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Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of its
adjacency matrix. Two graphs are equienergetic if they have the same energy. We
construct infinite families of graphs equienergetic with edge-deleted subgraphs.
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1 Introduction

Throughout, G will be a simple graph, i.e., a graph with no loop and no multiple edge.
Let V (G) and E(G) denote the vertex set and edge set of G respectively. Also let A(G)
denote the adjacency matrix of the graph G. The characteristic polynomial and spectrum of
a graph are those of its adjacency matrix. If E is a subset of E(G), then G−E will denote
the subgraph of G with vertex set V (G) but with edge set E(G)−E. A subgraph H of G is
an induced subgraph of G if H contains all edges of G that join two vertices of H. Clearly
H is induced if and only if A(H) is a principal submatrix of A(G). We write G − H for
the graph obtained from G by deleting all vertices of an induced subgraph H and all edges
incident with H. This is also called the complement of H in G. Moreover, when no edge of
G joins H and its complement G−H, we write G = H ⊕ (G−H). If E is a set of edges of
G such that G−E has more connected components than G, then E is called a cut set of G.

Let λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) be the eigenvalues of an n× n real symmetric matrix
A. The energy of a graph G is defined as E(G) =

∑n
j=1 |λj(A(G))| [4]. Two graphs are

equienergetic if they have the same energy. Of course, if two graphs are cospectral, i.e.,
have the same spectrum, then they are equienergetic. However the converse is not true,
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see Example 1.2. Recently there is some interest in constructing pairs of graphs which are
equienergetic but not co-spectral [1, 2, 5, 6, 7, 8, 9]. In this paper, we are interested in
constructing pairs of equienergetic graphs such that one is a subgraph of the other, i.e., the
energy of a graph is the same as the energy of a subgraph obtained by deleting some of its
edges. Formally we have the following problem.

Problem 1.1. Characterize graph G and edge set E such that E(G) = E(G− E).

Two examples of small sizes are included.

Example 1.2. The disjoint union of two copies of the complete graph on 2 vertices K2⊕K2 is
an equienergetic subgraph of the cycle graph on 4 vertices C4. Note that E(K2⊕K2) =
4 = E(C4), and K2 ⊕K2 = C4 − E where E is a cut set.

Example 1.3. Let G be a simple graph obtained by deleting two independent edges from
the complete graph on 5 vertices K5. Then the cycle graph on 5 vertices C5 is an
equienergetic subgraph of G. Note that E(G) = 2 + 2

√
5 = E(C5), and C5 = G − E

where E is not a cut set.

In this paper, we focus on two special cases of Problem 1.1. Section 2 concerns the case when
E is a cut set. Two convenient methods of constructing infinitely many graphs equienergetic
with disconnected subgraphs are established. Section 3 deals with the case when E is a
singleton, i.e., E contains just a single edge. We construct an infinite family of connected
graphs equienergetic with subgraphs of one edge fewer. It is worth mentioning that these
two cases are mutually exclusive because of the following result from [3].

Theorem 1.4. If e is a bridge, i.e., a cut edge of a graph G, then E(G− {e}) < E(G).

2 E is a cut set

In this section, we focus on the special case of Problem 1.1 that E is a cut set of G. In this
case, the adjacency matrix of G is of the form

A(G) =

[
A(H) X
XT A(K)

]

where H and K are complementary subgraphs of G − E. In [3], it is proved that E(G) =
E(G− E) if and only if there exist orthogonal matrices U and V such that[

UA(H) UX
V XT V A(K)

]

is positive semi-definite. However this characterization is not very helpful in finding equiener-
getic subgraphs. The following example is taken from [3].
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Example 2.1. For n ≥ 2, let G be a simple graph on 2n vertices with a cut set E such

that A(G) =

[
Jn − In In

In Jn − In

]
and A(G− E) =

[
Jn − In 0

0 Jn − In

]
where Jn is

the n× n matrix with all entries equal to 1, and In is the n× n identity matrix. Then
E(G) = E(G− E).

