, \varnothing)\} \) and \(\mathcal{P}(B) = \{ \varnothing, \{ \varnothing \}, \{ \{ \varnothing \} \}, B \} \).

(b) State the contrapositive of the following statement: “If \(n \) is an odd integer, then \(n^3 \) is divisible by 3.”
Solution. If \(n \) is an integer such that \(n^3 \) is not divisible by 3, then \(n \) is even.

(c) State the negation of the following statement:
“For any \(a \geq 0 \), there exists \(b \) with \(0 \leq b \leq 1 \), so that for any \(c < 0 \), \(ab = c \).”
Solution. There is \(a \geq 0 \) such that for every \(b \in [0, 1] \) there exists \(c < 0 \) satisfying \(ab \neq c \).

(d) Prove or disprove the following statement: There exists an integer \(x \) such that \(x^2 \equiv 3 \pmod{4} \).
Solution. The statement is false. Consider two cases. If \(x = 2k \) even, then \(x^2 \equiv 4k^2 \equiv 0 \pmod{4} \); if \(x = 2k + 1 \) is odd, then \(x^2 \equiv 4k^2 + 4k + 1 \equiv 1 \pmod{4} \). Thus, there is no integer \(x \) such that \(x^2 \equiv 3 \pmod{4} \).

(e) Let \(P \) and \(Q \) be two statements. Construct a truth table for \(P \land (Q \Rightarrow \lnot P) \).
Solution.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\lnot P)</th>
<th>((Q \Rightarrow \lnot P))</th>
<th>(P \land (Q \Rightarrow \lnot P))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

A different solution. If \(P \) is false, then the statement is false. If \(P \) is true and \(Q \) is true, the statement is false. So, the only case for the statement to be true is when \(P \) is true, and \(Q \) is false.

2. (15 points) Let \(A, B \) be sets. Show that \(A \cup B = B \) if and only if \(A \subseteq B \).
Solution. Assume \(A \cup B = B \). Then \(A \subseteq A \cup B = B \). Assume that \(A \subseteq B \). Then \(A \cup B \subseteq B \) and \(B \subseteq A \cup B \); hence \(A \cup B = B \).

3. (15 points) Show that \(3\sqrt{2} = 2^{1/3} \) is irrational. [You cannot use the Fundamental Theorem of Arithmetic.]
Solution. Proof by contradiction. Assume that \(2^{1/3} = m/n \) for some \(m, n \in \mathbb{N} \) so that \(\text{gcd}(m, n) = 1 \). Then \(2n^3 = m^3 \). Then \(m \) cannot be odd. Else, \(m^3 \) is odd. So, \(m = 2k \) for some \(k \in \mathbb{N} \). It follows that \(2n^3 = 8k^3 \) so that \(n^3 = 4k^3 \). Again, \(n \) cannot be odd. Else, \(n^3 \) is odd. So, \(n \) is also even as \(m \) is, which contradicts the fact that \(\text{gcd}(m, n) = 1 \).

4. (15 points) Prove that \(8|\left(7^{2n} - 1\right) \) for every nonnegative integer \(n \).
Solution. When \(n = 0 \), we have \(8|0 \). The statement is true.
Assume the statement holds for \(n = k \), i.e., \(7^{2k} - 1 = 8m \) for some \(m \in \mathbb{Z} \). Then for \(n = k + 1 \),
\[
7^{2(k+1)} - 1 = 49 \cdot 7^{2k} - 1 = 49(8m + 1) - 1 = 8(49m + 6),
\]
which is a multiple of 8. Thus, the statement also holds for \(n = k + 1 \).
By the principle of MI, the statement holds for all nonnegative integer \(n \).

5. (15 points) Show that for any \(n \in \mathbb{N} \), \(n^2 \) cannot be of form \(5m + 2 \) or \(5m + 3 \), where \(m \) is an integer.
Solution. Suppose \(n = 5m + r \) with \(r = 0, 1, 2, 3, 4 \). Then \(n^2 = 25m^2 + 10mr + r^2 \equiv s \pmod{5} \) for \(s = 0, 1, 4, 5 \) depending on \(r = 0, 1, 2, 3, 4 \). The result follows.

6. (15 points) Suppose \(S_\alpha = (-1 - \alpha, 1 + \alpha) \) for \(\alpha > 0 \). Prove that \(\cap_{\alpha \in (0,1)} S_\alpha = [-1, 1] \).
Solution. Note that \([-1, 1] \subseteq (-1 - \alpha, 1 + \alpha) \) for all \(\alpha \in (0, 1) \). Thus, \([-1, 1] \subseteq \cap_{\alpha \in (0,1)} S_\alpha \). To prove the reverse inclusion, suppose \(x \in \cap_{\alpha \in (0,1)} S_\alpha \). We show that \(x \in [-1, 1] \). If it is not true, then \(|x| > 1 \). Let \(\beta = \min\{|x| - 1\}/2, 1/2\} \in (0, 1) \). Then \(|x| = 2\beta + 1 > \beta + 1 \) so that \(x \notin S_\beta \). So, \(x \notin \cap_{\alpha \in (0,1)} S_\alpha \).