Extremality of Bounds for Numerical Radii of Foguel Operators

Hwa-Long Gau ${ }^{\text {a,* }}$, Chi-Kwong Li ${ }^{\text {b }}$, Kuo-Zhong Wang ${ }^{\text {c }}$, Pei Yuan Wu ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, National Central University, Chungli 32001, Taiwan
${ }^{b}$ Department of Mathematics, College of William \& Mary, Williamsburg, Virginia 23187, USA
${ }^{c}$ Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Abstract

For any operator T on ℓ^{2}, its associated Foguel operator F_{T} is $\left[\begin{array}{cc}S^{*} & T \\ 0 & S\end{array}\right]$ on $\ell^{2} \oplus \ell^{2}$, where S is the (simple) unilateral shift. It is easily seen that the numerical radius $w\left(F_{T}\right)$ of F_{T} satisfies $1 \leq w\left(F_{T}\right) \leq 1+(1 / 2)\|T\|$. In this paper, we study when such upper and lower bounds of $w\left(F_{T}\right)$ are attained. For the upper bound, we show that $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $w\left(S+T^{*} S^{*} T\right)=1+\|T\|^{2}$. When T is a diagonal operator with nonnegative diagonals, we obtain, among other results, that $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $w(S T)=\|T\|$. As for the lower bound, it is shown that any diagonal T with $w\left(F_{T}\right)=1$ is compact. Examples of various T 's are given to illustrate such attainments of $w\left(F_{T}\right)$.

Keywords: Numerical range, Numerical radius, Foguel operator
2020 MSC: 47A12, 47B02

1. Introduction

A Foguel operator F_{T} is one of the form $\left[\begin{array}{cc}S^{*} & T \\ 0 & S\end{array}\right]$, where T is some operator on ℓ^{2} and S is the unilateral shift $S\left(a_{1}, a_{2}, \ldots\right)=\left(0, a_{1}, a_{2}, \ldots\right)$ on ℓ^{2}. Such operators were first considered by Foguel [2] as an example of a power-bounded operator not similar to a contraction (cf. also [5]). The numerical range $W(A)$ of a (bounded linear) operator A on a complex Hilbert space H is the subset $\{\langle A x, x\rangle: x \in H,\|x\|=1\}$ of the complex plane, where $\langle\cdot, \cdot\rangle$ is the inner product in H and $\|\cdot\|$ its associated norm, and the numerical radius $w(A)$ is $\sup \{|z|: z \in W(A)\}$. After some preliminary results below, including the inequalities $1 \leq w\left(F_{T}\right) \leq 1+(1 / 2)\|T\|$ for $w\left(F_{T}\right)$, we consider in subsequent sections when such upper and lower bounds are attained. We start with the upper bound in Section 2. It is shown that $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $w\left(S+T^{*} S^{*} T\right)=1+\|T\|^{2}$ (Theorem 2.1). For a diagonal operator $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$, the attainment for the upper

[^0]bound can be expressed in terms of the diagonal entries of T. One such condition is the existence, for each $n \geq 1$, of positive integers $n_{j}, j \geq 1$, with $1 \leq n_{1}<n_{2}<\cdots$ such that $\lim _{j} T_{n, n_{j}}=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right)$ for some λ_{1} and λ_{2} satisfying $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$, where $T_{n, n_{j}}=\operatorname{diag}\left(a_{n_{j}}, a_{n_{j}+1}, \ldots, a_{n_{j}+n}\right)$ for each j (Theorem 2.6). A necessary condition for $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ is the normaloidity of the unilateral weighted shift $S T$, that is, $S T$ satisfies $w(S T)=\|S T\|$ (Theorem $2.4(\mathrm{~b})$). If $a_{n} \geq 0$ for all n, then, the condition $w(S T)=\|S T\|$ is also sufficient, and is equivalent to several other numerical radius and norm equality conditions (Theorem 2.12). In Section 3, we move to consider the attainment of the lower bound for $w\left(F_{T}\right)$. For a diagonal T, we show that the condition $w\left(F_{T}\right)=1$ implies that T is compact (Theorem 3.4). In particular, if $T=\operatorname{diag}\left(1, a, a^{2}, \ldots\right)$ with $|a|<1$, then $w\left(F_{T}\right)=1$ is equivalent to $a=0$ (Proposition 3.6).