Lemma 2.2. For n ≥ 2, let G be a simple graph on 2n vertices with a cut set E such that

A(G) =

[
A In

In A

]
and A(G− E) =

[
A 0
0 A

]
. Then E(G) = E(G− E) if and only if

|λi(A)| ≥ 1 for all i.

Proof. Let the spectrum of A be {λ1, . . . , λn}. Then the spectrum of A(G) is {λ1 ±
1, . . . , λn ± 1}. Since |λi + 1| + |λi − 1| ≥ 2|λi|, we have E(G − E) = E(G) if and
only if

∑
i 2|λi| =

∑
i(|λi + 1|+ |λi − 1|) if and only if 2|λi| = |λi + 1|+ |λi − 1| for all i

if and only if |λi| ≥ 1 for all i.

Lemma 2.3. For n ≥ 2, let G be a simple graph on 2n vertices with a cut set E such that

A(G) =

[
A A
A A

]
and A(G− E) =

[
A 0
0 A

]
. Then E(G) = E(G− E).

Proof. Let the spectrum of A be {λ1, . . . , λn}. Then the spectrum of A(G) is {0(n), 2λ1, . . . , 2λn}.
Hence E(G− E) = 2

∑n
i=1 |λi| = E(G).

Remark 2.4. If a graph G has nonzero integer eigenvalues, say any complete graph Kn or
the cycle graph C6, then |λi(A(G))| ≥ 1 for all i. Hence Example 2.1 is a special case
of Lemma 2.2. Both Lemmas 2.2 and 2.3 provide convenient constructions of graphs
equienergetic with edge-deleted subgraphs. An application of Lemma 2.3 gives the
next example.

Example 2.5. For n ≥ 2, let G be a simple graph on 2n vertices with a cut set E such that

A(G) =

[
Jn − In Jn − In

Jn − In Jn − In

]
and A(G − E) =

[
Jn − In 0

0 Jn − In

]
. Then E(G) =

E(G− E).

Theorem 2.6. Suppose that G is a simple graph with a cut set E such that A(G) =[
Jn − In X

XT Jm − Im

]
and A(G−E) =

[
Jn − In 0

0 Jm − Im

]
. Then E(G) = E(G−E)

if and only if (i) n = m, and (ii) X = In or X = Jn − In

Proof. (Sufficiency) By Examples 2.1 and 2.5.

(Necessity) Let Jn − In = Pn

[
n− 1 0

0 −In−1

]
P T

n where Pn is an orthogonal matrix

with the first column being the vector with all 1’s. Since Jn − In is nonsingular, there
exists a unique orthogonal matrix Un such that Un(Jn− In) is positive definite, indeed,
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Un = Pn

[
1 0
0 −In−1

]
P T

n is also symmetric. By the characterization mentioned in the

beginning of this section, if E(G) = E(G− E) then

[
Pn 0
0 Pm

] 
[

n− 1 0
0 In−1

] [
1 0
0 −In−1

]
P T

n XPm[
1 0
0 −Im−1

]
P T

mXT Pn

[
m− 1 0

0 Im−1

]


[
P T

n 0
0 P T

m

]

=


Pn

[
n− 1 0

0 In−1

]
P T

n Pn

[
1 0
0 −In−1

]
P T

n X

Pm

[
1 0
0 −Im−1

]
P T

mXT Pm

[
m− 1 0

0 Im−1

]
P T

m


=

[
Un(Jn − In) UnX

UmXT Um(Jm − Im)

]

is positive semi-definite. Hence


[

n− 1 0
0 In−1

] [
1 0
0 −In−1

]
Y[

1 0
0 −Im−1

]
Y T

[
m− 1 0

0 Im−1

]
 is positive

semi-definite where Y = P T
n XPm is n×m. By symmetry,[
1 0
0 −In−1

]
Y = Y

[
1 0
0 −Im−1

]
,

and so P T
n XPm = Y =

[
k 0
0 Z

]
and P T

mXT Pn = Y T =

[
k 0
0 ZT

]
. Recall that both

the first column of Pn and Pm are vectors with all 1’s, denoted by 1n and 1m respec-
tively. It follows that X1m = k1n and XT1n = k1m, i.e., X has constant row sums and

column sums equal to k. Consequently, n = m. Now


[

n− 1 0
0 In−1

] [
k 0
0 −Z

]
[

k 0
0 −ZT

] [
n− 1 0

0 In−1

]


is positive semi-definite, and so |λi(Z)| ≤ 1 for all i. Consider the sum of squares of
entries for the matrices X, Y and Z, we have

nk = tr XT X = tr Y T Y = k2 + tr ZT Z = k2 +
∑

i

|λi(Z)|2 ≤ k2 + n− 1.

