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Abstract. Every norm ‖ · ‖ on a real Banach space X induces a minimal norm on the
complex linear space CX = X + iX = {x+ iy : x, y ∈ X} by

‖x+ iy‖C = sup{‖x cos θ + y sin θ‖ : θ ∈ [0, 2π]}.
In this note we show that if X is finite-dimensional there is a decomposition X = X1⊕· · ·⊕Xk
into subspaces such that the isometry group of ‖·‖C is generated by that of ‖·‖ and operators
of the form eiθ1In1 ⊕ · · · ⊕ eiθkInk

acting on CX = CX1 ⊕ · · · ⊕ CXk. Various applications
are given, in particular to isometries of numerical radius.
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1. Introduction

If A is an isometry on a finite-dimensional real Banach space (Rn, ‖ · ‖), then eiθA, θ ∈
[0, 2π] is not always an isometry on its complexified space (Cn, ‖ · ‖). However, with the
Taylor minimal complexified norm defined for x+ iy ∈ Rn + iRn = Cn by

‖x+ iy‖T = sup
θ∈R
‖x cos θ + y sin θ‖

one readily verifies that if A is a real isometry, then eiθA is a complex isometry for ‖ · ‖T. In
some cases these are all the possible isometries for ‖·‖T. In other cases, the isometries for ‖·‖T
could be more complicated. For example (as we show below) for the `p-norm with p ≥ 1 all
the isometries for its Taylor complexification have the form eiθA, where A is a real isometry
for `p. On the other hand if p =∞, then the isometries for the Taylor complexification of `∞
have the form PA, where P acts as a scalar operator on each co-ordinate space. So, how can
we decide whether the Taylor complexified norm always has the form eiθA, and how much
more complicated could the isometries of the complexified norm be? In this paper, we give
a complete answer for this question for the finite-dimensional case, and a partial answer for
the infinite dimensional case. In particular, in the finite-dimensional case, we show that the
isometries for the Taylor complexified norm always have the form PA. We also show that
our results apply to the Bochnak maximal complexified norm and discuss the limitation of
the techniques to other complexified norms (see Example 6.2 which also demonstrates that
for general complexified norms it is impossible to characterize its isometries with the help of
isometries on the real space).

To facilitate our discussion, we give the formal definition and background of our problem
in the following. Suppose (X , ‖ · ‖) is a real normed space. A complexification of X is a
complex vector space XC = C ⊗R X equipped with a complex norm ‖ · ‖C that agrees with
‖ · ‖ on the real subspace 1 ⊗R X . We will freely identify 1 ⊗ x with x and i ⊗ x with ix
(throughout, i =

√
−1 except when appearing as index) and we will identify C ⊗R X with

1
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CX . Thus, when considering CX as a real vector space it decomposes into CX = X ⊕ iX .
With this in mind, the complexified norm must satisfy ‖x‖C = ‖x‖ for x ∈ X . Observe that
with λ ∈ C and x ∈ X one has |λ| · ‖x‖ = ‖λx‖C = ‖λ · (1⊗ x)‖C = ‖λ⊗ x‖C. Thus, ‖ · ‖C
is a cross norm (we assume without further notice that C comes equipped with the usual
normalized complex norm). It is well-known (see [13]) that the largest possible cross norm
on a tensor product is the projective cross-norm and hence

‖x+ iy‖C,π = inf
{∑

k
|λk| · ‖xk‖ : x+ iy =

∑
k
λkxk

}
is the largest possible complexification norm. This norm was termed Bochnak’s norm by
Muñoz, Sarantopoulos, and Tonge [9] in honor of Bochnak’s introductory paper [1]. We
remark in passing that a complexification of a real normed algebra A (that is, a submulti-
plicative complex norm on CA which extends a given submultiplicative norm on A) coincides
with the Bochnak complexification (see Remark 6.3 for more details).

Observe that the Bochnak norm satisfies

‖x+ iy‖C,π = ‖x− iy‖C,π.

A complexification norm with this additional property is called a reasonable complexifica-
tion [9]. For any reasonable complexification one has

2‖x‖C = ‖(x+ iy) + (x− iy)‖C ≤ ‖x+ iy‖C + ‖x− iy‖C = 2‖x+ iy‖C
and consequently,

‖x+ iy‖C = ‖e−iθ(x+ iy)‖C = ‖(x cos θ+ y sin θ) + i(y cos θ− x sin θ)‖C ≥ ‖x cos θ+ y sin θ‖.

Thus, each reasonable complexification norm satisfies

sup
θ∈[0,2π]

‖x cos θ + y sin θ‖ ≤ ‖x+ iy‖C ≤ ‖x+ iy‖C,π

The expression on the left is easily seen to be a reasonable complexification norm and by
the above inequality it is the minimal possible reasonable complexification. Following [9] we
call it the Taylor complexification norm and denote it by

(1) ‖x+ iy‖T := sup
θ∈[0,2π]

‖x cos θ + y sin θ‖.

Again we remark in passing that the numerical radius is the Taylor complexification of the
spectral norm restricted to Hermitian matrices (see Example 3.15 for more details).

The Taylor norm coincides with the injective norm on the tensor product C ⊗R X and,
unlike the Bochnak norm, behaves well on subspaces (but unlike the Bochnak norm, does
not behave well under quotient spaces). We refer to [9] for much more information along
these lines.

Below (see Theorem 3.2) we give another description of the Taylor complexification norm
in terms of extreme points of the unit ball for the dual of the original norm. This result is then
used in our main result (see Theorem 3.10) where we determine the group of isometries of the
Taylor complexification norm with the help of the group of isometries of the original norm on
a real space. As an application we compute the group of isometries for the numerical radius
and related norms (see Example 3.15 and remarks below it). Previously, more elaborate
techniques were required to find these groups. The proofs of main results are given in section 4
and an application to Hermitian operators in Taylor’s complexification in section 5. The last
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section gives some concluding remarks, including a partial extension to infinite-dimensional
Banach spaces.

2. Preliminaries

Given a real/complex Banach space X we let X ∗ be its dual, that is, the space of all
bounded R-linear/C-linear functionals on X . The dual of a linear operator A : X → X
is denoted by A∗ and by definition maps a functional f ∈ X ∗ into the functional given
by (A∗f) : x 7→ f(Ax). For a subset Ω ⊆ X we let conv Ω ⊆ X be its convex hull (the
intersection of all convex sets which contain Ω) and we let span Ω be its linear span (the
intersection of all linear spaces that contain Ω).

Recall that in finite-dimensional Banach spaces (Fn, ‖ · ‖), where F = R or C, the unit ball
B = {x ∈ Fn : ‖x‖ ≤ 1} is a compact convex subset and hence, by Steinitz’s theorem [14,
p. 16] (see also [10, Corollary 18.5.1] for a modern treatment), B equals the convex hull of
its extreme points, i.e., B = conv E where E = ExtB is the set of vectors u in B such that
u 6= (u1 + u2)/2 for two different u1, u2 ∈ B. For brevity we shall abuse notation and call
ExtB the set of the norm’s extreme points.