For an operator $A, \sigma(A)$ and $\rho(A)$ denote its spectrum and spectral radius, and $\operatorname{Re} A$ and $\operatorname{Im} A$ its real part $\left(A+A^{*}\right) / 2$ and imaginary part $\left(A-A^{*}\right) /(2 i)$, respectively. The identity operator (resp., zero operator) on a space is denoted by I (resp., 0). If the space is identified as \mathbb{C}^{n}, then they are denoted by I_{n} and 0_{n}, respectively. An operator A is positive semidefinite, denoted by $A \geq 0$, if $\langle A x, x\rangle \geq 0$ for all vectors x. A real matrix $A=\left[a_{i j}\right]_{i, j=1}^{n}, 1 \leq n \leq \infty$, is nonnegative, denoted by $A \succcurlyeq 0$, if $a_{i j} \geq 0$ for all i and j. For two real matrices A and B of the same size, $A \preccurlyeq B$ means that $B-A \succcurlyeq 0$. For any m-by- n (complex) matrix $A=\left[a_{i j}\right],|A|$ denotes the nonnegative matrix $\left[\left|a_{i j}\right|\right]$. We use S_{n} to denote the n-by- n matrix

$$
\left[\begin{array}{cccc}
0 & & & \\
1 & 0 & & \\
& \ddots & \ddots & \\
& & 1 & 0
\end{array}\right]
$$

and \mathbb{D} the open unit disc $\{z \in \mathbb{C}:|z|<1\}$. For any real $t,\lfloor t\rfloor$ is the largest integer smaller than or equal to t.

Properties of the numerical range and numerical radius can be found in [8]. For properties of operators and finite matrices in general, consult [6] and [7], respectively.

To conclude this section, we give some basic properties of nonnegative matrices and Foguel operators for easier later reference.

Proposition 1.1. Let A be an n-by-n matrix $(1 \leq n \leq \infty)$.
(a) If B is a real matrix of the same size as A and $|A| \preccurlyeq B$, then $w(A) \leq w(B)$.
(b) If $A \succcurlyeq 0$, then $w(A)=w(\operatorname{Re} A)$ and $w(A) \in \overline{W(A)}$.

Proof. (a) If x is any unit vector, then so is $|x|$. We infer from

$$
|\langle A x, x\rangle| \leq\langle | A| | x|,|x|\rangle \leq\langle B| x|,|x|\rangle \leq w(B)
$$

that $w(A) \leq w(B)$.
(b) From $A \succcurlyeq 0$, we have $|\operatorname{Re}(\lambda A)| \preccurlyeq \operatorname{Re} A$ for any $\lambda,|\lambda|=1$. Hence $w(\operatorname{Re}(\lambda A)) \leq$ $w(\operatorname{Re} A)$ by (a). It follows that $w(A)=\max \{w(\operatorname{Re}(\lambda A)):|\lambda|=1\} \leq w(\operatorname{Re} A)$. On the other hand, the inequality $w(\operatorname{Re} A) \leq\left(w(A)+w\left(A^{*}\right)\right) / 2=w(A)$ also holds. These together prove that $w(A)=w(\operatorname{Re} A)$.

To show that $w(A) \in \overline{W(A)}$, let $\left\{x_{k}\right\}_{k=1}^{\infty}$ be a sequence of unit vectors such that $\lim _{k}\left|\left\langle A x_{k}, x_{k}\right\rangle\right|=w(A)$. Passing to a subsequence, we may assume that $\langle A| x_{k}\left|,\left|x_{k}\right|\right\rangle$ converges, say, to a. From $\left|\left\langle A x_{k}, x_{k}\right\rangle\right| \leq\langle A| x_{k}\left|,\left|x_{k}\right|\right\rangle$ for all k, we obtain $w(A) \leq a$. Since a is in $\overline{W(A)}$, we also have $a \leq w(A)$. Hence $w(A)=a$ is in $\overline{W(A)}$.

Proposition 1.2. Let T be an operator on ℓ^{2}. Then (a) $1 \leq w\left(F_{T}^{n}\right) \leq 1+(n / 2)\|T\|$ for $n \geq 1$, and (b) $\sigma\left(F_{T}\right)=\overline{\mathbb{D}}$.