Hence k = 1 or k = n− 1, i.e., X = In or X = Jn − In.

3 E is a singleton

In this section, we consider another special case of Problem 1.1 that E is a singleton. To
avoid triviality, the supergraph is required to be connected, but the subgraph does not need
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Figure 1: Graph G1.

*

Figure 2: Graph G2.

to be connected. The numbers of connected graphs with 2 to 9 vertices are

1, 2, 6, 21, 112, 853, 11117, 261080,

respectively. After an exhaustive search, the numbers of connected graphs equienergetic with
subgraphs of one edge fewer are

0, 0, 0, 0, 1, 0, 0, 2,

respectively. They are G1 on 6 vertices in Figure 1, G2 on 9 vertices in Figure 2, and G3

on 9 vertices in Figure 3. In these figures, the edge with an asterisk can be deleted without
changing the energy. In [3], G1 is shown to be a member of an infinite family of connected
graphs equienergetic with subgraphs of one edge fewer. In this section, we construct another
infinite family of graphs to which G2 is a member (See Theorem 3.2). It is still unknown
whether G3 in Figure 3 is a member of an infinite family of connected graphs equienergetic
with subgraphs of one edge fewer.

For n ≥ 2 and 1 ≤ s, r ≤ n, define KK(n, s, r) as a simple connected graph with two
copies of complete graph Kn connected via a vertex in the middle. The left complete graph
is joined to the middle vertex with s edges and the right complete graph is joined to the
middle vertex with r edges. Hence KK(n, s, r) has 2n + 1 vertices and n2 − n + s + r edges.
G2 in Figure 2 is indeed KK(4, 1, 3).

By labeling the two copies of complete graph first and then the middle vertex last, the
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Figure 3: Graph G3.

adjacency matrix of KK(n, s, r) is

A =

 K 0 xs

0 K xr

xT
s xT

r 0


where K = Jn − In is the adjacency matrix of Kn, xs is an n-vector with the first s entries
equal 1 and the rest equal 0, xr is an n-vector with the first r entries equal 1 and the rest
equal 0. In particular, the adjacency matrix for the graph in Figure 2 is

A(G2) =



0 1 1 1 0 0 0 0 1
1 0 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 0 0
1 0 0 0 1 1 1 0 0


.

Let λ1 ≥ · · · ≥ λ2n+1 be the eigenvalues of A. Since

[
K 0
0 K

]
is a principal submatrix

of A, we have the following interlacing inequalities:

λ1 ≥ n− 1 ≥ λ2 ≥ n− 1 ≥ λ3 ≥ −1 ≥ λ4 ≥ −1 ≥ · · · ≥ −1 ≥ λ2n ≥ −1 ≥ λ2n+1.

Hence λ2 = n− 1, λ4 = · · · = λ2n = −1, and

λ1 ≥ n− 1 ≥ λ3 ≥ −1 ≥ λ2n+1.

On the other hand,

2trK = trA = λ1 + n− 1 + λ3 + (2n− 3)(−1) + λ2n+1,
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2trKK + 2xT
s xs + 2xT

r xr = trA2 = λ2
1 + (n− 1)2 + λ2

3 + (2n− 3)(−1)2 + λ2
2n+1,

2trK3 + 3xT
s Kxs + 3xT

r Kxr = trA3 = λ3
1 + (n− 1)3 + λ3

3 + (2n− 3)(−1)3 + λ3
2n+1.

After simplification,
λ1 + λ3 + λ2n+1 = n− 2,

λ2
1 + λ2

3 + λ2
2n+1 = 2s + 2r + n2 − 2n + 2,

λ3
1 + λ3

3 + λ3
2n+1 = 3s(s− 1) + 3r(r − 1) + n3 − 3n2 + 3n.

