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Abstract

In this paper, we determine the set S of straight lines L0 that have intersections with

four given distinct lines L1, . . . , L4 in R3. If any two of the four given lines are skew,
i.e., not co-planar, Bielinski and Lapinska used techniques in projective geometry to
show that there are either zero, one, or two elements in the set S. Using linear algebra
techniques, we determine S and show that there are no, one, two or infinitely many
elements L0 in S, where the last case was overlooked in the earlier paper. For the sake
of completeness, we provide a comprehensive determination of all the elements L0 in
S if at least two of the four given lines are co-planar. In this scenario, there may also
be zero, one, two, or infinitely many solutions.
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1 Introduction

Affine maps are a fundamental concept in mathematics that find applications in various fields

such as computer graphics, computer vision, physics, and engineering; see [3, 4, 5, 7]. They

are especially critical in deep learning and neural networks, with an affine transformation

being the most commonly type of linear transformation in neural networks (see [7]). In

addition to their use in geometric contexts, affine maps are also important in linear algebra

and functional analysis. In linear algebra, affine maps are used to study the geometry of

vector spaces and the properties of linear transformations. In this paper, we use affine

transformations to determine straight lines that intersect four different lines in R3. In the

formal mathematical setting, we solve the following problem.

Problem 1.1. For j = 1, 2, 3, 4, let Lj = {uj + tvj : t ∈ R} be straight lines in R3 such that

vj is nonzero. Determine the set S of all straight lines L0 = {u0 + tv0 : t ∈ R}, which will

intersect Lj for j = 1, 2, 3, 4. Here L0 may not exist.
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Previous work by Bielinski and Lapinska [1] provided a solution to this problem using

Monge’s projections. Their approach involves selecting an appropriate system of projection

planes and applying Steiner’s construction of common lines of two projective pencils of lines.

The authors showed that there can be either no, one, or two lines in the solution set S.
Furthermore, the authors used these results in [2] to study the problem of finding a circle

that orthogonally intersects two non-coplanar circles. In [6], the authors studied the general

problem of “finding best lines passing through a set of straight lines”, and discussed the

applications of such results in archaeological pottery analysis, precision manufacturing, and

3D modelling. In particular, they referred to the work in [1] showing that it is possible that

there is no straight line intersecting 4 given straight lines.

In Section 2, we use elementary linear algebra techniques to give a descriptions of all the

elements L0 in S. In particular, we show that there are none, one, two or infinitely many

elements L0 in S, where the last case was missed in the paper [1] by Bielinski and Lapinska.

Furthermore, concrete examples are given for the four cases when S has none, one, two or

infinitely many solutions.

In Section 3, we consider the case where two of the four given lines lie in the same plane

and provide a description of the solutions L0 ∈ S for this scenario. Similar to the case

where the given lines are in general positions, there can be no, one, two, or infinitely many

solutions.

Given the four lines L1, . . . , L4, and let A = [v1 v2 v3 v4 u1 u2 u3 u4] ∈ M3,8 and

V = [v1 v2 v3 v4] ∈ M3,4, where vj = (vj1, vj2, vj3)
t and uj = (uj1, uj2, uj3)

t for j = 1, 2, 3, 4.

We can simplify the problem by performing the following operations on the given lines

L1, . . . , L4.

(1) We may relabel the indices of L1, . . . , L4, i.e., permute the first four columns of A and

the same permutation to the last four columns of A.

(2) For j = 1, 2, 3, 4, we may modify the vj and uj in the definition of Lj as follows:

(2.a) Replace vj by ±vj/∥vj∥ and assume that vj has unit length and the first nonzero

entry is positive.

(2.b) We may assume ut
jvj = 0 by replacing uj with uj − ut

jvjvj, the projection of uj

to the orthogonal complement of vj. In particular, if vj = ej is one of the basic vectors

e1, e2, e3 ∈ R3, we may assume that uj has a zero entry at the jth position.

These operations will simplify the problem by reducing the number of degrees of freedom

in the vectors vj and uj, while preserving the essential geometric properties of the lines
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L1, . . . , L4. In particular, the operation (2.b) ensures that the vectors uj are orthogonal to

the vectors vj and have a zero component in the direction of vj.