Proof. (a) As

$$
F_{T}^{n}=\left[\begin{array}{cc}
S^{* n} & \sum_{j=0}^{n-1} S^{* j} T S^{n-1-j} \\
0 & S^{n}
\end{array}\right],
$$

we obtain $W\left(F_{T}^{n}\right) \supseteq W\left(S^{* n}\right)=W\left(S^{*}\right)=\mathbb{D}$ by the fact that $S^{* n}$ is unitarily similar to S^{*} together with [8, Lemma 1.4.2]. Thus $w\left(F_{T}^{n}\right) \geq 1$. On the other hand, we also have

$$
\begin{aligned}
& w\left(F_{T}^{n}\right) \leq w\left(\left[\begin{array}{cc}
S^{* n} & 0 \\
0 & S^{n}
\end{array}\right]\right)+w\left(\left[\begin{array}{cc}
0 & \sum_{j=0}^{n-1} S^{* j} T S^{n-1-j} \\
0 & 0
\end{array}\right]\right) \\
= & 1+\frac{1}{2}\left\|\sum_{j=0}^{n-1} S^{* j} T S^{n-1-j}\right\| \leq 1+\frac{1}{2} \sum_{j=0}^{n-1}\left\|S^{* j} T S^{n-1-j}\right\| \\
\leq & 1+\frac{1}{2} \sum_{j=0}^{n-1}\|T\|=1+\frac{n}{2}\|T\|,
\end{aligned}
$$

where we used the fact that $w\left(\left[\begin{array}{cc}0 & A \\ 0 & 0\end{array}\right]\right)=\|A\| / 2$ (cf. [8, Corollary 2.1.3 (a)]).
(b) To prove $\sigma\left(F_{T}\right)=\overline{\mathbb{D}}$, we deduce from above that

$$
\rho\left(F_{T}\right)=\lim _{n \rightarrow \infty} w\left(F_{T}^{n}\right)^{1 / n} \leq \lim _{n \rightarrow \infty}\left(1+\frac{n}{2}\|T\|\right)^{1 / n}=1,
$$

where the first equality is by $\left[8\right.$, Proposition 1.5.1 (g)]. Thus $\sigma\left(F_{T}\right) \subseteq \overline{\mathbb{D}}$. For the converse containment, let z be a point not in $\sigma\left(F_{T}\right)$. Then $F_{T}-z I$ is invertible. If $\left[\begin{array}{cc}A & \underset{D}{C}\end{array}\right]$ is its inverse, then

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{cc}
S^{*}-z I & T \\
0 & S-z I
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right],
$$

from which follows $A\left(S^{*}-z I\right)=I$. This shows that $S^{*}-z I$ is left invertible. Thus z is not in $\overline{\mathbb{D}}$, the left spectrum of S^{*} (cf. [6, Solution 82]). Therefore, $\sigma\left(F_{T}\right) \supseteq \overline{\mathbb{D}}$. Our assertion follows.

The bounds for $w\left(F_{T}^{n}\right)$ in the preceding proposition are due to Kittaneh by private communication.

2. Upper bound of $w\left(F_{T}\right)$

As seen from Proposition 1.2 (a), we have $1 \leq w\left(F_{T}\right) \leq 1+(1 / 2)\|T\|$ for any operator T on ℓ^{2}. The next theorem gives some general conditions for the attainment of this upper bound of $w\left(F_{T}\right)$.

Theorem 2.1. The following conditions are equivalent for any operator T on ℓ^{2} :
(a) $w\left(F_{T}\right)=1+(1 / 2)\|T\|$,
(b) there is a sequence of unit vectors $\left\{y_{n}\right\}_{n=1}^{\infty}$ in ℓ^{2} and a complex number $\lambda,|\lambda|=1$, such that $\lim _{n}\left\langle(\operatorname{Re}(\bar{\lambda} S)) y_{n}, y_{n}\right\rangle=1$ and $\lim _{n}\left\langle(\operatorname{Re}(\lambda S)) T y_{n}, T y_{n}\right\rangle=\|T\|^{2}$,
(c) $w\left(S+T^{*} S^{*} T\right)=1+\|T\|^{2}$.