Using Newton’s identities, we deduce that λ1, λ3, and λ2n+1 are zeros of the cubic polynomial

x3 − (n− 2)x2 + (1− n− s− r)x− [s2 + r2 − (n− 1)(s + r)].

Therefore we have the following lemma.

Lemma 3.1. The characteristic polynomial of KK(n, s, r) is

(x−n+1)(x+1)2n−3
(
x3 − (n− 2)x2 + (1− n− s− r)x− [s2 + r2 − (n− 1)(s + r)]

)
.

Let the zeros of

p(x) = x3 − (n− 2)x2 + (1− n− s− r)x− [s2 + r2 − (n− 1)(s + r)] (1)

be α1, α2, α3. Then

α1 + α2 + α3 = n− 2,

α1α2 + α2α3 + α3α1 = 1− n− s− r,

α1α2α3 = s2 + r2 − (n− 1)(s + r),

and, by interlacing inequalities, α1 ≥ n− 1 ≥ α2 ≥ −1 ≥ α3.
Similarly, let the zeros of

x3 − (n− 2)x2 + (1− n− s− r + 1)x− [s2 + (r − 1)2 − (n− 1)(s + r − 1)] (2)

or x3 − (n− 2)x2 + (1− n− s− r)x− [s2 + r2 − (n− 1)(s + r)] + (x− n + 2r) (3)

be β1, β2, β3. Then

β1 + β2 + β3 = n− 2,

β1β2 + β2β3 + β3β1 = 2− n− s− r,

β1β2β3 = s2 + (r − 1)2 − (n− 1)(s + r − 1),
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and, by interlacing inequalities, β1 ≥ n − 1 ≥ β2 ≥ −1 ≥ β3. Moreover, α1 > β1 since
KK(n, s, r− 1) is a subgraph of the connected graph KK(n, s, r). Also note that if polyno-
mials (1) and (2) have a common zero then it must be n− 2r.

Now
E(KK(n, s, r)) = 3n− 4 + |α1|+ |α2|+ |α3|,

and
E(KK(n, s, r − 1)) = 3n− 4 + |β1|+ |β2|+ |β3|.

Consequently, E(KK(n, s, r)) = E(KK(n, s, r − 1)) if and only if |α1|+ |α2|+ |α3| = |β1|+
|β2|+ |β3|.

Theorem 3.2. For n ≥ 2 and 1 ≤ r, s ≤ n, E(KK(n, s, r)) = E(KK(n, s, r − 1)) if and
only if

i. s2 − (2r − 1)s + 2n2r − 8nr2 + 8r3 − n2 + 6nr − 9r2 − n + 3r = 0,

ii. n < 2r,

iii. s2 + r2 < (n− 1)(s + r).

Proof. (Sufficiency) Conditions (i) and (ii) imply that n− 2r is a common negative root of
polynomials (1) and (2) (via equation (3)). Conditions (ii) and (iii) imply that both
α2 and β2 are positive. Hence α3 = β3. Therefore we have

|α1|+ |α2|+ |α3| = α1 + α2 − α3

= α1 + α2 + α3 − 2α3

= β1 + β2 + β3 − 2β3

= β1 + β2 − β3

= |β1|+ |β2|+ |β3|

and so E(KK(n, s, r)) = E(KK(n, s, r − 1)).

(Necessity) Assume that E(KK(n, s, r)) = E(KK(n, s, r − 1)), and so

|α1|+ |α2|+ |α3| = |β1|+ |β2|+ |β3|.

First we claim that β2 > 0. Otherwise β2 ≤ 0, and it leads to a contradiction as
follows. If α2 ≤ 0 then α1 = β1 is a common zero of polynomials (1) and (2), then
α1 = β1 = n−2r ≥ n−1, i.e., 1 ≥ 2r, a contradiction. If α2 > 0, then α1+α2 = β1 < α1,
also a contradiction.

Next we claim that α2 > 0. Otherwise α2 ≤ 0, and it leads to a contradiction as
follows. Since α2 ≤ 0, we have s2 + r2 − (n − 1)(s + r) = α1α2α3 ≤ 0. Therefore we
have the following 4 cases to consider.