We will frequently rely on the following well-known and easy to prove fact: Let

‖x‖∗ = max{|〈x, y〉| : y ∈ Fn, ‖y‖ ≤ 1}

be the dual norm ‖ · ‖ on Fn; here 〈x, y〉 = y∗x is the standard inner product on Fn with the
elements of Fn being column vectors (n-by-1 matrices). If E∗ is the set of extreme points of
the dual norm unit ball B∗, then (c.f. also Duality Theorem [3, 5.5.14]),

(2)
‖x‖∗ = sup{|〈x, y〉| : y ∈ E} = sup{Re 〈x, y〉 : y ∈ E}
‖y‖ = sup{|〈y, x〉| : x ∈ E∗} = sup{Re 〈y, x〉 : x ∈ E∗}.

The Taylor norm is not easy to compute from the definition. However, when X is identified
with Rn and its complexification, XC, with Cn (n = dimX ) there is a shortcut by using a
dual norm and (2):

(3)

‖x+ iy‖T = max{〈x cos θ + y sin θ, v〉 : θ ∈ [0, 2π], v ∈ Rn, ‖v‖∗ ≤ 1}
= max{|〈x+ iy, eiθv〉| : θ ∈ [0, 2π], v ∈ Rn, ‖v‖∗ ≤ 1}
= max{|〈x+ iy, v〉| : v ∈ Rn, ‖v‖∗ ≤ 1}.

It follows that |〈z, v〉| ≤ ‖z‖T · ‖v‖∗ for all z = x+ iy ∈ Cn and v ∈ Rn so, by (2),

(4) ‖v‖∗T ≤ ‖v‖∗; v ∈ Rn.

Example 2.1. Consider the `p-norm of x = (x1, . . . , xn)t ∈ Rn defined by

`∞(x) = max{|xj| : 1 ≤ j ≤ n} and `p(x) = (
n∑
j=1

|xj|p)1/p for p ∈ [1,∞).

The Taylor complexification of the `p-norm on Rn is

`p,T(z) = max{|〈z, v〉| : v ∈ Rn, `q(v) ≤ 1}; z = x+ iy ∈ Cn,

where 1/p+1/q = 1 with the convention that (p, q) = (1,∞) or (p, q) = (∞, 1) in the limiting
cases. It is interesting to note that `p,T is different from the standard `p-norm on Cn for all
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p ∈ [1,∞), whereas `∞,T coincides with the `∞-norm on Cn. Namely, with the standard basis
e1, . . . , en ∈ Rn one has

`1,T(e1 + ie2) = max{|v1 + iv2| : |v1|, |v2| ≤ 1, v1, v2 ∈ R}

= max{
√
v21 + v22 : |v1|, |v2| ≤ 1, v1, v2 ∈ R} =

√
2 6= |1|+ |i| = `1(e1 + ie2)

and similarly, for 1 < p <∞ one calculates `p,T(e1 + ie2) = max{
√
v21 + v22 : |v1|q + |v2|q ≤

1, v1, v2 ∈ R} = max{1, 2
q−2
2q } 6= p

√
|1|p + |i|p = `p(e1 + ie2). However, with `∞ one sees that

(5) `∞,T(
∑

ziei) = max{|z1v1 + · · ·+ znvn| : vi ∈ R, |v1|+ · · ·+ |vn| ≤ 1} = `∞(
∑

ziei).

3. The Main Results and Consequences

Let us start with a general result about extreme points of tensor products.

Lemma 3.1. Let (Rn, ‖ · ‖1) and (Rm, ‖ · ‖2) be two normed spaces with closed unit balls B1
and B2, and let Ei = ExtBi denote the sets of their extreme points. Then E1⊗E2 := {s1⊗s2 :
si ∈ Ei} = Ext(conv E1 ⊗ E2).

Proof. Clearly, Ext(conv E1 ⊗ E2) ⊆ E1 ⊗ E2. Conversely, let a⊗ b ∈ E1 ⊗ E2. Suppose there
exist a1 ⊗ b1, . . . , an ⊗ bn ∈ E1 ⊗ E2 and positive scalars λ1, . . . , λn with

∑
k λk = 1 such that

(6) a⊗ b =
∑
k

λkak ⊗ bk.

Since b ∈ ExtB2 and B2 is balanced there exists a supporting functional f : Rm → R such
that |f(bk)| ≤ f(b) = 1 for all k. Evaluate I ⊗ f : Rn ⊗ Rm → Rn ⊗ R = Rn at a⊗ b to get

a = (I ⊗ f)(a⊗ b) =
∑
k

λkf(bk)ak.

Since |f(bk)| ≤ 1 and B1 is balanced we have that f(bk)ak ∈ B1, and hence the extreme
point a ∈ ExtB1 is a convex linear combination of f(bk)ak ∈ B1. Since λk > 0 we deduce
that f(bk)ak = a for every k. Now ak ∈ ExtB1 and so ‖ak‖1 = ‖a‖1 = 1 and so f(bk) = ±1
giving ak = ±a. Likewise we show that bk = ±b. Thus, ak ⊗ bk = ±a ⊗ b for each index k
and so a⊗ b is an extreme point of conv(E1 ⊗ E2). �

The result below provides an alternative description for the Taylor complexification of a
norm ‖ · ‖ in terms of extreme points. Loosely speaking, it asserts that the unit ball of the
dual of the Taylor complexified norm ‖ · ‖∗T is the convex hull of TE∗, where T = {eiθ : θ ∈
[0, 2π]} ⊆ C is the unit circle, E∗ is the set of extreme points for the dual norm ‖ · ‖∗, and
TE∗ = {eiθy : θ ∈ [0, 2π], y ∈ E∗}. Let us emphasize that this result characterizes the
Taylor complexification since two norms whose dual norms have the same extreme points
must coincide. We denote the Taylor complexification of a normed space (X , ‖ · ‖) by XT

thus XT = C⊗R X equipped with Taylor norm ‖ · ‖∗T.

Theorem 3.2. Let (X , ‖·‖) be a finite dimensional Banach space. Let B∗ ⊆ X ∗ and B∗T ⊆ X ∗T
be the closed unit balls of its dual norm ‖·‖∗ and the dual of its Taylor complexification ‖·‖∗T.
Then

Ext(B∗T) = TExt(B∗).
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Remark 3.3. The reference to the dual norms is rather critical here. For example, in the
case of Euclidean real space (R2, `2), with `2(x) :=

√
x∗x, the Taylor complexification norm

of x + iy ∈ C2, where x = (x1, x2)
t and y = (y1, y2)

t, coincides with the operator norm of a
matrix ( x1 y1x2 y2 ). The extreme points of the complexified unit ball are thus orthogonal 2-by-2
matrices; however TExt(B) = {(cosα, sinα)⊗(cos θ, sin θ) : α, θ ∈ R} coincides with partial
isometries of rank-one. Hence Ext(BT) 6= TExt(B).