Proof. (a) $\Rightarrow(\mathrm{b})$. Note that (a) implies that there are sequences of unit vectors $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in ℓ^{2}, a sequence $\left\{t_{n}\right\}$ in $[0,2 \pi]$, and a sequence $\left\{\lambda_{n}\right\}$ with $\left|\lambda_{n}\right|=1$ such that $z_{n}=\left(\left(\cos t_{n}\right) x_{n},\left(\sin t_{n}\right) y_{n}\right)$ in $\ell^{2} \oplus \ell^{2}$ satisfies $\lim _{n} \bar{\lambda}_{n}\left\langle F_{T} z_{n}, z_{n}\right\rangle=1+(1 / 2)\|T\|$. Passing to subsequences, we may assume that $\left\{\left\langle S^{*} x_{n}, x_{n}\right\rangle\right\},\left\{\left\langle S y_{n}, y_{n}\right\rangle\right\},\left\{\left\langle T y_{n}, x_{n}\right\rangle\right\},\left\{t_{n}\right\}$, and $\left\{\lambda_{n}\right\}$ all converge. Let $\lim _{n} t_{n}=t$ in $[0,2 \pi]$ and $\lim _{n} \lambda_{n}=\lambda$. We may further assume that $z_{n}=$ $\left((\cos t) x_{n},(\sin t) y_{n}\right)$ for all n and $\lim _{n}\left\langle F_{T} z_{n}, z_{n}\right\rangle=\lambda(1+(1 / 2)\|T\|)$. If $\lim _{n}\left\langle S^{*} x_{n}, x_{n}\right\rangle=a$, $\lim _{n}\left\langle S y_{n}, y_{n}\right\rangle=b$, and $\lim _{n}(\cos t \cdot \sin t)\left\langle T y_{n}, x_{n}\right\rangle=c$, then

$$
\begin{equation*}
\lim _{n}\left\langle F_{T} z_{n}, z_{n}\right\rangle=\left(\cos ^{2} t\right) a+\left(\sin ^{2} t\right) b+c=\lambda\left(1+\frac{1}{2}\|T\|\right) . \tag{1}
\end{equation*}
$$

It is easy to see that $|a|,|b| \leq 1$ and hence $\left|\left(\cos ^{2} t\right) a+\left(\sin ^{2} t\right) b\right| \leq 1$. Similarly, we have $|c| \leq\|T\| / 2$. We deduce from (1) that the latter two inequalities must actually be equalities:

$$
\begin{equation*}
\left|\left(\cos ^{2} t\right) a+\left(\sin ^{2} t\right) b\right|=1 \quad \text { and } \quad|c|=\frac{1}{2}\|T\| . \tag{2}
\end{equation*}
$$

From the first one, we obtain $|a|=|b|=1$. As $\left(\cos ^{2} t\right) a+\left(\sin ^{2} t\right) b$ is a convex combination of a and b, the equalities $\left|\left(\cos ^{2} t\right) a+\left(\sin ^{2} t\right) b\right|=|a|=|b|=1$ yield that $a=b=\left(\cos ^{2} t\right) a+$ $\left(\sin ^{2} t\right) b$. From (1), we obtain

$$
\begin{equation*}
a+c=\lambda\left(1+\frac{1}{2}\|T\|\right) . \tag{3}
\end{equation*}
$$

Hence

$$
1+\frac{1}{2}\|T\|=|a+c| \leq|a|+|c|=1+|c|=1+\frac{1}{2}\|T\|
$$

by (3) and (2). This gives $|a+c|=|a|+|c|$. Thus $c=s a$ for some $s \geq 0$ or $|c|=s|a|=s$. We infer from (3) and (2) that

$$
\lambda\left(1+\frac{1}{2}\|T\|\right)=a+c=a+s a=a+|c| a=a(1+|c|)=a\left(1+\frac{1}{2}\|T\|\right) .
$$

