Prove: \(\text{Let } A, B \text{ be sets. Then } A \cup B = A \cap B. \text{ If and only if } A = B. \)

Proof. \((\Rightarrow)\) Assume \(A \cup B = A \cap B. \)

Then \(A \subseteq A \cup B = A \cap B \subseteq B \)

Also \(B \subseteq A \cup B = A \cap B \subseteq A. \)

\[\therefore A = B \]

\((\Leftarrow)\) Assume \(A = B. \)

Then \(A \cup B = A \cup A = A \)

\(A \cap B = A \cap A = A \)

\[\therefore A \cup B = A \cap B \]
Example \(A, B \) are sets. \(C \neq \emptyset \).

Prove \(A \times C \subseteq B \times C \) if and only if \(A \subseteq B \).

Have to show \((\Rightarrow), (\Leftarrow)\).

\((\Rightarrow)\): Assume \(A \times C \subseteq B \times C \).

\[\forall (x,y) \in A \times C \text{ then } (x,y) \in B \times C. \]

Need to show \(\forall x \in A \text{ let } c \in C \), \(c \neq \emptyset \).

so that \((a,c) \in A \times C \implies (a,c) \in B \times C \)

\[\therefore A \subseteq B. \]

\((\Leftarrow)\): Assume \(A \subseteq B \).

\[\forall (x,y) \in A \times C \text{ then } \exists x \in A \land y \in C \text{ by assumption} \]

So \(x \in B \land y \in C \)

\[\therefore (x,y) \in B \times C \]

\[\therefore A \times C \subseteq B \times C. \]

Note: \(\forall x \in A \subseteq B \), then \(A \times C \subseteq B \times C \).

\[\text{But } A \times C \subseteq B \times C \Rightarrow A \subseteq B \text{ if } C \neq \emptyset \]

Example. \(A = \{1,2\}, \ C = \emptyset \)

\[B = \{3,4\} \]

\[\text{But } A \times C = \emptyset \]

\[B \times C = \emptyset \]

\[A \times C \neq B \times C \]

\[A \times C \subseteq B \times C \]
§3.3. Proof by contrapositive To prove "If \(P(x) \) then \(Q(x) \)." we prove "If \(\neg Q(x) \), then \(\neg P(x) \)."

Examples: If \(n \in \mathbb{Z} \) is such that \(15n \) is even, then \(3n \) is even.

An integer \(n \) is odd (even) if and only if \(n^2 \) is odd (even).

Proof

\[\text{Let } n \in \mathbb{Z} \text{. Prove } n \text{ is odd if and only if } n^2 \text{ is odd.} \]

\[\text{(\(\Rightarrow \)) Assume } n \text{ is odd, i.e., } n = 2l + 1, \quad l \in \mathbb{Z} \]

Then \(n^2 = (2l + 1)^2 = 4l^2 + 4l + 1 = 2(2l^2 + 2l) + 1 \)

\[\therefore \quad n^2 = 2m + 1 \quad \text{with } m = l^2 + l \in \mathbb{Z} \]

\[\text{(\(\Leftarrow \)) Assume } n^2 \text{ is odd. Need to prove } n \text{ is odd.} \]

Assume \(n^2 = 2m + 1, m \in \mathbb{Z} \). Need to prove \(n = 2l + 1, l \in \mathbb{Z} \)

We prove by using the contrapositive of the statement:

Assume \(n \in \mathbb{Z}, n \) is even

\[n = 2l, \quad l \in \mathbb{Z} \]

\[\therefore \quad n^2 = 4l^2 = 2(2l^2) \quad m = 2l^2 \in \mathbb{Z} \]

\[\therefore \quad n^2 \text{ is even} \]

(\(P \Rightarrow Q \) \(\equiv (\neg Q \Rightarrow \neg P) \))
§5.2 Proof by contradiction To prove \(P \implies Q \), show that \(P \land \neg Q \) is impossible.

Also, to prove \(P \), assume \(\neg P \) and derive a contradiction.

