Chapter 20 Extension fields
Definition An extension field E of a given field F is a field such that the operations of F are those of E restricted to F.

Theorem 20.1 Let $f(x) \in F[x]$ be a nonconstant polynomial. Then there is an extension field E in which $f(x)$ has a zero.

Proof. May assume that $f(x)$ is irreducible; construct $E = F[x]/\langle f(x) \rangle$.

Example Let $f(x) = 2x + 1 \in \mathbb{Z}_4[x]$. Then $f(x)$ does not have zero in any ring R containing \mathbb{Z}_4 as a subring.

Proof. If $\beta \in R$ is a zero, then $0 = 2\beta + 1$ so that $0 = 2(2\beta + 1) = 4\beta + 2$, contradiction.
Definition Let \mathbb{F} has an extension field, and $a_1, \ldots, a_n \in \mathbb{E}$. Then $\mathbb{F}(a_1, \ldots, a_n)$ is the intersection all subfields of \mathbb{E} containing $\mathbb{F} \cup \{a_1, \ldots, a_n\}$.

Definition Let \mathbb{E} be an extension field of \mathbb{F}, and $f(x) \in \mathbb{F}[x]$ has degree $n \geq 1$. We say that $f(x)$ splits in \mathbb{E} if there are a, a_1, \ldots, a_n such that

$$f(x) = a(x - a_1) \cdots (x - a_n).$$

We call \mathbb{E} a splitting field for $f(x)$ if $\mathbb{E} = \mathbb{F}(a_1, \ldots, a_n)$.

Theorem 20.2 Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$ be non-constant. Then there is a splitting field of $f(x)$.

Proof. Induct on $\deg(f(x)) = n$. If $n = 1$, then $\mathbb{E} = \mathbb{F}$. For larger n, let $g(x)$ be a irreducible factor of $f(x)$, then $\mathbb{E} = \mathbb{F}[x]/\langle g(x) \rangle$ contains a zero a_1 of $g(x)$. Then $f(x) = (x - a_1)h(x) \in \mathbb{E}[x]$. By induction assumption, there is a splitting field K of \mathbb{E}. One can then find a splitting field K of $f(x)$.

Chapter 20 Extension fields
Example Consider $f(x) = x^4 - x^2 - 2 = (x^2 - 2)(x^2 + 1) \in \mathbb{Q}[x]$. Then the splitting field equals

$$\mathbb{Q}(\sqrt{2}, i) = \{(a + bi) + (c + di)\sqrt{2} : a, b, c, d \in \mathbb{Q}\}.$$

Theorem 20.3 Let a be a zero of the irreducible polynomial $p(x) \in F[x]$. Then $F(a)$ is isomorphic to $F(x)/\langle p(x) \rangle$. If $p(x)$ has degree n, then $F(a)$ is a vector space over F with a basis $\{1, a, a^2 \cdots, a^{n-1}\}$.

If b is another zero of the irreducible polynomial, then $F(a)$ and $F(b)$ are isomorphic.

Proof. Define $\phi : F[x] \to F(a)$ by $\phi(f(x)) = f(a)$. Then $Ker(\phi) = \langle p(x) \rangle$. By the isomorphism theorem, $F[x]/Ker(\phi) \sim F(a)$. ... □

Corollary Suppose $f(x)$ is irreducible in $F[x]$ with zeros in extension fields E and E', respectively. Then $F(a)$ and $F(b)$ are isomorphic.

Proof. They are isomorphic to $F[x]/\langle f(x) \rangle$. □
Theorem 20.4 Suppose $f(x) \in \mathbb{F}[x]$ with a splitting field \mathbb{E}. Let $\phi : \mathbb{F} \to \mathbb{F}'$ be a field isomorphism. Then $\phi(f(x))$ is irreducible in $\mathbb{F}'[x]$. If \mathbb{E}' is a splitting field of $\phi(f(x))$, then there is an isomorphism from \mathbb{E} to \mathbb{E}' agree with ϕ on \mathbb{F}.

Proof.

Step 1. Let a be a zero of an irreducible factor $p(x)$ of $f(x)$ in \mathbb{E}, and let b be a zero of $\phi(p(x))$ in \mathbb{E}'. Extend $\phi : \mathbb{F}(a) \to \mathbb{F}'(b)$ using the map sending $h(x) + \langle p(x) \rangle \in \mathbb{F}[x]/\langle p(x) \rangle$ to $\phi(h(x)) + \langle \phi(p(x)) \rangle$.

Step 2. Use induction on the degree of $f(x)$. If $f(x)$ has degree 1, then $\mathbb{F} = \mathbb{E}$ and $\mathbb{F}' = \mathbb{E}'$. The result is true.

Assume that $f(x)$ has degree $n > 1$. Now, write $f(x) = (x - a)g(x)$ and $\phi(f(x)) = (x - b)\phi(g(x))$. Use induction to finish the proof.

Corollary Let $f(x) \in \mathbb{F}[x]$. Any two splitting fields of $f(x)$ are isomorphic.

Example The splitting field of $x^n - a \in \mathbb{Q}[x]$ equals $\mathbb{Q}(a^{1/n}, \exp(i2\pi/n))$.

Chapter 20 Extension fields
Zeros of an irreducible polynomials

Definition The derivative of \(f(x) = a_nx^n + \cdots + a_0 \) is
\[f'(x) = na_nx^{n-1} + \cdots + a_1. \]

Lemma Let \(f(x), g(x) \in \mathbb{F}[x] \) and \(a \in \mathbb{F} \). Then
\[
(f(x) + g(x))' = f'(x) + g'(x), \quad (af(x))' = af'(x),
\]
\[
(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
\]

Theorem 20.5 A polynomial \(f(x) \in \mathbb{F}[x] \) has a multiple zero in some extension field if and only if \(f(x) \) and \(f'(x) \) have a common factor of positive degree in \(\mathbb{F}[x] \).