Therefore, we obtain $a=\lambda$ and $c=|c| a=|c| \lambda=\lambda\|T\| / 2$. These yield $\lim _{n}\left\langle S^{*} x_{n}, x_{n}\right\rangle=$ $\lim _{n}\left\langle S y_{n}, y_{n}\right\rangle=\lambda$ and $\lim _{n}(\cos t \cdot \sin t)\left\langle T y_{n}, x_{n}\right\rangle=\lambda\|T\| / 2$, from which we deduce that $\lim _{n}\left\langle(\operatorname{Re}(\lambda S)) x_{n}, x_{n}\right\rangle=\lim _{n}\left\langle(\operatorname{Re}(\bar{\lambda} S)) y_{n}, y_{n}\right\rangle=1$ and $\cos t \sin t=1 / 2$. Hence $\lim _{n}\left\langle T y_{n}, x_{n}\right\rangle=$ $\lambda\|T\|$. As

$$
\begin{aligned}
& 0 \leq \lim _{n}\left\|T y_{n}-\lambda\right\| T\left\|x_{n}\right\|^{2} \\
= & \lim _{n}\left(\left\|T y_{n}\right\|^{2}-2 \operatorname{Re}\left(\bar{\lambda}\|T\|\left\langle T y_{n}, x_{n}\right\rangle\right)+|\lambda|^{2}\|T\|^{2}\left\|x_{n}\right\|^{2}\right) \\
= & \lim _{n}\left(\left\|T y_{n}\right\|^{2}-\|T\|^{2}\right) \leq 0,
\end{aligned}
$$

we have $\lim _{n}\left\|T y_{n}-\lambda\right\| T\left\|x_{n}\right\|=0$. Finally, replacing $T y_{n}$ by $\lambda\|T\| x_{n}$ in $\left\langle(\operatorname{Re}(\lambda S)) T y_{n}, T y_{n}\right\rangle$, taking the limit, and using $\lim _{n}\left\langle(\operatorname{Re}(\lambda S)) x_{n}, x_{n}\right\rangle=1$, we conclude that $\lim _{n}\left\langle(\operatorname{Re}(\lambda S)) T y_{n}, T y_{n}\right\rangle=$ $\|T\|^{2}$, completing the proof.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$. Note that

$$
w\left(S+T^{*} S^{*} T\right) \leq\left\|S+T^{*} S^{*} T\right\| \leq\|S\|+\left\|T^{*} S^{*} T\right\| \leq 1+\|T\|^{2} .
$$

On the other hand, (b) implies that $\lim _{n}\left\langle\left(\operatorname{Re}\left(\bar{\lambda}\left(S+T^{*} S^{*} T\right)\right)\right) y_{n}, y_{n}\right\rangle$ equals

$$
\lim _{n}\left(\left\langle(\operatorname{Re}(\bar{\lambda} S)) y_{n}, y_{n}\right\rangle+\left\langle T^{*}\left(\operatorname{Re}\left(\bar{\lambda} S^{*}\right)\right) T y_{n}, y_{n}\right\rangle\right)=1+\|T\|^{2} .
$$

Hence

$$
1+\|T\|^{2} \leq w\left(\operatorname{Re}\left(\bar{\lambda}\left(S+T^{*} S^{*} T\right)\right)\right) \leq w\left(\bar{\lambda}\left(S+T^{*} S^{*} T\right)\right)=w\left(S+T^{*} S^{*} T\right)
$$

Therefore, $w\left(S+T^{*} S^{*} T\right)=1+\|T\|^{2}$ holds.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. From (c), we argue as in the proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ to obtain a sequence of unit vectors $\left\{y_{n}\right\}$ and a complex number λ with $|\lambda|=1$ such that $\lim _{n}\left\langle\left(S+T^{*} S^{*} T\right) y_{n}, y_{n}\right\rangle=$ $\lambda\left(1+\|T\|^{2}\right)$. As before, this yields $\lim _{n}\left\langle S y_{n}, y_{n}\right\rangle=\lambda$ and $\lim _{n}\left\langle S^{*} T y_{n}, T y_{n}\right\rangle=\lambda\|T\|^{2}$. Since $\left|\left\langle S^{*} T y_{n}, T y_{n}\right\rangle\right| \leq\left\|S^{*} T y_{n}\right\|\left\|T y_{n}\right\| \leq\left\|T y_{n}\right\|^{2} \leq\|T\|^{2}$ for all n, we have $\lim _{n}\left\|T y_{n}\right\|=\|T\|$. Let $x_{n}=T y_{n} /\left\|T y_{n}\right\|$ in ℓ^{2} and $z_{n}=(1 / \sqrt{2})\left(x_{n}, y_{n}\right)$ in $\ell^{2} \oplus \ell^{2}$. Then $\left\|z_{n}\right\|=1$ for all n and