Proof. Identify X with Rn and XT with Cn. Let E∗ := Ext(B∗). The Kronecker product
establishes that, with each nonempty S ⊆ Rn, the set TS ⊆ Cn = R2n coincides with
TR ⊗ S ⊆ R2n where TR = {(cos θ, sin θ) : θ ∈ [0, 2π]} ⊆ R2 is the unit circle. Hence, it
suffices to prove

(7) B∗T = conv(TE∗)
because once this is established, Lemma 3.1 finishes the proof.

By (4) we have TB∗ ⊆ B∗T, thus conv(TE∗) ⊆ B∗T. Note that TB∗ is compact, hence
conv(TE∗) = conv(TB∗) is compact (see also [12, Theorem 3.25]). By way of contradiction,
suppose there exists z ∈ B∗T \ conv(TE∗). Choose a separating hyperplane, i.e., choose
t ∈ R2n = Cn such that

Re 〈t, z〉 > 1, and Re 〈t, y〉 < 1 for every y ∈ conv(TE∗).
Then we have

1 < Re 〈t, z〉 ≤ ‖z‖∗T‖t‖T ≤ ‖t‖T = sup
θ∈[0,2π]
v∈B∗

∣∣〈t, eiθv〉∣∣ by (3)

= sup
θ∈[0,2π]
v∈B∗

Re 〈t, eiθv〉 = sup
θ∈[0,2π]
v∈E∗

Re 〈t, eiθv〉 = sup
y∈TE∗

Re 〈t, y〉 ≤ max
y∈conv(TE∗)

Re 〈t, y〉 < 1,

a contradiction. �

We continue by defining an equivalence relation which will partition E∗ into disjoint subsets
E∗ =

⋃
j∈J E∗j such that their linear span will form a direct sum space decomposition

span E∗ =
⊕
j∈J

span E∗j .

Definition 3.4. Let S be a set of nonzero vectors in a real vector space X . Define a pre-
equivalence relation ∼p on S by x1 ∼p x2 if

(1) {x1, x2} is linearly dependent, or
(2) {x1, x2} can be enlarged to a linearly independent subset {x1, x2, . . . , x`} ⊆ S such

that for some α1 . . . , α` ∈ R \ {0} we have

x0 = α1x1 + · · ·+ α`x` ∈ S.
Define an equivalence relation ∼ on S as the transitive closure of ∼p; in other words, x ∼ y
in S if there is a sequence u1, . . . , ur ∈ S such that x = u1 ∼p u2 ∼p · · · ∼p ur = y.
We say that ∼ is a relation of spatial partition on S and we call the partition of S into
equivalence sets a spatial partition of S.

Let us illustrate these notions with two extreme examples.

Example 3.5. Let S = {e1, . . . , en} be the standard basis for Rn. Then the spatial partition
of S consists of singletons, that is, S = {e1} ∪ · · · ∪ {en}.
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Example 3.6. Let {e1, . . . , en} be the standard basis for Rn, and let

S = {ej : 1 ≤ j ≤ n} ∪ {ej + ej+1 : 1 ≤ j < n}.
Then ej ∼ ej+1, j = 1 . . . , n− 1, so the spatial partition of S consists of a single equivalence
class.

We next show that Definition 3.4 achieves what was intended.

Proposition 3.7. Let S be a set of nonzero vectors in a vector space X . Partition S into
a collection of equivalence classes {Sj : j ∈ J } for the relation ∼. Then

spanS = ⊕j∈J spanSj.

Proof. If |J | = 1 there is nothing to prove, so suppose |J | ≥ 2. Let a ∈ J . Suppose, by
way of contradiction, that there exists a nonzero vector z ∈ spanSa ∩ span(S \ Sa). Then
we may write

m∑
i=1

αixi = z =
n∑
j=1

βjyj

where {x1, . . . , xm} ⊆ Sa is linearly independent, {y1, . . . , yn} ⊆ ∪j 6=aSj is linearly indepen-
dent, and αi, βj 6= 0. Thus {x1, . . . , xm, y1, . . . , yn} is linearly dependent; let T be a subset
of these m+ n vectors that is minimal with respect to the property:

(*) A linear combination (with nonzero coefficients) of the vectors in T is zero.

Without loss of generality we may suppose x1, y1 ∈ T . Since yj and xi lie in different
equivalence classes, the set {xi, yj} is linearly independent for all i, j; in particular |T | ≥ 3.
By the minimality of T it follows that x1 ∼p y1. But this is a contradiction since x1, y1 lie
in different equivalence classes.

Thus we have shown that, for all a ∈ J ,

spanSa ∩ span(∪j 6=aSj) = {0}
and the result follows. �

Note that if dimX <∞ then S must have a finite number of equivalence classes.

In the Lemma below we recall the shortcut CX = C ⊗R X for the complexification of a
real space X . Hence, if M∗ ⊆ X ∗ is a subspace of the dual of X , i.e., a subspace of R-linear
real-valued functionals on X , then CM∗ = C⊗R M

∗ is the subspace of C-linear functionals
on CX with the standard identifications. That is, (λ ⊗R f) : x = 1 ⊗R x 7→ λf(x) ∈ C
(f ∈M∗, x ∈ X , and λ ∈ C). Also, a decomposition X = X1⊕· · ·⊕Xk of real vector spaces
induces the decomposition CX = CX1 ⊕ · · · ⊕ CXk of complex vector spaces.

Lemma 3.8. Let X be a finite-dimensional real Banach space and let E∗ ⊆ X ∗ be the set
of extreme points of its dual norm. Partition E∗ into equivalence classes E∗1 , . . . , E∗k as in
Proposition 3.7, and let M∗

j = spanR E∗j . Define

Xj = ker(⊕i 6=jM∗
i ) = {x ∈ X : f(x) = 0 for all f ∈ ⊕i 6=jM∗

i }.
Then X = ⊕kj=1Xj. Moreover, if a C-linear D : CX → CX is defined by

D(x1 + · · ·+ xk) = ω1x1 + · · ·+ ωkxk; (ωi ∈ T, xi ∈ Xi)
with respect to the decomposition CX = CX1 ⊕ · · · ⊕ CXk, then the dual map satisfies

D∗(f1 + · · ·+ fk) = ω1f1 + · · ·+ ωkfk
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with respect to the decomposition (CX )∗ = (CM∗
1 )⊕ · · · ⊕ (CM∗

k ).