Case 1: s = r = n− 1.
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Then α1α2α3 = s2 + r2 − (n − 1)(s + r) = 0, and so α2 = 0 because α1 and α3 are
nonzero. Therefore α1 − α3 = |α1| + |α2| + |α3| = |β1| + |β2| + |β3| = β1 + β2 − β3.
Because α1 +α2 +α3 = β1 +β2 +β3, it follows that α3 = β3. Hence α3 = β3 = n−2r =
n− 2(n− 1) = 2− n, and α1 = n− 2− α3 = n− 2− (2− n) = 2n− 4. Consequently,
3− 3n = 1− n− s− r = α1α3 = (2n− 4)(2− n) which is impossible because n is an
integer.

Case 2: s = r = n.

Then β1β2β3 = s2 +(r− 1)2− (n− 1)(s+ r− 1) = n > 0. However β2 > 0 implies that
β1β2β3 < 0, a contradiction.

Case 3: s = n and r ≤ n− 1.

Since 0 > β1β2β3 = s2 + (r − 1)2 − (n− 1)(s + r − 1) = r2 − (n + 1)r + 2n, it follows
that

n + 1−
√

n2 − 6n + 1

2
< r <

n + 1 +
√

n2 − 6n + 1

2
and n2 − 6n + 1 ≥ 0.

Note that 2 < n+1−
√

n2−6n+1
2

< 3 and n − 2 < n+1+
√

n2−6n+1
2

< n − 1 for n > 6.
Consequently, 3 ≤ r ≤ n− 2 with n > 6.

On the other hand, 0 ≥ α1α2α3 = s2 + r2 − (n − 1)(r + s) = r2 − (n − 1)r + n. It
follows that

r ≤ n− 1−
√

n2 − 6n + 1

2
or r ≥ n− 1 +

√
n2 − 6n + 1

2

and n2−6n+1 ≥ 0. Note that 1 < n−1−
√

n2−6n+1
2

< 2 and n−3 < n−1+
√

n2−6n+1
2

< n−2
for n > 6. Consequently r ≤ 1 or r ≥ n− 2 with n > 6.

Eventually r = n− 2 with n > 6, so we have

n− 2 = α1 + α2 + α3 = β1 + β2 + β3, (4)

3− 3n = α1α2 + α2α3 + α3α1 = β1β2 + β2β3 + β3β1 − 1, (5)

2 = α1α2α3 = β1β2β3 + n− 4. (6)

Suppose that |α1|+ |α2|+ |α3| = |β1|+ |β2|+ |β3|. Since α2 ≤ 0, by (4), α1 = β1 + β2

and α2 + α3 = β3. And by (5), α2α3 = β1β2 − 1. And by (6), 2
α1

= 6−n
β3

− 1 which

gives β3 = (6 − n) α1

α1+2
. Finally, by (4), α2

1 + (10 − 2n)α1 + (4 − 2n) = 0 which gives

α1 = n−5+
√

n2 − 8n + 21. Put it back into (5), we have 3−3n = α1(α2+α3)+α2α3 =
α1(n−2−α1)+

2
α1

and then 8n4−146n3+872n2−2106n+2164 = 0 which is impossible
because n is an integer.

Case 4: s ≤ n− 1 and r = n.

Since 0 > β1β2β3 = s2 + (r − 1)2 − (n− 1)(s + r − 1) = s2 − (n− 1)s, it follows that
1 ≤ s ≤ n− 2.
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On the other hand, 0 ≥ α1α2α3 = s2 + r2 − (n − 1)(r + s) = s2 − (n − 1)s + n. It
follows that

s ≤ n− 1−
√

n2 − 6n + 1

2
or s ≥ n− 1 +

√
n2 − 6n + 1

2

and n2 − 6n + 1 ≥ 0. Consequently, s ≤ 1 or s ≥ n− 2 with n > 6.

Eventually, we have two subcases to consider.