$$
\begin{aligned}
& \lim _{n}\left\langle F_{\lambda T} z_{n}, z_{n}\right\rangle=\frac{1}{2} \lim _{n}\left(\left\langle S^{*} x_{n}, x_{n}\right\rangle+\left\langle S y_{n}, y_{n}\right\rangle+\lambda\left\langle T y_{n}, x_{n}\right\rangle\right) \\
= & \frac{1}{2} \lim _{n}\left(\frac{1}{\left\|T y_{n}\right\|^{2}}\left\langle S^{*} T y_{n}, T y_{n}\right\rangle+\left\langle S y_{n}, y_{n}\right\rangle+\frac{\lambda}{\left\|T y_{n}\right\|}\left\langle T y_{n}, T y_{n}\right\rangle\right) \\
= & \frac{1}{2}\left(\frac{1}{\|T\|^{2}} \lambda\|T\|^{2}+\lambda+\frac{\lambda}{\|T\|}\|T\|^{2}\right)=\lambda\left(1+\frac{1}{2}\|T\|\right) .
\end{aligned}
$$

It follows that $1+(1 / 2)\|T\|=\lim _{n}\left|\left\langle F_{\lambda T} z_{n}, z_{n}\right\rangle\right| \leq w\left(F_{\lambda T}\right)=w\left(F_{T}\right)$, where the last equality is a consequence of the unitary similarity of $F_{\lambda T}$ and F_{T} :

$$
\left[\begin{array}{cc}
S^{*} & \lambda T \\
0 & S
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & \bar{\lambda} I
\end{array}\right]\left[\begin{array}{cc}
S^{*} & T \\
0 & S
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
0 & \lambda I
\end{array}\right]
$$

Since $w\left(F_{T}\right) \leq 1+(1 / 2)\|T\|$ always holds, this proves (a).
The following examples are easy consequences of the preceding theorem. The first one appeared before in [3, Corollary 2.9].

Example 2.2. (a) If $T=S$, then $w\left(F_{T}\right)=1+(1 / 2)\|T\|=3 / 2$ since

$$
w\left(S+S^{*} S^{*} S\right)=w\left(S+S^{*}\right)=2 w(\operatorname{Re} S)=2=1+\|S\|^{2}
$$

(b) If $T=\operatorname{diag}(1,0,1,0, \ldots)$, then $w\left(F_{T}\right)<1+(1 / 2)\|T\|$ since $T^{*} S^{*} T=0$ and hence $w\left(S+T^{*} S^{*} T\right)=w(S)=1<1+\|T\|^{2}$.

Corollary 2.3. Let \mathcal{S} be the set of all T 's on ℓ^{2} which satisfy $w\left(F_{T}\right)=1+(1 / 2)\|T\|$.
(a) For any nonzero complex number z, T is in \mathcal{S} if and only if $z T$ is.
(b) Let $A=\operatorname{diag}\left(1, a, a^{2}, \ldots\right)$, where $|a|=1$. Then T is in \mathcal{S} if and only if $A^{*} T A^{*}$ is.

Proof. (a) is an easy consequence of Theorem 2.1 (b).
(b) Since A is unitary, $A^{*} S^{*} A=a S^{*}$, and $A S A^{*}=a S$, we have

$$
\left(A^{*} \oplus A\right) F_{T}\left(A \oplus A^{*}\right)=\left[\begin{array}{cc}
a S^{*} & A^{*} T A^{*} \\
0 & a S
\end{array}\right]=a\left[\begin{array}{cc}
S^{*} & \bar{a} A^{*} T A^{*} \\
0 & S
\end{array}\right]=a F_{\bar{a} A^{*} T A^{*}}
$$

The assertion then follows from (a).
We now consider $w\left(F_{T}\right)$ for a diagonal operator T.
Theorem 2.4. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$.
(a) $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $w\left(S+\lambda T^{*} S T\right)=1+\|T\|^{2}$ for some $\lambda,|\lambda|=1$.
(b) If $w\left(F_{T}\right)=1+(1 / 2)\|T\|$, then $w(S T)=\|T\|$.