Proof. Suppose x ∈ Xα ∩
∑

β 6=αXβ. Since Xβ ⊆ kerM∗
α for all β 6= α we have

x ∈ Xα ∩ kerM∗
α =

(⋂
β 6=α

kerM∗
β

)
∩ kerM∗

α =
⋂
β

kerM∗
β = kerX ∗,

so x = 0. Thus
∑k

i=1Xi = ⊕ki=1Xi.
Let n = dimX = dimX ∗ and let nj = dimM∗

j . Clearly dimXj = nj, so dim⊕ki=1Xi =∑k
i=1 ni = n. Thus X = ⊕ki=1Xi.
Given D : CX → CX as in the statement, we have, for any f =

∑
fj, fj ∈ CM∗

j , and any
x =

∑
xj, xj ∈ Xj,

(D∗f)(x) = f(Dx) = f
(∑

j

ωjxj

)
=
∑
i

∑
j

ωjfi(xj) =
∑
j

ωjfj(x)

since fi(xj) = 0 if i 6= j. �

Lemma 3.9. Let (X , E∗) be as in Lemma 3.8. Partition E∗ into equivalence classes E∗1 , . . . , E∗k
as in Proposition 3.7, and let M∗

j = span E∗j . Then for any f =
∑
fj with fj ∈M∗

j we have
that ‖f‖∗ =

∑
‖fj‖∗. That is, the norm on X ∗ is the `1-norm of the norms on the sub-

spaces M∗
j .

Proof. Let f ∈ X ∗. Let f̂ = f/‖f‖∗, so f̂ ∈ B∗, the closed unit ball of the dual norm. By

Minkowski’s theorem f̂ is a convex combination of extreme points of B∗, so we may write
f =

∑n
i=1 ‖f‖∗λigi, where λi ≥ 0,

∑n
i=1 λi = 1, and gi ∈ E∗. By gathering those extreme

points which lie in the same equivalence class together, we may write f =
∑
fj, where

fj =
∑
‖f‖∗λigi ∈M∗

j and the sum is over those indices i for which gi ∈ E∗j .
Then

‖f‖∗ =
∥∥∥ k∑
j=1

fj

∥∥∥∗ ≤ k∑
j=1

‖fj‖∗ ≤
n∑
i=1

λi‖f‖∗‖gi‖∗ = ‖f‖∗

since ‖gi‖∗ = 1 for each extreme point. Since X ∗ = ⊕kj=1M
∗
j , the decomposition f =

∑k
j=1 fj

is unique and ‖f‖∗ =
∑k

j=1 ‖fj‖∗ as desired. �

Using the above definitions and results, we can describe the relation between the isometries
for ‖ · ‖ and the isometries for the Taylor complexified norm ‖ · ‖T if dimX is finite. Clearly,
if A is an isometry for the real Banach space (X , ‖ · ‖), then it is straightforward (see Eq. (1)
or see [11]) that its complexification, 1⊗RA : C⊗RX → C⊗RX , which for brevity we again
denote by A, satisfies

‖A(x+ iy)‖T = ‖x+ iy‖T.
In the next theorem we completely determine the relation between the isometries for a

given norm ‖ · ‖ on X and the isometries for the Taylor complexified norm ‖ · ‖T on CX .

Theorem 3.10. Let (X , ‖ · ‖) be a finite-dimensional real normed space with decomposition
X = ⊕kj=1Xj as defined in Lemma 3.8 and let (XT, ‖ · ‖T) be its minimal complexification.

Then T is a complex isometry for ‖ · ‖T if and only if T = DA = AD̂, where A is (the

complexification of) a real isometry for ‖ · ‖ while D = γ1In1 ⊕ · · · ⊕ γkInk and D̂ = γ̂1In1 ⊕
· · · ⊕ γ̂kInk act on XT = (CX1)⊕ · · · ⊕ (CXk), with γj, γ̂j ∈ T and nj = dimXj, j = 1, . . . , k.
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We have a similar result for another extremal complexification, that is, for the Bochnak or
maximal complexification. The only difference is that now we are partitioning the extreme
points of the original norm rather than its dual. Recall from the Introduction that the max-
imal (or Bochnak) complexification of X equals XB = C⊗R X equipped with the projective
tensor norm ‖x+ iy‖B = inf {

∑
k |λk| · ‖xk‖ : x+ iy =

∑
k λkxk} on XB.

Theorem 3.11. Let (X , ‖ · ‖) be a finite-dimensional real Banach space and let (XB, ‖ · ‖B)
be its Bochnak complexification with B and BB the corresponding unit balls. Partition E =
Ext(B) into equivalence classes E1∪· · ·∪Ek as in Definition 3.4 and let Xi := span Ei. Then T

is a complex isometry for ‖·‖B if and only if T = DA = AD̂, where A is (the complexification

of) a real isometry for ‖ · ‖ while D = γ1In1 ⊕ · · · ⊕ γkInk and D̂ = γ̂1In1 ⊕ · · · ⊕ γ̂kInk act
on XB = (CX1)⊕ · · · ⊕ (CXk), with γj, γ̂j ∈ T and nj = dimXj, j = 1, . . . , k. Moreover,

(8) Ext(BB) = TExt(B).

The proofs of both theorems will be given in the next section. Below, we mention some
consequences and examples connected to the first theorem, and also make some remarks to
put the results in perspective.

Corollary 3.12. Suppose ‖ · ‖ is a norm on Rn such that the set of extreme points E∗ of the
norm ball of ‖ ·‖∗ cannot be partitioned into E∗1 ∪E∗2 such that span E∗1 ∩ span E∗2 = {0}. Then
T is an isometry for ‖ · ‖T if and only if T = γA for a complex unit γ and a real isometry
A for ‖ · ‖.

Example 3.13. Consider the `∞-norm on Rn. Its dual norm is `∗∞ = `1 with extreme points
equal to E∗ = {±ej : 1 ≤ j ≤ n}, where e1, . . . , en is the standard basis for Rn. It partitions
into E∗ =

⋃
j{±ej}. The complex isometry group GT is the set of generalized permutations

in Mn(C); the real isometry group GR is the set of generalized permutations in Mn(R) (see,
e.g. [7]). Clearly, GT 6= TGR.

Example 3.14. In contrast, for p ∈ [1,∞) the dual of the `p-norm on Rn is `∗p = `q
(1
p

+ 1
q

= 1) and, except for (q, n) = (∞, 2) the spatial partition of its extreme points consists

of a single class. This is easy to see except, perhaps, for q = ∞ and n ≥ 3 when E∗ =
{(±1, . . . ,±1)t} ⊆ Rn. To see that vectors in E∗ are equivalent, pick any x, y ∈ E∗. By
applying a suitable diagonal matrix diag(±1, . . . ,±1) we may assume x = (1, . . . , 1)t. By
replacing, if needed, y with −y we may also assume that at most half of the entries in y
equal (−1). By permuting entries, if needed, we may further suppose y = (−1k, 1n−k)

t where
the index indicates the number of occurrences. Then, x − y − (1k,−1, 1n−k−1) is a sum of
linearly independent vectors from E∗ and equals x0 = (1k, 1,−1n−k−1) ∈ E∗, so x ∼p y (see
Definition 3.4).