In our proofs, we apply invertible affine transformations T (x) = Rx−x0 to transform the

four given lines to a set of lines T (Lj) = L̃j with simple forms, j = 1, 2, 3, 4. Here, R ∈ M3

is an invertible matrix, and x0 ∈ R3 is a vector. Then we identify the lines L̃0 (if they exist)

that intersect with L̃1, . . . , L̃4 and obtain the solutions L0 = T−1(L̃0) under the inverse map

T−1(x) = R−1x+R−1x0. Notice that

T (uj + tvj) = R(uj + tvj)− x0 = Ruj − x0 + tRvj for j = 1, 2, 3, 4.

The affine transformation T will transform A to RA− [0 0 0 0 x0 x0 x0 x0]. In many cases,

we can set x0 = Ruj and assume that uj is the zero vector after the affine transformation.

The following simple result determines whether two given lines are co-planar, and it is

useful in our discussion.

Lemma 1.2. Let L = {u + tv : t ∈ R} and L̂ = {û + tv̂ : t ∈ R}. The two lines L and L̂

lie in the same plane if and only if

det
([
v v̂ û

])
= det

([
v v̂ u

])
. (1)

Furthermore, L intersects L̂ at one point only if and only if Eq(1) holds and v and v̂ are

not multiple of each other.

Proof. Note that L and L̂ lie in the same plane if and only if the two lines L′ = {tv : t ∈ R}
and L̂′ = {(û−u) + tv̂ : t ∈ R} lie in a 2-dimensional plane containing the origin. Thus the

3× 3 matrix T =
[
v v̂ û− u

]
formed by the three vectors v, v̂ and û− u is has rank at

most two. Therefore, the matrix T has zero determinant, i.e., detT = 0; equivalently,

0 = det
([
v v̂ û− u

])
= det

([
v v̂ û

])
− det

([
v v̂ u

])
.

The last assertion is clear.

2 Solution when no two lines are co-planner

In this section, we present the solution of Problem 1.1 when no two of the four given lines

L1, . . . , L4 are co-planar. Let S be the set of lines L0 having nonempty intersection with

L1, . . . , L4 in R3.

Theorem 2.1. Suppose L1, . . . , L4 are four lines in R3 such that no two of them lie in the

same plane. Apply a suitable affine transformation and assume that

L1 = {te1 : t ∈ R}, L2 = {te2 + e3 : t ∈ R}, and Lj = {tvj + uj : t ∈ R} for j = 3, 4,
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where vj = (vj1, vj2, vj3)
t and uj = (uj1, uj2, uj3)

t. For j = 3, 4, let

(aj, bj, cj) = vj × uj =

(∣∣∣∣vj2 uj2

vj3 uj3

∣∣∣∣ ,− ∣∣∣∣vj1 uj1

vj3 uj3

∣∣∣∣ , ∣∣∣∣vj1 uj1

vj2 uj2

∣∣∣∣) .

Then S consists of elements of the form

L0 = {t(t1, t2, 1) + (−t1, 0, 0) : t ∈ R},

where (t1, t2) satisfies vj3t1 + bj ̸= 0 for j = 3, 4, and

t2 = −(a3 − v32)t1 + c3
v33t1 + b3

= −(a4 − v42)t1 + c4
v43t1 + b4

. (2)

Consequently, |S| can be zero, one, two, or infinity, which equals the number of roots of the

polynomial

p(z) = (v33z + b3)((a4 − v42)z + c4)− (v43z + b4)((a3 − v32)z + c3)

in R \ ∪4
j=3{z : vj3z + bj = 0}.

Proof. Suppose Lj = {uj + tvj : t ∈ R}, j = 1, 2, 3, 4, are given such that L1 and L2 do

not lie in the same plane. Then by Lemma 1.2, R =
[
v1 v2 u2 − u1

]
has rank three. By

the affine transform x 7→ R−1(x− u1) we may assume that[
v1 v2 u1 u2

]
=

[
e1 e2 0 e3

]
.

Thus, the lines take the form L1 = {te1 : t ∈ R}, L2 = {te2+e3 : t ∈ R} and Lj = {tvj+uj :

t ∈ R} for j = 3, 4 with vj = (vj1, vj2, vj3)
t and uj = (uj1, uj2, uj3)

t.

If L0 = {tv0 + u0 : t ∈ R} is a solution in S, then L0 ∩ L1 is nonempty. We may assume

that u0 = −t1e1 ∈ L0 ∩L1 for some t1 ∈ R. On the other hand, L0 ∩L2 is nonempty implies

s2v0 − t1e1 = t2e2 + e3 for some s2, t2 ∈ R. Replacing v0 by s2v0, if necessary, one can

assume that s2 = 1 and v0 = t1e1 + t2e2 + e3 = (t1, t2, 1)
t.