Note that the converse of the implication in (b) is in general false. One example is $T=\operatorname{diag}(1,1,-1,-1,1,1,-1,-1, \ldots)$. Since $S T$ is unitarily similar to S, we have $w(S T)=$ $w(S)=1=\|T\|$, but $w\left(F_{T}\right)=\sqrt{5+2 \sqrt{2}} / 2<3 / 2$ by [3, Proposition 3.4$]$.

Proof. [Proof of Theorem 2.4] (a) By Theorem 2.1, we need only prove

$$
w\left(S+T^{*} S^{*} T\right)=w\left(S+\lambda T^{*} S T\right) \quad \text { for some } \lambda \text { hboxwith }|\lambda|=1
$$

Indeed, we have $w\left(S+T^{*} S^{*} T\right)=\max \left\{w\left(\operatorname{Re}\left(\lambda\left(S+T^{*} S^{*} T\right)\right)\right):|\lambda|=1\right\}$ and

$$
w\left(\operatorname{Re}\left(\lambda\left(S+T^{*} S^{*} T\right)\right)\right)=w\left(\operatorname{Re}(\lambda S)+\operatorname{Re}\left(\bar{\lambda} T^{*} S T\right)\right)=w\left(S+\bar{\lambda}^{2} T^{*} S T\right)
$$

where the last equality follows from the fact that

$$
S+\bar{\lambda}^{2} T^{*} S T=\left[\begin{array}{cccc}
0 & & & \\
1+\bar{\lambda}^{2} a_{1} \bar{a}_{2} & 0 & & \\
& 1+\bar{\lambda}^{2} a_{2} \bar{a}_{3} & 0 & \\
& & \ddots & \ddots
\end{array}\right]
$$

is a unilateral weighted shift whose numerical range is an (open or closed) circular disc centered at the origin. Thus

$$
\begin{aligned}
& w\left(S+T^{*} S^{*} T\right)=\max \left\{w\left(S+\bar{\lambda}^{2} T^{*} S T\right):|\lambda|=1\right\}=\max \left\{w\left(S+\lambda T^{*} S T\right):|\lambda|=1\right\} \\
= & w\left(S+\lambda T^{*} S T\right)
\end{aligned}
$$

for some $\lambda,|\lambda|=1$.
(b) If $w\left(F_{T}\right)=1+(1 / 2)\|T\|$, then $w\left(S+T^{*} S^{*} T\right)=1+\|T\|^{2}$ by Theorem 2.1. Hence

$$
\begin{aligned}
1+\|T\|^{2} & \leq w(S)+w\left(T^{*} S^{*} T\right) \leq 1+w\left(\left|T^{*}\right| S^{*}\right)\|T\| \\
& =1+w\left(T^{*} S^{*}\right)\|T\| \leq 1+\left\|T^{*} S^{*}\right\|\|T\| \leq 1+\|T\|^{2}
\end{aligned}
$$

where the second inequality follows from $\left|T^{*} S^{*} T\right| \preccurlyeq\left|T^{*}\right| S^{*}|T| \mid$ (cf. Proposition 1.1 (a)), and the equality $w\left(\left|T^{*}\right| S^{*}\right)=w\left(T^{*} S^{*}\right)$ follows from the unitary similarity of $\left|T^{*}\right| S^{*}$ and $T^{*} S^{*}$. This yields equalities throughout and, in particular, $w(S T)=w\left(T^{*} S^{*}\right)=\|T\|$ holds.

The next two examples illustrate the usefulness of the preceding theorem. The first appeared before in [3, Corollary 3.6].

Example 2.5. (a) Let $T=\operatorname{diag}\left(1, a, a^{2}, \ldots\right)$, where $|a|=1$. Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|=$ $3 / 2$ since $w\left(S+a T^{*} S T\right)=w(S+S)=2=1+\|T\|^{2}$.
(b) Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ with $\lim _{n} a_{n}=a$ and $|a|=\|T\|$. Then $w\left(F_{T}\right)=1+$ $(1 / 2)\|T\|$ since, in this case, $S+T^{*} S T$ is a unilateral weighted shift with weights $\{1+$ $\left.a_{n} \bar{a}_{n+1}\right\}_{n=1}^{\infty}$ satisfying $\lim _{n}\left|1+a_{n} \bar{a}_{n+1}\right|=1+|a|^{2}$ and hence $w\left(S+T^{*} S T\right)=1+|a|^{2}=$ $1+\|T\|^{2}$ by [8, Proposition 2.4.2].