Examples The sum of a rational number and an irrational number is irrational.
The number \(\sqrt{2} \) is irrational. (If \(x = \sqrt{2} \), then \(x \) is irrational.)
There are infinitely many prime numbers.
(If \(S \) is the set of primes, then \(S \) has infinitely many elements.)
If \(x, y \in \mathbb{R} \) are positive, then \(\sqrt{x} + \sqrt{y} \neq \sqrt{x + y} \).

\[
\begin{array}{c|c|c|c}
T & F & T & F \\
\hline
T & T & F & T \\
\end{array}
\]

Proof by contradiction

Assume \(x = \sqrt{2} \in \mathbb{R} \), then \(x \) is irrational.

Assume \(x = \sqrt{2} \).

\[x = \sqrt{2} \neq \frac{m}{n}, \quad m, n \in \mathbb{Z}. \]

\[\therefore x \text{ is irrational} \]

Indirect proof: Assume \(x \) is rational

\[\text{Then} \quad x \neq \sqrt{2} \]

We may assume \(m, n \) have no common factors.

Then \[2 = \frac{m^2}{n^2} \quad \text{if} \quad 2n^2 = m^2 \]

So \(n^2 \) is even and so is \(m \). Thus \(m = 2k \) and

\[2n^2 = m^2 = (2k)^2 = 4k^2. \]

\[\therefore n^2 = 2k^2 \text{ is even} \]

Thus \(m \) \& \(n \) have a common factor.
Example

There are infinitely many prime numbers.

If S is the set of prime numbers, then S is infinite.

Proof:
Assume S is the set of prime numbers and assume the contrary that S is finite.

So $S = \{p_1, p_2, \ldots, p_n\}$.

Consider $q = p_1 p_2 \cdots p_n + 1$.

Case 1: q is a prime number.

Then $q \notin S$, which is a contradiction.

Case 2: q is not a prime number.

Then q has a prime factor p.

and $q \neq p_i$ for any i.

Because p_i is not a factor of q, as $q = p_i \left\lfloor \frac{m_i}{p_i} \right\rfloor + 1$

So p is a prime number not in S.

which is a contradiction.
Example

The sum of a rational number and an irrational number is irrational.

Proof: Reformulate:

If \(x = \frac{m}{n}, \ m, n \in \mathbb{Z}, \ n \neq 0 \)

and \(y \neq \frac{r}{s} \) for any \(a, b \in \mathbb{Z}, \ b \neq 0 \).

Then \(x + y \neq \frac{r}{s} \) for any \(r, s \in \mathbb{Z}, \ s \neq 0 \).

Proof: Assume \(x = \frac{m}{n}, \ m, n \in \mathbb{Z}, \ n \neq 0 \)

Assume \(y \neq \frac{r}{s} \) for any \(a, b \in \mathbb{Z}, \ b \neq 0 \).

Assume \(x + y = \frac{r}{s} \) for any \(r, s \in \mathbb{Z}, \ s \neq 0 \).

Then \(y = (x + y) - x = \frac{r}{s} - \frac{m}{n} = \frac{rn - ms}{sn} = \frac{p}{q} \) \(p = rn - ms \in \mathbb{Z} \)

\(q = sn \neq 0 \)

\(\Rightarrow \ y \in \mathbb{Q} \)

\(\Rightarrow \) a contradiction

Example:

If \(x, y \in \mathbb{R}, \ x, y > 0 \), then \(x + y > \sqrt{x+y} \).

Proof:

Assume \(x, y \in \mathbb{R}, \ x, y > 0 \).

Assume the contrary that \(\sqrt{x+y} = \sqrt{x} + \sqrt{y} \).

Then \((\sqrt{x+y})^2 = (\sqrt{x} + \sqrt{y})^2 \)

\(x + 2\sqrt{xy} + y = x + y \)

\(\Rightarrow \ 2\sqrt{xy} = 0 \)

\(\Rightarrow \ x = 0, y = 0 \) a contradiction.
Hint on Homework:

8

\[S = \{ n \in \mathbb{N} : \sqrt{n} \text{ is irrational} \} \]

\[A = \{ m^2 : m \in \mathbb{N} \} \subseteq S \]

Reason: \(x \in A, \ x = m^2 \)

So that \(\sqrt{x} = \sqrt{m^2} \) is irrational.

To prove:

\(S \) has no maximum number.

Assume \(N \in S \) is max.

i.e., \(\forall x \in S \text{ then } x \leq N \).

Hint. Then consider \(2N^2 \).