Let j ∈ {3, 4}. The line Lj intersects neither L1 nor L2. Thus, L0 cannot be Lj. So L0 is

a solution if and only if L0 intersects Lj at one point only. By Lemma 1.2 v0 is not parallel

to vj and the cofactor expansion along the first row

ajt1 + bjt2 + cj =

∣∣∣∣∣∣
t1 vj1 uj1

t2 vj2 uj2

1 vj3 uj3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
t1 vj1 −t1
t2 vj2 0
1 vj3 0

∣∣∣∣∣∣ = −vj3t1t2 + vj2t1,

where aj ≡
∣∣∣∣vj2 uj2

vj3 uj3

∣∣∣∣, bj ≡ −
∣∣∣∣vj1 uj1

vj3 uj3

∣∣∣∣, and cj ≡
∣∣∣∣vj1 uj1

vj2 uj2

∣∣∣∣. Or equivalently,

0 = vj3t1t2 + (aj − vj2)t1 + bjt2 + cj = (vj3t1 + bj)t2 + (aj − vj2)t1 + cj. (3)
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We claim that for a fixed t1 ∈ R, there is at most one t2 satisfying (3).

To prove our claim, suppose there exist two distinct t̂2, t̃2 ∈ R such that both the two

lines L̂0 = {tv̂0 + u0 : t ∈ R} and L̃0 = {tṽ0 + u0 : t ∈ R}, with u0 = −t1e1, v̂0 = (t1, t̂2, 1)
t

and ṽ0 = (t1, t̃2, 1)
t, are in the solution set S. Since both L̂0 and L̃0 intersect L1, L2, and

Lj, they intersect L1 at a common point u0. Then L̂0 and L̃0 intersect L2 and Lj at distinct

points, and thus, the four lines L̂0, L̃0, L2, and Lj must lie in the same plane. But this

contradicts the assumption that L2 and Lj are not co-planer. Therefore, for each t1 ∈ R,
there exists at most one t2 ∈ R such that L0 = {tv0 + u0 : t ∈ R} with v0 = (t1, t2, 1)

t is in

the solution set S.
By the above claim and (3), L0 intersecting Lj leads to vj3t1+bj ̸= 0, since vj3t1+bj = 0

generates either none or infinite solutions t2 for (3). It follows that t2 is uniquely determined

from t1 such that t2 = − (aj−vj2)t1+cj
vj3t1+bj

.

Since the above arguments hold for j = 3, 4, one can conclude that L0 intersects both L3

and L4 if and only if there exists t1 ∈ R such that vj3t+ bj ̸= 0 for j = 3, 4, and

−(a3 − v32)t1 + c3
v33t1 + b3

= t2 = −(a4 − v42)t1 + c4
v43t1 + b4

.

Equivalently, t1 is a root of the polynomial

p(z) = (v33z + b3)((a4 − v42)z + c4)− (v43z + b4)((a3 − v32)z + c3)

in R \ ∪4
j=3{z : vj3z + bj = 0}.

On the other hand, for each root z = t1 of the polynomial p(z) in R\∪4
j=3{z : vj3z+ bj =

0}, the line L0 = {tv0 + u0 : t ∈ R} with v0 =
(
t1,− (a3−v32)t1+c3

v33t1+b3
, 1
)t

and u0 = (−t1, 0, 0)
t,

intersects L1, L2, L3, L4. So the solution set S can have no, one, two, or infinitely many

solutions, depending on the number of roots of the polynomial p(z) in R\∪4
j=3{z : vj3z+bj =

0}.

Remark 2.2. Using the notation in the Theorem 2.1, under the assumption that vj3t+bj ̸= 0

for j = 3, 4, S has infinitely many solutions if p(z) is the zero polynomial; S has one solution

if p(z) reduces to a linear equation, or the discriminant of p(z) is zero. So, in the generic

case, there should be zero or two solutions.

The following examples show that the solution set S of L0 can indeed have none, one,

two or infinitely many elements.

Example 2.3. Let

L1 = {te1 : t ∈ R}, L2 = {te2 + e3 : t ∈ R}, and L3 = {te3 + (e1 + e2) : t ∈ R}.