Subsubcase 4.1: s = 1 and r = n.

n− 2 = α1 + α2 + α3 = β1 + β2 + β3 (7)

−2n = α1α2 + α2α3 + α3α1 = β1β2 + β2β3 + β3β1 − 1 (8)

2 = α1α2α3 = β1β2β3 + n (9)

Suppose that |α1| + |α2| + |α3| = |β1| + |β2| + |β3|. Since α2 ≤ 0, by (7), it follows
that α1 = β1 + β2 and so α2 + α3 = β3. Consequently, from (8), α2α3 = β1β2 − 1.
From (9), 2

α1
= 2−n

β3
− 1 and so α2 + α3 = β3 = (2 − n) α1

α1+2
. Now, from (7) again,

α2
1 + (6 − 2n)α1 + (4 − 2n) = 0. It gives α1 = n − 3 +

√
n2 − 4n + 5. Put it back to

(8), we obtain 4n4 − 40n3 + 136n2 − 200n + 116 = 0 which is impossible because n is
an integer.

Subsubcase 4.2: s = n− 2 and r = n.

n− 2 = α1 + α2 + α3 = β1 + β2 + β3 (10)

3− 3n = α1α2 + α2α3 + α3α1 = β1β2 + β2β3 + β3β1 − 1 (11)

2 = α1α2α3 = β1β2β3 + n (12)

Suppose that |α1| + |α2| + |α3| = |β1| + |β2| + |β3|. Since α2 ≤ 0, by (10), it follows
that α1 = β1 + β2 and so α2 + α3 = β3. Consequently, from (11), α2α3 = β1β2 − 1.
From (12), 2

α1
= 2−n

β3
− 1 and so α2 + α3 = β3 = (2 − n) α1

α1+2
. Now, from (10) again,

α2
1 + (6 − 2n)α1 + (4 − 2n) = 0. It gives α1 = n − 3 +

√
n2 − 4n + 5. Put it back to

(11), we obtain 8n4 − 90n3 + 352n2 − 594n + 380 = 0 which is impossible because n is
an integer.

Finally, from the two claims above, we conclude that α3 = β3 is a common root of
polynomials (1) and (2), hence n − 2r = α3 = β3 < 0, which gives condition (ii).
It follows that n − 2r is a root of polynomial (1) and it gives condition (i). And
s2 + r2 − (n− 1)(s + r) = α1α2α3 < 0, which gives condition (iii).

Remark 3.3. The conditions (i), (ii), and (iii) in the Theorem 3.2 can be summarized as
“n− 2r is the only negative zero of the polynomial p(x) in (1)”.
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By Theorem 3.2, there are many choices of parameters n, s, r such that E(KK(n, s, r)) =
E(KK(n, s, r− 1)). For example, G2 = KK(4, 1, 3) in Figure 2 is the example with smallest
parameters. Corollary 3.4 below gives explicitly an infinite subclass of these graphs, and
hence confirms that the family described by the parameters in Theorem 3.2 is infinite.

Corollary 3.4. Let s = n. Then E(KK(n, s, r)) = E(KK(n, s, r − 1)) if and only if n =
s = 4k2 − 9k + 6 and r = 2k2 − 4k + 3 for k ≥ 3.

Proof. Applying Theorem 3.2 with s = n, we see that E(KK(n, n, r)) = E(KK(n, n, r−1))
if and only if

i. 2n2r − 8nr2 + 8r3 + 4nr − 9r2 + 3r = 0,

ii. n < 2r,

iii. r2 < (n− 1)r − n.

By taking k = 2r− n, one can check that (i), (ii), and (iii) hold if and only if n = s =
4k2 − 9k + 6 and r = 2k2 − 4k + 3 for k ≥ 3.

Corollary 3.5 Let s = 1. Then E(KK(n, 1, r)) = E(KK(n, 1, r − 1)) if and only if n = 4
and r = 3.

Proof. Applying Theorem 3.2 with s = 1, we see that E(KK(n, 1, r)) = E(KK(n, 1, r− 1))
if and only if

i. (2r − 1)n2 + (6r − 8r2 − 1)n + 8r3 − 9r2 + r + 2 = 0,

ii. n < 2r,

iii. 1 + r2 < (n− 1)(1 + r).

One can check that (i), (ii), and (iii) hold if and only if n = 4 and r = 3.
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