Hence, Corollary 3.12 applies to `p,T, the complexified `p-norm, for every p <∞ and n ≥ 2
except for (p, n) = (1, 2).

Example 3.15. The numerical radius

w(A) = max{|x∗Ax| : x ∈ Cn, x∗x = 1}; A ∈Mn(C)

is the Taylor complexification of the restriction of the spectral norm ‖A‖s =
√
λmax(A∗A) to

the real subspace of Hermitian matrices Hn(C) ⊆ Mn(C). To see this recall that Mn(C) =
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Hn(C) + iHn(C) and that the restriction of the spectral norm to Hn(C) coincides with the
numerical radius. Then, let xA ∈ Cn be a unit vector which maximizes the modulus of x∗Ax
subject to x∗x = 1, and let φA ∈ [0, 2π] be the argument of x∗AAxA. It follows that the
numerical radius of A = S1 + iS2 ∈ Hn(C) + iHn(C) equals

w(A) = |x∗AAxA| = e−iφAx∗AAxA = x∗A(S1 cosφA + S2 sinφA)xA

while, with fixed φ ∈ [0, 2π],

w(S1 cosφ+ S2 sinφ) = max
‖x‖=1

x∗(S1 cosφ+ S2 sinφ)x = max
‖x‖=1

Re(x∗(e−iφA)x) ≤ max
‖x‖=1

|x∗Ax|.

The dual norm of w restricted to Hn(C) is the restriction of the trace norm ‖A‖t =

tr
√
A∗A to Hn(C) and so its set of extreme points equals

E∗ = {±xx∗ : x ∈ Cn, ‖x‖ = 1}.

Clearly, one cannot partition E∗ into two subsets whose real linear spans have trivial inter-
section. By Corollary 3.12, T is an isometry for w on Mn(C) if and only if T = ξA for
some ξ ∈ T and some isometry A for w on Hn(C). We remark that the isometries of the
restriction of the spectral norm to Hn(C) are known; see [4] where also isometries for the
numerical radius on Mn(C) were determined by an induction argument.

Remarks.
(1) The same result holds for the c-numerical radius wc(A) for c ∈ Rn not equal to a

multiple of 1 = (1, . . . , 1)t nor satisfying ct1 = 0, where the dual norm ball of wc(A) on
Hn(C) has the set of extreme points

E∗ = {±U∗ diag(c1, . . . , cn)U : U unitary}

satisfying the condition of Corollary 3.12. The proof of this result in [5] uses the convexity
of the c-numerical range.

(2) More generally, it is known [8, 6] that for every unitary similarity invariant norm on
Mn(C), there is a bounded subset S ⊆Mn(C) such that

‖A‖ = sup{wC(A) : C ∈ S},

where

wC(A) = sup{|tr (CU∗AU)| : U unitary}.

We can assume [6, Remark II, p. 186] that US = {eiθUCU∗ : C ∈ S, θ ∈ R, U unitary} is
the set of extreme points of the dual norm. Suppose that the set S can be chosen to be
a subset of Hn(C), and that S contains a nonscalar matrix C with nonzero trace. Since
UC = {UCU∗ : U unitary} is path connected, UC lies in a single equivalence class of E∗;
since UC spans Hn(C) (see [6, p. 184]), E∗ has a single equivalence class and Corollary 3.12
applies. Then T is an isometry for ‖ · ‖ on Mn(C) if and only if T = eisA for some isometry
A for ‖ · ‖ on Hn(C).

(3) The description of the isometries relies on the structure of the set E∗. It is not
hard to prove that the decomposition Rn = span E∗1 ⊕ · · · ⊕ span E∗k into maximal possible
summands, where E∗1 , . . . , E∗k partition E∗, is unique. To see this, suppose {E∗1 , . . . , E∗k} and
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{Ê∗1 , . . . , Ê∗` } are two different partitions of E∗ such that Rn = span E∗1 ⊕ · · · ⊕ span E∗k =

span Ê∗1 ⊕ · · · ⊕ span Ê∗` . Then we have

Rn =
⊕
1≤r≤k
1≤s≤`

span(E∗r ∩ Ê∗s ).

Since the number of summands k (for which the decomposition of Rn into spans of sets that
partition E∗ is possible) was maximal and since the same holds for ` one sees that

{E∗1 , . . . , E∗k} = {E∗r ∩ Ê∗s : 1 ≤ r ≤ k, 1 ≤ s ≤ `} = {Ê∗1 , . . . , Ê∗` }.

(4) By the above remark, the spatial partition of E∗ can be done by induction as follows.
If E∗ cannot be partitioned into two subsets E∗1 and E∗2 such that (span E∗1 )∩(span E∗2 ) = {0},
then the maximum number k is 1. Otherwise, we can further partition E∗1 and/or E∗2 until
we cannot further partition the subsets. Then we obtain a partition into a maximal number
of subsets, say E∗ = E∗1 ∪ · · · ∪ E∗k and Rn = span E∗1 ⊕ · · · ⊕ span E∗k . It follows easily that for
x, y ∈ E∗, x ∼p y (see Definition 3.4) implies both x, y belong to the same subset, say x, y ∈
E∗i . Proposition 3.7 then implies that we have a spatial partition of E∗.

(5) There is no easy way (and there should not be one) to translate the condition in
Theorem 3.10 from E∗ to E . In fact, applying Corollary 3.12 to the `p-norm on Rn, we see
that, except for (p, n) = (1, 2), the isometries of the `p,T-norm on Cn have the form γA for
some complex unit γ and real isometry A if p ∈ [1,∞) (see Example 3.14), whereas, by
(5), the complexified norm of the `∞-norm on Rn is the `∞-norm on Cn with isometries
of the form PD for a real permutation matrix P and a diagonal unitary matrix D. These
differences, especially between `1- and `∞-norm, are hard to detect directly by comparing
the norm’s extreme points but are easily seen when considering the dual norms.

(6) Let G be the isometry group (of real matrices) for the norm ‖ · ‖ and let GT be the
isometry group (of complex matrices) for the complexified norm ‖ · ‖T. Then Theorem 3.10
implies that GT is a nonsplit extension of a normal subgroup G with the torus group of
operators of the form D = γ1In1 ⊕ · · · ⊕ γkInk acting on Cn = spanX1 ⊕ · · · ⊕ spanXk.

