1. Let $H = \{a + bi : a, b \in \mathbb{R}, ab \geq 0\}$. Prove or disprove that H is a subgroup of \mathbb{C} under addition.

Solution. Note that $1, -i \in H$, but $1 + (-i) \notin H$. So, H is not a subgroup.

2. Let H be a non-trivial subgroup of \mathbb{Z}. Then H has some nonzero elements a so that $a, -a \in H$, and one of them is positive. As a result, the set of positive numbers in H is non-empty. By the well ordering property of H, there is a smallest positive integer k in H. We claim that every element $x \in H$ is an integral multiple of k. It then follows that $H = k\mathbb{Z} = \langle k \rangle$.

Suppose our claim is not true. Then there is $h = kq + r \in H$ with $0 < r < k$. Note that $k, h \in H$ so that $r = h - qk = h - k - k - \cdots - k \in H$, which contradicts the assumption that k is the smallest positive integer in H. Our claim follows.

3. Let H be a non-trivial subgroup of \mathbb{Z}_n. Suppose H has elements $\bar{h}_1, \ldots, \bar{h}_m = 0$ with $0 < h_1 < h_2 < \cdots < h_m = n$ so that h_1 is the smallest positive integer satisfy $\bar{h}_1 \in H$. We claim that $h_s = \ell_s h_1 = h_1 + \cdots + h_1$ (h_s times) for some positive integer ℓ_s for $s = 2, \ldots, m$. It will then follow that $H = \langle \bar{h}_1 \rangle$.

Suppose our claim is not true. Then there is $h_s = \ell_s h_1 + r$ with $0 < r < h_1$. Note that $h_s, h_1 \in H$ so that $\bar{r} = \bar{h}_s - \ell_s \bar{h}_1 = \bar{h}_s - \bar{h}_1 - \cdots - \bar{h}_1 \in H$, which contradicts the assumption that h_1 is the smallest positive integer satisfying $h_1 \in H$.

4. Determine the subgroup lattice of \mathbb{Z}_8.

Solution. By checking gcd$(8, k)$ for $k = 1, \ldots, 7$, we see that there are four subgroups in \mathbb{Z}_8:

$$\langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle, \quad \langle 2 \rangle = \langle 6 \rangle, \quad \langle 4 \rangle, \quad \langle 0 \rangle.$$

The lattice diagram (in horizontal form) is: $\langle 1 \rangle - \langle 2 \rangle - \langle 4 \rangle - \langle 0 \rangle$.

5. Let a and b be elements of a group such that $|a| = 4, |b| = 2$, and $a^3b = ba$. Find $|ab|$.

Solution. We prove that $|ab| = 2$. Note that $(ab)(ab) = a(ba)b = a(a^3b)b = a^4b^2 = e$. So, $|ab| = 1$ or 2. If $|ab| = 1$, then a is the inverse of b so that $4 = |a| = |b| = 2$, which is absurd. So, $|ab| = 2$.

6. Suppose G is a group with n elements, and H is a subgroup of G with m elements.

(a) Suppose $H \neq G$ and $g_1 \in G - H$. Let $g_1H = \{g_1h : h \in H\}$.

Show that $H \cap g_1H = \emptyset$ so that $|H \cup g_1H| = 2m$. (Here you need to argue $|g_1H| = m$.)

(b) Suppose $H \cup g_1H \neq G$ and $g_2 \notin (H \cup g_1H)$.

Show that $(H \cup g_1H) \cap g_2H = \emptyset$ so that $|H \cup g_1H \cup g_2H| = 3m$.

(c) Show that G is a disjoint union of $H \cup g_1H \cup g_2H \cdots g_kH$ for some $g_1, \ldots, g_k \in G$ so that n/m is a positive integer.

Solution. Let $H = \{h_1, \ldots, h_m\}$ with $h_m = e$.

(a) Let $g_1 \in G - H$, and $g_1H = \{g_1h_1, \ldots, g_1h_m\}$. We claim that $H \cap g_1H = \emptyset$. If it is not true, then there are i, j such that $g_1h_i = h_j$ so that $g = h_jh_i^{-1} \in H$, which is a contradiction.
Note that if \(g_i h_i = g_j h_j \), then \(h_i = h_j \) by the cancellation law. Thus, \(g_1 H \) has \(m \) elements, and \(H \cup g_1 H \) has \(2m \) elements.

(b) If there is \(g_2 \in G - (H \cup g_1 H) \), let \(g_2 H = \{g_2 h_1, \ldots, g_2 h_m\} \). We claim that \(g_2 H \cap (H \cup g_1 H) = \emptyset \). If not, \(g_2 h_i = h_j \) or \(g_2 h_i = g_1 h_j \) for some \(i, j \). Thus, \(g_2 = h_j h_i^{-1} \) or \(g_2 = g_1 h_j h_i^{-1} \) so that \(g_2 \in H \cup g_1 H \). Now, \(g_2 H \) has \(m \) elements so that \(H \cup g_1 H \cup g_2 H \) has \(3m \) elements.