Proof. If \(f(x) = (x - a)^2g(x) \in \mathbb{E}[x] \), then \(f'(x) = \ldots \) so that \(f'(x) \) and \(f'(x) \) have common factor in \(\mathbb{E} \).

If \(f(x) \) and \(f'(x) \) have no common factor in \(\mathbb{F}[x] \), i.e., they are relatively prime, then there is \(g(x), h(x) \in \mathbb{F}[x] \) such that \(g(x)f(x) + h(x)f'(x) = 1 \) so that \((x - a) \) is a factor of \(1 \in \mathbb{E}[x] \).

Conversely, if \(f(x) \) and \(f'(x) \) have a common factor \((x - a) \), then
\[
f(x) = (x - a)g(x) \quad \text{and} \quad f'(x) = g(x) + (x - a)g'(x)
\]
so that
\[
g(x) = (x - a)h(x). \quad \text{Hence,} \quad f(x) = (x - a)^2 h(x) \in \mathbb{E}[x].
\]
Theorem 20.6 Let \(f(x) \in \mathbb{F}[x] \) be irreducible. If \(\mathbb{F} \) has characteristic 0, then \(f(x) \) has no multiple zeros. In case \(\mathbb{F} \) has characteristic \(p \), \(f(x) \) has a multiple zero if and only if \(f(x) = g(x^p) \) for some \(g(x) \in \mathbb{F}[x] \).

Proof. If \(f(x) \) has a multiple zero, then \(f(x) \) and \(f'(x) \) have common factor \(g(x) \) of degree at least 1 in \(\mathbb{F}[x] \). Then \(g(x)|f(x) \) implies that \(g(x) = uf(x) \). Now, \(g(x)|f'(x) \), we see that \(f'(x) = 0 \).

Now, \(f'(x) = 0 \) means \(k a_k = 0 \) for all \(k = 1, \ldots, n \), if \(f(x) = a_0 + \cdots + a_n x^n \). If \(\text{Char}\mathbb{F} = 0 \), then ...

If \(\text{Char}\mathbb{F} = p \), then ...
A field \mathbb{F} is perfect if \mathbb{F} has characteristic 0 or characteristic p such that $\mathbb{F}^p = \{a^p : a \in \mathbb{F}\} = \mathbb{F}$.

Theorem 20.7 Every finite field is perfect.

Proof. Suppose \mathbb{F} has characteristic p. The map $x \mapsto x^p$ is a field isomorphism. \hfill \Box

Theorem 20.8 If $f(x) \in \mathbb{F}[x]$, where \mathbb{F} is perfect, then $f(x)$ has no multiple roots.

Proof. If $\text{Char} \mathbb{F} = 0$, we are done. If $\text{Char} \mathbb{F} = p$, then $f(x) = \sum a_k(x^p)^k = (\sum a_kx^k)^p$, a contradiction. \hfill \Box

Theorem 20.9 The zeros of an irreducible polynomial $f(x) \in \mathbb{F}[x]$ have the same multiplicity. Thus, the polynomial has a factorization $a_n(x - a_1)^n(x - a_2)^n \cdots (x - a_t)^n$ with a_1, \ldots, a_t in the extension field, and $a_n \in \mathbb{F}$.

Proof. Suppose $f(x) = (x - a)^mg(x) \in \mathbb{E}[x]$. There is a field isomorphism $\phi : \mathbb{E} \to \mathbb{E}$ leaving \mathbb{F} invariant and sending a to b.

Thus, $\phi(f(x)) = \phi((x - a)^mg(x)) = (x - b)^m\phi(g(x)) \in \mathbb{E}[x]$.

Chapter 20 Extension fields
An example

Let \(\mathbb{F} = \mathbb{Z}_2(t) \) be

\[
\left\{ \frac{f(t)}{g(t)} : f(t), g(t) \in \mathbb{Z}_2[t], g(t) \neq 0, f(t), g(t) \text{ have no common factor} \right\},
\]

the field of quotients of \(\mathbb{Z}_2[t] \). Note that \(\frac{f_1(t)}{g_1(t)} = \frac{f_2(t)}{g_2(t)} \) if \(f_1(t)g_2(t) = f_2(t)g_1(t) \);

\[
\frac{f_1(t)}{g_1(t)} + \frac{f_2(t)}{g_2(t)} = \frac{f_1(t)g_2(t) + f_2(t)g_1(t)}{g_1(t)g_2(t)} = \frac{f_3(t)}{g_3(t)}, \quad \text{and} \quad \frac{f_1(t)}{g_1(t)} \cdot \frac{f_2(t)}{g_2(t)} = \frac{f_1(t)f_2(t)}{g_1(t)g_2(t)} = \frac{f_3(t)}{g_3(t)}.
\]

Note also that \(\mathbb{F} \) is not a perfect field.

Claim: \(f(x) = x^2 - t \in \mathbb{F}[x] \).

We need to show that \(f(x) \) has no zero in \(\mathbb{F} \).

It suffices to show that \(f(x) \) has no zero in \(\mathbb{F} \), i.e., \((h(t)/g(t))^2 \neq t \).

If \(h(t)^2 = tg(t)^2 \), then \(h(t^2) = tg(t^2) \), a contradiction. \(\square \)