Chapter 19 Vector Spaces
A **vector space** V over a field \mathbb{F} is an Abelian group $(V,+)$ with a scalar multiplication μv for any $\mu \in \mathbb{F}$ and $v \in V$ such that $1v = v$, $(ab)v = a(bv)$, $a(u + v) = au + av$ $(a + b)v = av + bv$ for any $a, b \in \mathbb{F}$ and $u, v \in V$.

Examples \mathbb{F}^n, $M_n(\mathbb{F})$, $\mathbb{F}[x]$.

Examples An extension field \mathbb{E} over the ground field.

(a) \mathbb{C} over \mathbb{R}. (b) \mathbb{R} over \mathbb{Q}. (c) $\mathbb{Z}_p[x]/\langle f(x) \rangle$ over \mathbb{Z}_p.

- A set $S \subseteq V$ is linearly dependent if there is a nontrivial combination of a finite collection of vectors in S equal to 0.
- It is a basis if V if it is a spanning set of V.
Theorem Every vector space has a basis. If V has a basis with n elements, then every basis has n elements. In such a case, we say that V has dimension n. We use the convention that dimension V is 0 if $V = \{0\}$.

Question Can we say that two bases of a vector space must have the same cardinality? [A writing project?]

Examples F^n, $M_n(F)$, $F[x]$.

Examples An extension field E over the ground field.

(a) \mathbb{C} over \mathbb{R}. (b) \mathbb{R} over \mathbb{Q}. (c) $\mathbb{Z}_p[x]/\langle f(x) \rangle$ over \mathbb{Z}_p.