4. Proofs of Theorems 3.10 and 3.11

Proof of Theorem 3.10. In general, suppose ‖ · ‖ is a norm on Cn. Then T is an isometry for
‖ · ‖ if and only if the dual operator T ∗ is an isometry for the dual norm ‖ · ‖∗ (equivalently,
T ∗ preserves E∗, the set of extreme points of ‖ · ‖∗). Translating this to the complexified
norm ‖ · ‖T for a given norm ‖ · ‖ on a real space X = Rn, we see that T preserves ‖ · ‖T
if and only if T ∗ preserves the set of extreme points of ‖ · ‖∗T, i.e., E∗T = TE∗ (the equality
follows by Theorem 3.2).

Let E∗ = E∗1 ∪ · · · ∪E∗k be the spatial partition and let X = X1⊕· · ·⊕Xk be the associated

decomposition defined in Lemma 3.8. Assume T ∗ = A∗D∗ (or T̂ ∗ = D∗A∗), where A is a
complexification of a real isometry for ‖ · ‖ and D = γ1In1 ⊕ · · · ⊕ γkInk (γj ∈ T) acts on

XT = CX = (CX1)⊕ · · · ⊕ (CXk).

Then by Lemma 3.8 and using C spanR(E∗i ) = spanC(TE∗i ) we have that D∗ = γ1Im1 ⊕ · · · ⊕
γkImk with respect to the decomposition

X ∗T = spanC(TE∗1 )⊕ · · · ⊕ spanC(TE∗k ); (mj = dim span E∗j ).
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Clearly, A∗D∗(TE∗) = D∗A∗(TE∗) = TE∗. Thus T = DA and T̂ = AD are both isometries
for ‖ · ‖T.

Conversely, suppose T is a (complex) isometry for ‖ · ‖T. Then T ∗(TE∗) = TE∗. We will

show that T ∗ = A∗D∗ = D̂∗A∗ such that A is a complexified real isometry for ‖ · ‖ and

D∗, D̂∗ have the asserted form. To this end, we first establish the following.

Claim: For each j, 1 ≤ j ≤ k, there exists µj ∈ T such that T ∗(E∗j ) ∈ µjE∗.
We shall take j = 1 to simplify notation. Fix x1 ∈ E∗1 . Then T ∗x1 = µy1 for some µ ∈ T

and y1 ∈ E∗. Let x2 be some other vector in E∗1 . Consider the following cases.

Case 1. Suppose {x1, x2} is linearly dependent, so x2 = −x1. Since E∗ = −E∗, T ∗x2 =
µ(−y1) ∈ µE∗.
Case 2. Suppose {x1, x2} is linearly independent and x1 ∼p x2 (see Definition 3.4). Then
there is a linearly independent set {x1, . . . , x`} and x0 in E∗1 such that

(9) x0 = a1x1 + a2x2 + · · ·+ a`x`

with a1a2 · · · a` 6= 0. We may write T ∗xj = eiθjyj ∈ TE∗ with θj ∈ [0, 2π] and yj ∈ E∗ for
j = 0, 1, . . . , `. Applying T ∗ to (9) and taking real and imaginary parts, we have

(10) (cos θ0) y0 =
∑̀
j=1

aj(cos θj) yj and (sin θ0) y0 =
∑̀
j=1

aj(sin θj) yj.

Since T ∗ is an invertible C-linear map, {eiθ1y1, . . . , eiθ`y`} is linearly independent and spans
an `-dimensional subspace in XT = Cn. As a result, the set of real vectors {y1, . . . , y`} will
span the same subspace in Cn. By (10), the nonzero real vector y0 can be written as a
real linear combination of the linearly independent vectors y1, . . . , y` in two ways (or else
cos θj = 0 for all j, or sin θj = 0 for all j). In any case, we see that (a1 cos θ1, . . . , a` cos θ`)
and (a1 sin θ1, . . . , a` sin θa`) are parallel, so tan θ1 = · · · = tan θ`. Thus eiθ2 = eiθ1 or −eiθ1 ,
so T ∗x2 = µy2 or µ(−y2). In either case the claim holds.

Case 3. Finally, suppose {x1, x2} is linearly independent and there is a set {u1, . . . , u`} ⊆ E∗1
such that x1 = u1 ∼p u2 ∼p · · · ∼p u` = x2. Cases 1 and 2 have actually shown that whenever
z1, z2 ∈ E∗1 , z1 ∼p z2, and T ∗z1 = µy1 for some y1 ∈ E∗, then T ∗z2 = µy2 for some y2 ∈ E∗.
By iterating this argument, we have T ∗u2 = µy2, . . . , T

∗u` = µy` ∈ µE∗ for some yj ∈ E∗.
The proof of the Claim is complete.

By the Claim, there exist µ1, . . . , µk ∈ T so that for xj ∈ E∗j , µjT
∗xj ∈ E∗. Define a linear

map D∗ acting on X ∗T = spanC E∗1 ⊕ · · · ⊕ spanC E∗k by

D∗ = µ1In1 ⊕ · · · ⊕ µkInk .
Writing D−∗ for (D∗)−1 we have T ∗D−∗(E∗) = E∗, and since E∗ spans Rn, T ∗D−∗(Rn) ⊆ Rn.
Thus T ∗D−∗ is a real isometry for ‖ · ‖∗, so it equals A∗ for some real isometry A for ‖ · ‖.
Thus T ∗ = A∗D∗ and so T = DA.

For the reversed product, note that the restriction A∗|Rn = T ∗D−∗|Rn : Rn → Rn pre-
serves the equivalence relation from Definition 3.4. Thus, it permutes the equivalence
classes E∗1 , . . . , E∗k that form the spatial partition of E∗. Being R-linear it must also per-
mute their real linear spans, that is, it permutes the subspaces spanR E∗1 , . . . , spanR E∗k ⊆ X ∗.
It follows that relative to the decomposition X ∗ = spanR E∗1 ⊕ · · · ⊕ spanR E∗k the opera-
tor T ∗D−∗ is represented by a block-permutational matrix

(
B∗iσ(i)

)
i

for some permutation



12 DIJANA ILIŠEVIĆ, BOJAN KUZMA, CHI-KWONG LI, AND EDWARD POON

σ on {1, . . . , k}, where B∗iσ(i) ∈ Mni(R), i = 1, . . . , k are the corresponding blocks. Hence,

T ∗ =
(
B∗iσ(i)

)
i
D∗ =

(
µσ(i)B

∗
iσ(i)

)
i

= D̂∗
(
B∗iσ(i)

)
i

where

D̂∗ = µσ(1)In1 ⊕ · · · ⊕ µσ(k)Ink .