Notice that (a3, b3, c3) = (−1, 1, 0).
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1. Suppose L4 = {u4 + tv4 : t ∈ R} with v4 = (1, 2,−2)t and u4 = (0, 0, 2)t. Then

(a4, b4, c4) = (4,−2, 0) and p(z) ≡ 0. In this case, for any t1 ̸= −1,−1
2
, the line

L0 = {u0+tv0 : t ∈ R} with u0 = −t1e1 and v0 =
(
t1,

t1
t1+1

, 1
)t

, intersects L1, L2, L3, L4

at the points

(−t1, 0, 0)
t,

(
0,

t1
t1 + 1

, 1

)t

,

(
1, 1,

t1 + 1

t1

)t

, and

(
t1

2t1 + 1
,

2t1
2t1 + 1

,
2(t1 + 1)

2t1 + 1

)t

,

respectively. Therefore, S has infinitely many elements.

2. Suppose L4 = {u4 + tv4 : t ∈ R} with v4 = (1, 2,−2)t and u4 = (0, 0, 3)t. Then

(a4, b4, c4) = (6,−3, 0) and p(z) = z(2z+1), which has no solution in R\
{
−3

2
,−1,−1

2
, 0
}
.

Therefore, S is an empty set.

3. Suppose L4 = {u4 + tv4 : t ∈ R} with v4 = (1, 2,−2)t and u4 = (−1, 1,−2)t. Then

(a4, b4, c4) = (−2, 4, 3) and p(z) = −3(2z + 1)(z − 1). Now t1 = 1 is the only root of

p(z) in R \
{
−1,−1

2
, 0, 2

}
. Then the line

L0 = {−e1 + t(2e1 + e2 + 2e3) : t ∈ R}

intersects L1, L2, L3, L4. Therefore, S has one element.

4. Suppose L4 = {u4 + tv4 : t ∈ R} with v4 = (2, 1,−2)t and u4 = (1,−2, 1)t. Then

(a4, b4, c4) = (−3,−4,−5), p(z) = −(3z + 5)(2z + 1) and t1 = −1
2
,−5

3
are two roots of

p(z) in R \ {−2,−1, 0}. Therefore, the two lines

L′
0 =

{
1

2
e1 + t(e1 + 2e2 − 2e3) : t ∈ R

}
and L′′

0 =

{
5

3
e1 + t(6e1 + 15e2 − 10e3) : t ∈ R

}
intersect L1, L2, L3, L4. Therefore, S has two elements.

3 At least two lines are coplanar

To provide a comprehensive solution to the problem, we also describe the solution set S of

lines L0 having intersection with four given lines L1, . . . , L4 that are not in generic positions,

i.e., at least two of them lie in the same plane in this section.

Suppose two lines belong to the same plane, we may relabel the lines and assume that

L1, L2 are the two lines. Then we may apply an affine transform to R3, and assume that

the plane containing the two lines are the xy-plane, i.e., the plane containing points of the

form (a, b, 0)t with a, b,∈ R. In particular, we may assume that Lj = {uj + tej : t ∈ R} for
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j = 1, 2. Moreover, if L1 and L2 intersect, we may assume that they intersect at the origin

so that Lj = {tej : t ∈ R} for j = 1, 2.

In the following, we will construct the solutions L0 that lie in the xy-plane, and solutions

L0 that do not lie in the xy-plane. Clearly, a solution L0 = {u0 + tv0 : t ∈ R}, with

u0 = (u01, u02, u03)
t and v0 = (v01, v02, v03)

t, belongs to the xy-plane if and only if v0,u0

belong to the xy-plane, i.e., u03 = v03 = 0. On the other hand, a solution L0 that does

not lie in the xy-plane must have intersection with the xy-plane at a specific point w0 =

(w1, w2, 0)
t = u0 + t0v0 with t0 = u03/v03. In particular, v03 ̸= 0. By these observations, we

can describe the solution set of lines L0 intersecting Lj for j = 1, . . . , 4. The statements and

proof are lengthy due to the many cases need to be considered. We will continue to use S
to denote the set of lines L0 intersecting the four given lines.

Theorem 3.1. Suppose L1, . . . , L4 are four lines in R3, and assume that L1 and L2 lie in

the xy-plane. Furthermore, if L1 and L2 intersect, then we assume that they intersect at the

origin. Let P be the intersection of S and the xy-plane and N = S \ P. We consider the

following cases:

(1) L3 and L4 both lie in the xy-plane.