(c) We can repeat the arguments in (a) and (b) as follows. If \(H, g_1 H, \ldots, g_r H \) are constructed and their union has \((r + 1)m \) elements, and if \(g_{r+1} \in G - (H \cup g_1 H \cup \cdots \cup g_r H) \), then \(g_{r+1} H = \{g_{r+1} h_1, \ldots, g_{r+1} h_m\} \) are different from those in \(H \cup g_1 H \cup \cdots \cup g_r H \). If not, then \(g_{r+1} h_i = h_j \) or \(g_{r+1} h_i = g_k h_j \) for some \(\ell \in \{1, \ldots, r\} \). But then \(g_{r+1} = h_j h_i^{-1} \) or \(g_{r+1} = g_k h_j h_i^{-1} \in g_k H \), which contradicts the fact that \(g_{r+1} \in G - (H \cup g_1 H \cup \cdots \cup g_r H) \).

Hence, we can repeat this process, and construct \(H, g_1 H, g_2 H, \ldots, g_k H \) until all the elements in \(G \) are exhausted. It follows that \(n = (k + 1)m \).

7. (a) Suppose a group \(G \) has order \(p \), which is a prime. Then \(p \geq 2 \) and there is \(a \in G \) not equal to \(e \). Then \(H = \langle a \rangle \leq G \), and \(H \) has order larger than one. By Problem 6, \(|H|\) is a factor of \(p \) and not equal to \(1 \). Thus, \(|H| = p \) and \(G = H = \langle a \rangle \) is cyclic.

(b) Let \(a, b \in G \). Suppose \(|a| = n \) and \(|b| = m \) such that \(\gcd(m, n) = 1 \). Let \(H = \langle a \rangle \cap \langle b \rangle \) has order \(k \). Then \(H \leq \langle a \rangle \) implies that \(k \) is a factor of \(n \), and \(H \leq \langle b \rangle \) implies that \(k \) is a factor of \(m \). Hence, \(k \) is a common divisor of \(n \) and \(m \). Thus, \(k = 1 \) and \(H = \{e\} \).

8. Suppose \(|G| = 24 \) and \(G \) is cyclic. If \(a^8 \neq e \) and \(a^{12} \neq e \), show that \(G = \langle a \rangle \).

Solution. Note that the order of \(a \in G \) must be a factor of \(24 \) so that \(|a| \in \{1, 2, 4, 6, 8, 12, 24\} \). If \(|a| = 1, 2, 4, 8, \)., then \(a^8 = e \); if \(|a| = 3, 6, 12, \)., then \(a^{12} = e \). Thus, \(|a| = 24 \) and \(G = \langle a \rangle \).

Extra credits

9. Suppose \(G \) is a set equipped with an associative binary operation \(* \). Furthermore, assume that \(G \) has an left identity \(e \), i.e., \(eg = g \) for all \(g \in G \), and that every \(g \in G \) has an left inverse \(g' \); i.e., \(g' * g = e \). Show that \(G \) is a group.

Solution. Let \(g \in G \). We first show that the left inverse \(g' \) of \(g \) is also the right inverse, i.e., \(g * g' = e \). Note that \(e = (g'')' * g' = (g')' * (e * g') = (g')' * (g' * g') = e * (g * g') = g * g' \).

To show that the left identity is also the right identity, observe that \(g * g' = g' * g = e \) for any \(g \in G \) by the proof in the preceding paragraph. So, we have \(g * e = g * (g' * g) = (g * g') * g = g \).

10. Let \(A \) be a set, and \(\mathcal{P}(A) \) be its power set. Show that there is a group \(G \) with \(|G| = |\mathcal{P}(A)|\).

Proof. Case 1. If \(|A| \) is finite, then \(\mathbb{Z}_N \) with \(N = 2^n \) is a group with \(2^n \) elements, where \(|\mathbb{Z}_N| = |\mathcal{P}(A)|\).

Case 2. \(A \) is infinite. Let \(S_A \) be the group of bijections (permutations) on \(A \) under function composition. By the Axiom of Choice, we have \(|A \times A| = |A| \) so that \(|\mathcal{P}(A \times A)| = |\mathcal{P}(A)|\).

Clearly, every bijection on \(A \) corresponds to a subset of \(A \times A \). So, there is an injection from \(S_A \) to \(\mathcal{P}(A \times A) \), i.e., \(|S_A| \leq |\mathcal{P}(A \times A)| = |\mathcal{P}(A)|\).

Now, for every subset \(S \) of \(A \), there is a bijection \(f : A \to A \) such that \(f(x) = x \) for all \(x \in S \) and \(f(x) \neq x \) for all \(x \notin S \). Thus, there is an injection from \(\mathcal{P}(A) \) to \(S_A \), i.e., \(|\mathcal{P}(A)| \leq |S_A|\).

By the Schroder-Bernstein Theorem, \(|\mathcal{P}(A)| = |S_A|\).