So T ∗ = D̂∗A∗ and the result follows. �

Remark 4.1. The proof of Theorem 3.10 establishes even more: If A is an isometry for
(X , ‖ · ‖), then its dual A∗ is represented by a block-permutational matrix with respect to
decomposition

X ∗ = spanR E∗1 ⊕ · · · ⊕ spanR E∗k
where E∗ = E∗1 ∪ · · · ∪ E∗k is the spatial decomposition of the extreme points for the dual
norm ‖ · ‖∗.

Proof of Theorem 3.11. It is known (see [13, Proposition 2.2, p. 17]) that the closed unit ball
of the projective tensor product norm ‖ · ‖C,π is the closed convex hull of the set ∆⊗R BX =
{ω ⊗R x : |ω|, ‖x‖ ≤ 1}. Using polar coordinates for complex number ω = |ω|eit we see that
∆⊗R BX = T⊗R BX so that

(11) BC = conv(T⊗ BX ).

Identify X with Rn, n = dimX , and T ⊗ BX with a closed and bounded, hence compact,
subset TBX ⊆ Cn = R2n. It follows that conv(TBX ) is also compact [12, Theorem 3.25] so
from (11) we get BC = conv(T⊗ BX ). Lemma 3.1 then implies that in Bochnak’s maximal
complexification norm, (8) holds.

The rest of the proof is the same as for Theorem 3.10, except that we now are partitioning
E = Ext(X ) into equivalence classes E1 ∪ · · · ∪ Ek given from Definition 3.4 instead of the
extreme points E∗ = Ext(X ∗) of the dual norm and we decompose X into X = span E1 ⊕
· · · ⊕ span Ek. �

5. Hermitian operators on the Taylor complexification

Recall that an operator T on a complex Banach space XC is Hermitian if its numerical
range V (T ) := {f(Tx) : x ∈ XC, f ∈ X ∗C, ‖x‖ = f(x) = ‖f‖∗ = 1} ⊆ R. By the famous
Vidav-Palmer theorem, this is equivalent to the fact that ‖eiθT‖ = 1 for every real θ, which,
due to 1 = ‖I‖ ≤ ‖eiθT‖ · ‖e−iθT‖ is further equivalent to the fact that eiθT is an isometry
for every real θ.

Proposition 5.1. Let (X , ‖ · ‖) be a finite-dimensional real Banach space and let (XC, ‖ · ‖T)
be the Taylor minimal complexification. Assume that A : X → X becomes a Hermitian
operator when extended to XC. Then relative to the decomposition X = X1 ⊕ · · · ⊕ Xk from
Theorem 3.10, A = λ1Im1 ⊕ · · · ⊕ λkImk for some λi ∈ R.

Proof. Denote the complexified operator 1 ⊗ A on XC again by A. By definition, eiθA is an
isometry of ‖·‖T for every real θ. Clearly, its dual, A∗ : X ∗C → X ∗C is also Hermitian and leaves
the set of functionals which are real-valued on X invariant. Hence, A∗ maps the real vector
space X ∗ ⊆ X ∗C back to itself. Let E∗ = E∗1 ∪ · · · ∪ E∗k ⊆ X ∗ be the spatial decomposition of
extreme points of the dual norm ‖ · ‖∗ and let

X ∗ = spanR E∗1 ⊕ · · · ⊕ spanR E∗k ,(12)

X ∗C = spanC E∗1 ⊕ · · · ⊕ spanC E∗k .(13)
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It follows from the proof of Theorem 3.10 (see also Remark 4.1) that, relative to the decom-
position (13), the isometry eiθA

∗
can be written as eiθA

∗
= D∗θB

∗
θ where D∗θ = µ1(θ)In1 ⊕

· · · ⊕ µk(θ)Ink acts on X ∗C = spanC E∗1 ⊕ · · · ⊕ spanC E∗k and the real isometry B∗θ acts as a
block-permutational operator on (12), that is, there exists a permutation σ : {1, . . . , k} →
{1, . . . , k} (which depends on θ) such that B∗θ (X ∗i ) = X ∗σ(i). As such, relative to decompo-

sition (12), the operator B∗θ is represented with a block-permutational real matrix (having
exactly k blocks), while D∗θB

∗
θ is represented by the same matrix, except that the block in the

i-th row is multiplied with a unimodular number µi. It follows that, if s ≥ 1 is the exponent
of the symmetric group Symk, then σs = id and so eisθA

∗
= (D∗θB

∗
θ )
s is a block-diagonal

isometry of the form

(14) eisθA
∗

= D̂∗θB̂
∗
θ ,

for a suitable D̂∗θ = µ̂1(θ)In1 ⊕ · · · ⊕ µ̂k(θ)Ink acting on (13) and a suitable real isometry B̂∗θ
leaving the real spaces X ∗i invariant.

We claim that A∗ leaves each X ∗j invariant. To see this, consider the restriction of both
sides in (14) to an invariant subspace CX ∗j ⊆ CX ∗ = X ∗C. If θ ∈ R is sufficiently close
to 0, then the spectrum Sp(isθA∗) lies in the rectangle (−1, 1) × (−π/2, π/2) ⊆ C which
the exponential function, z 7→ ez, maps bijectively onto a simply connected region in C.
Hence, one may find a holomorphic logarithm ln such that ln(exp(z)) = z for z ∈ (−1, 1)×
(−π/2, π/2) ⊆ C. Then holomorphic calculus [12, Theorem 10.29] implies ln eisθA

∗
= isθA∗

for θ ∈ R sufficiently close to 0. Since CX ∗j is invariant for eisθA
∗
, it must be also invariant

for every holomorphic function in eisθA
∗

and in particular it must be invariant for ln eisθA
∗

=
isθA∗ and hence for A∗ as well. Finally, A∗ leaves invariant X ∗, the real part of X ∗C, and
hence also X ∗ ∩ CX ∗j = X ∗j as claimed.

In the sequel we concentrate solely on the first summand and denote the corresponding

restrictions by A∗1 = A∗|X ∗1 : X ∗1 → X ∗1 and by B̂∗1,θ = B̂θ

∗
|X ∗1 , and write µ̂1(θ) = eiξθ for

suitable ξθ ∈ [0, 2π]. In this way, (14) becomes

(15) eisθA
∗
1 = eisθA

∗|CX ∗1 = µ̂1(θ)B̂
∗
1,θ = eiξθB̂∗1,θ.

Using functional calculus we may decompose

cos(sθA∗1) + i sin(sθA∗1) = eisθA
∗
1 = eiξθB̂∗1,θ = (cos ξθ)B̂

∗
1,θ + i(sin ξθ)B̂

∗
1,θ.

Relative to (13), A∗1 and B̂∗1,θ are represented by real matrices. Thus, we see that

cos(sθA∗1) = (cos ξθ)B̂
∗
1,θ,

sin(sθA∗1) = (sin ξθ)B̂
∗
1,θ.