(1.a) The set P is infinite consisting of elements of the form L0 = {u0 + tv0 : t ∈ R}, where
u0 and v0 lie in the xy-plane, and v0 ̸= vj for j = 1, . . . , 4. Furthermore, P also

contains Lℓ if and only if vℓ ̸= vj for j ∈ {1, . . . , 4} \ {ℓ}.

(1.b) The set N is nonempty if and only if all the lines L1, . . . , L4 intersect at the origin.

In such a case, N is infinite consisting of lines of the form {tv0 : t ∈ R} with v0 not

lying in the xy-plane.

(2) L3 lies in the xy-plane, but L4 does not. (We may relabel the lines in case L4 lies in

the xy-plane, but L3 does not.)

(2.a) The set P is nonempty if and only if L4 intersect the xy-plane at a point u0. If u0

exists, then P is infinite consisting of elements of the form L0 = {u0 + tv0 : t ∈ R},
where v0 lies in the xy-plane, and v0 ̸= vj for j = 1, 2, 3. Furthermore, P also contains

Lℓ with ℓ ∈ {1, 2, 3} if and only if u0 ∈ Lℓ and vℓ ̸= vj for j ∈ {1, 2, 3} \ {ℓ}.

(2.b) The set N is nonempty if and only if L1, L2, L3 intersect at the origin. In such a case,

N is infinite consisting of elements of the form L0 = {tv0 : t ∈ R} with v0 ∈ L4 and

not lying in the xy-plane. In addition, if L4 also passes through the origin, then N is

infinite consisting of elements of the form L0 = {tv0 : t ∈ R} with any vector v0 not

lying in the xy-plane.
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(3) L3 and L4 do not lie in the xy-plane.

(3.a) The set P is nonempty only if each Lj intersects the xy-plane at a point ũj for j = 3, 4.

Suppose ũ3 and ũ4 exist. If ũ3 = ũ4 = u0, then P is infinite and consists of elements

of the form L0 = {u0 + tv0 : t ∈ R}, where v0 lies in the xy-plane, and v0 ̸= vj for

j = 1, 2. Furthermore, P also contains Lℓ, ℓ = 1, 2, if and only if u0 ∈ Lℓ and v1 ̸= v2.

If ũ3 ̸= ũ4 and L̃0 = {ũ3 + t(ũ4 − ũ3) : t ∈ R} is the line passing through ũ3 and ũ4,

then P is empty if L̃0 ∩ L1 = ∅ or L̃0 ∩ L2 = ∅; otherwise, P = {L̃0}.

(3.b) If L1 and L2 have no intersection, then N is empty. Assume L1 and L2 intersect at

the origin.

(i) Suppose both L3 and L4 pass through the origin. Then N is infinite consisting of

lines of the form L0 = {tv0 : t ∈ R} with v0 not lying in the xy-plane.

(ii) Suppose L3 passes through origin but L4 does not. (We may relabel the lines if L4

lies in the xy-plane, while L3 does not). Then N is infinite consisting of elements

of the form L0 = {tv0 : t ∈ R} with v0 ∈ L4 and not lying in the xy-plane.

(iii) Suppose both L3 and L4 do not pass through the origin. Then L0 ∈ N if and

only if L0 = {tv0 : t ∈ R}, where v0 = s3u3 + t3v3 = s4u4 + t4v4 for some

s3, s4, t3, t4 ∈ R and s3, s4 ̸= 0. That is, v0 is a vector in the intersection of

the plane containing {u3,v3} and the plane containing {u4,v4}, and v0 is not a

multiple of v3 and v4.

Proof. We consider the above three cases according to the theorem.

(1) Suppose L1, L2, L3, and L4 lie in the xy-plane. Then any line lying in the xy-plane and

not parallel to L1, L2, L3, L4 will intersect all of them. That is, any line of the form

L0 = {u0 + tv0 : t ∈ R} with u0 and v0 lie in the xy-plane and v0 ̸= vj, will intersect

L1, L2, L3, L4. Furthermore, the line Lℓ will intersect the other 3 lines if and only if

vℓ ̸= vj for all j ∈ {1, 2, 3, 4} \ {ℓ}. Thus, the (1.a) case holds.

Suppose L0 exists and does not lie in the xy-plane, i.e., L0 ∈ N . Then L0 must

intersect the xy-plane at one point only. In this case, L0 must intersect all the four

given lines at the same point in the xy-plane. Thus, L1, L2, L3, L4 have a common

intersection point, at the origin. This case happens if and only if u3 is a multiple of

v3 and u4 is a multiple of v4. Then any line passing through the origin will intersect

L1, L2, L3, L4, i.e., L0 can be chosen to be any line of the form L0 = {tv0 : t ∈ R} for

any v0 that is not in the xy-plane. Thus, the (1.b) case holds.
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(2) Suppose L1, L2, L3 lie in the xy-plane and L4 does not. If L4 does not intersect the

xy-plane. Then it is clear that P is empty. Suppose L4 intersect the xy-plane. Then

the intersection point is u0 = u4 − (u43/v43)v4. Then all the lines of the form L0 =

{u0 + tv0 : t ∈ R} with v0 ̸= vj for j = 1, 2, 3 will intersect all four given lines.

Furthermore, if u0 lies in Lℓ for some ℓ ∈ {1, 2, 3} and vℓ ̸= vj for j ∈ {1, 2, 3} \ {ℓ},
then Lℓ will intersect all the four lines including itself. Thus, the (2.a) case holds.

Suppose L0 exists and does not lie in the xy-plane, i.e., L0 ∈ N . Then L0 must

intersect the xy-plane at one point only. In this case, L0 must intersect L1, L2, L3 at

the same point in xy-plane, which is the origin. This case happens if and only if u3 is a

multiple of v3. In this case, L0 can be chosen to be any line passing through the origin

and intersecting L4. That is, any line of the form L0 = {tv0 : t ∈ R} with v0 ∈ L4

will intersect L1, L2, L3, L4. In addition, if L4 also passes through the origin, i.e., u4 is

not a multiple of v4, then all L1, L2, L3, L4 have a common intersection point, which is

the origin. In this case, any line passing through the origin will intersect all four given

lines. That is, N contains all the lines of the form L0 = {tv0 : t ∈ R}, where v0 is not

in the xy-plane. Thus, the (2.b) case holds.

(3) Suppose L1 and L2 lie in the xy-plane but L3 and L4 do not. If either L3 or L4 does

not intersect the xy-plane. Then it is clear that P is empty. Suppose both L3 and

L4 intersect the xy-plane. Then the intersection points are ũ3 = u3 − (u33/v33)v3 and

ũ4 = u4 − (u43/v43)v4 respectively. If ũ3 = ũ4 = u0, then any line L0 = {u0 + tv0 :

t ∈ R} with v0 ̸= vj for j ∈ {1, 2} will intersect L1, L2, L3, L4. Furthermore, if u0 ∈ Lℓ

with ℓ ∈ {1, 2} and v1 ̸= v2, then Lℓ will intersect all the four lines including itself

too. Now suppose ũ3 ̸= ũ4. Then the line L̃0 = {ũ3 + t(ũ4 − ũ3) : t ∈ R} will intersect

L1, L2, L3, L4 if and only if L̃0 intersects both L1 and L2, i.e., L̃0 ∩ L1 and L̃0 ∩ L2 are

both empty. In this case P = {L̃0}. Thus, the (3.a) case holds.

If L1 and L2 has no intersection, then L0, if exists, must lie in the xy-plane. Then N
must be empty. Assume L1 and L2 intersect at the origin. Suppose both L3 and L4

pass through origin. Then any line passing through the origin will intersect all four

given lines. Then N is infinite consisting of lines of the form L0 = {tv0 : t ∈ R} with

v0 not lying in the xy-plane. Thus, the (3.b.i) case holds.

Suppose L3 passes through the origin but L4 does not. Then any line passing through

the origin and intersecting L4 will intersect all four given lines. So N is infinite con-

sisting of elements of the form L0 = {tv0 : t ∈ R} with v0 ∈ L4 and not lying in the

xy-plane. Thus, the (3.b.ii) case holds.

Finally, suppose both L3 and L4 do not pass through the origin. Then L0 ∈ N , if exists,

must pass through the origin, i.e., L0 has the form L0 = {tv0 : t ∈ R}. Furthermore,
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L0 intersects L3 and L4, so t1v0 = u3 + t3v3 and t2v0 = u4 + t4v4 for some t1, t2, t3, t4

with t1, t2 ̸= 0. Then v0 = (1/t1)u3 + (t3/t1)v3 = (1/t2)u4 + (t4/t2)v4. Thus, the

(3.b.iii) case holds.
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