Summing up the squares of both sides gives

(16) In1 = (B̂∗1,θ)
2

wherefrom, by squaring (15), one gets

(17) e2isθA
∗
1 = e2iξθ(B̂∗1,θ)

2 = e2iξθIn1 .

It is a well-known fact that each isometry eiθA
∗

is diagonalizable (with spectrum lying on
the unit disk). Hence, there exist n = dimXC complex one-dimensional subspaces invariant
for eiθA whose sum equals XC. Using holomorphic calculus, as above, we see that A∗, and
hence also A∗1, is itself a diagonalizable operator.
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Consequently, we may choose a suitable basis in CX ∗1 such that A∗1 is represented by a
diagonal n1-by-n1 matrix diag(λ1, . . . λn1), which for brevity we again denote by A∗1. Rewrite
(17) into

In1 = e2i(sθA
∗
1−ξθIn1 ) = diag(e2i(sθλ1−ξθ), . . . , e2i(sθλn1−ξθ)).

It follows that ξθ = sθλ1 − K1(θ)π = · · · = sθλn1 − Kn1(θ)π for suitable integer-valued
functions K1(θ), . . . , Kn1(θ). Subtracting the first and the j-th of these identities gives

λ1−λj
π

sθ = K1(θ)−Kj(θ).

On the left-hand side there is a continuous function in θ, but on the right-hand side there
is an integer-valued function. Therefore, λ1 = λj for every j and so A∗1 = λ1In1 . Clearly,
λ1 ∈ R because A∗1 leaves the real space X ∗1 invariant.

Similar arguments apply for restrictions of A∗ to CXj for every j. Therefore, relative to
the decomposition (12),

A∗ = λ1In1 ⊕ . . . ,⊕λkInk .
By Lemma 3.8, A = λ1Im1 ⊕ . . . ,⊕λkImk relative to decomposition X = X1 ⊕ · · · ⊕ Xk. �

We say an R-linear operator A acting on a real Banach space is real-Hermitian if its com-
plexification 1⊗A is Hermitian in the minimal complexification norm, i.e., if ‖eiθ(1⊗A)‖T = 1
for every real θ.

Corollary 5.2. Let (X , ‖ ·‖) be a finite-dimensional real Banach space and let (XC, ‖ ·‖T) be
its minimal (Taylor) complexification. Then there exists a fixed decomposition X = X1⊕· · ·⊕
Xk such that every real Hermitian operator A : X → X leaves each summand Xj invariant
and acts as a scalar operator on it. Hence, the set of real-Hermitian operators with respect
to Taylor complexification is an abelian algebra. Moreover, the number of different blocks in
this algebra equals the number of equivalence classes in the spatial decomposition of E∗ (the
extreme points of the dual norm ‖ · ‖∗).

Example 5.3. The minimal complexification of the Euclidean norm `2 on Rn differs from
the complex Euclidean norm `2 on Cn.

Namely, in (Cn, `2) the Hermitian operators coincide with the self-adjoint ones. Clearly,
one can find two non-commuting real self-adjoint operators. Hence, there exists no fixed basis
relative to which all self-adjoint operators would be simultaneously diagonal.

Example 5.4. It is known (see [15]) that the Hermitian operators on (Cn, `p), 1 ≤ p ≤ ∞,
are precisely the multiplication operators induced by n-tuples of real numbers when p 6= 2,
and the self-adjoint operators when p = 2. However, since the spatial partition of extreme
points of the norm ball of the dual of (Rn, `p), for p 6= ∞ and (n, p) 6= (2, 1), consists of
a single class (Example 3.14), the only real-Hermitian operators on (Cn, `p,T), are the real
scalar multiples of the identity. Let us note that Hermitian operators on (Cn, `p) restricted
to Rn are real-valued. This is yet another argument showing that `p,T and `p are different
norms on Cn for p 6= ∞. If p = ∞ we recall that the extreme points of the norm ball
of (Rn, `1) decompose into n classes, so the real-Hermitian operators on (Cn, `∞,T) are the
same as real-Hermitian operators on (Cn, `∞). Therefore, (Cn, `∞) does not admit additional
Hermitian operators besides those extended from (Rn, `∞).

Remark 5.5. A finite-dimensional real Banach space (X , ‖ · ‖) admits exactly 2k real-
Hermitian projections (that is, idempotents that are real-Hermitian operators, including 0
and I) if and only if the spatial partition of E∗ consists of k equivalence classes.
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6. Concluding examples and remarks

Given that the Taylor complexification is extremal in some sense, one may wonder whether
the isometry groups of other complexifications will contain or be contained by that of the
Taylor complexification. The following shows that neither conclusion holds.

Example 6.1. The `p-norm on Cn is a complexification of the `p-norm on Rn, but the
isometry group of (Cn, `p) is much larger than {eiθA : θ ∈ [0, 2π], A an isometry of (Rn, `p)}.

Example 6.2. Consider the `2-norm on R2, and a complexification on C2 such that the dual
norm ball of the complexified norm has the set of extreme points equal to:{

eiθv : v ∈ R2, `2(v) = 1, θ ∈ [0, 2π]
}
∪
{

1
2
eiθ(
√

3, i)t : θ ∈ [0, 2π]
}
.

Then the isometry group for the complexified norm is just {zI : |z| = 1}.

Remark 6.3. In case (A, ‖ · ‖) is a (possibly infinite-dimensional) real normed algebra its
Bochnak or maximal complexification coincides with a standard complexification procedure,
described in §13 of Bonsall and Duncan’s book [2], which makes A into a normed algebra over
the complex field. Namely this procedure builds a submultiplicative complexified norm ‖ · ‖C
on AC = A + iA with the help of Minkowski’s functional p attached to a convex, balanced,
absorbing, and radially bounded set

V :=

{
n∑
k=1

(αkuk + iβkuk) : n ∈ N, αk, βk ∈ R, uk ∈ A, ‖uk‖ < 1,
∑
|αk + iβk| ≤ 1

}
.

As shown in [2, §13] the Minkowski functional p is a norm and V is its open unit ball.
Clearly, the closure of V coincides with the closed convex hull of ∆ ⊗ BA (∆ ⊆ C is the
closed unit disc) which, by [13, Proposition 2.2, p. 17] is the closed unit ball of a projective
tensor space C⊗R A, that is, of the Bochnak complexification of A.

Remark 6.4. Assume (X , ‖·‖) is an infinite-dimensional real Banach space. By the classical
Banach-Alaoglu and Krein-Milman Theorems, the dual norm’s unit ball B∗ is the weak-star
closure of conv(ExtB∗). This allows one to derive the same result as in Theorem 3.10 in
the case that the equivalence relation from Definition 3.4 partitions the set of extreme points
Ext(B∗) into finitely many classes.

As for the Bochnak complexification the situation is much more involved because infinite-
dimensional Banach spaces may have no extreme points (consider, e.g, c0).
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