For a diagonal T, the condition in Theorem 2.4 (a) involves the numerical radius of the unilateral weighted shift $S+\lambda T^{*} S T$. In the following, we express the condition for $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ in terms of the diagonals of T more explicitly.

Theorem 2.6. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ on ℓ^{2} and $T_{n, k}=\operatorname{diag}\left(a_{k}, a_{k+1}, \ldots, a_{k+n}\right)$ on \mathbb{C}^{n+1} for $n, k \geq 1$. Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if for any $n \geq 1$ there are integers $1 \leq n_{1}<n_{2}<\cdots$ such that $\lim _{j \rightarrow \infty} T_{n, n_{j}}=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right)$ for some λ_{1} and λ_{2} with $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$. Moreover, in this case, λ_{2} can be chosen to satisfy $w\left(S+\lambda_{2} T^{*} S T\right)=1+\|T\|^{2}$.

The proof is facilitated by the next proposition on unilateral weighted shift.
Proposition 2.7. Let

$$
A=\left[\begin{array}{cccc}
0 & & & \\
w_{1} & 0 & & \\
& w_{2} & 0 & \\
& & \ddots & \ddots
\end{array}\right] \text { on } \ell^{2}
$$

and

$$
A_{n, k}=\left[\begin{array}{ccccc}
0 & & & & \\
w_{k} & 0 & & & \\
& w_{k+1} & 0 & & \\
& & \ddots & \ddots & \\
& & & w_{k+n-1} & 0
\end{array}\right] \text { on } \mathbb{C}^{n+1} \text { for } n, k \geq 1
$$

Then $\max \{w(S+\lambda A):|\lambda|=1\}=1+\|A\|$ if and only if for any $n \geq 1$ there are integers $1 \leq n_{1}<n_{2}<\cdots$ such that $\lim _{j \rightarrow \infty} A_{n, n_{j}}=\bar{\lambda}_{0}\|A\| S_{n+1}$ for some $\lambda_{0},\left|\lambda_{0}\right|=1$. Moreover, λ_{0} may be chosen to satisfy $w\left(S+\lambda_{0} A\right)=1+\|A\|$.

An operator A is normaloid if it satisfies $w(A)=\|A\|$. For a unilateral weighted shift, normaloidity can be characterized in terms of its weights (cf. [9, Theorem 4.6] or [8, Problem $3.4]$).

Lemma 2.8. A unilateral weighted shift with weights $\left\{w_{n}\right\}_{n=1}^{\infty}$ is normaloid if and only if $\sup _{n \geq 1}\left|w_{n}\right|=\lim _{j \rightarrow \infty} \sup _{k \geq 1}\left|w_{k} w_{k+1} \cdots w_{k+j-1}\right|^{1 / j}$.

Proof. [Proof of Proposition 2.7] First assume that $\max \{w(S+\lambda A):|\lambda|=1\}=$ $1+\|A\|$. Let $\lambda_{0},\left|\lambda_{0}\right|=1$, be such that $w\left(S+\lambda_{0} A\right)=1+\|A\|$. Then $\left\|S+\lambda_{0} A\right\| \leq$ $1+\|A\|=w\left(S+\lambda_{0} A\right)$, which implies that $w\left(S+\lambda_{0} A\right)=\left\|S+\lambda_{0} A\right\|$ or $S+\lambda_{0} A$ is normaloid. Let $u_{n}=1+\lambda_{0} w_{n}$ for $n \geq 1$. As $S+\lambda_{0} A$ is a unilateral weighted shift with weights $\left\{u_{n}\right\}_{n=1}^{\infty}$, Lemma 2.8 yields that $\lim _{j \rightarrow \infty} \sup _{k \geq 1}\left|u_{k} u_{k+1} \cdots u_{k+j-1}\right|^{1 / j}=\| S+$ $\lambda_{0} A\|=1+\| A \|$. We now show that for any $n \geq 1$ there are integers $1 \leq n_{1}<n_{2}<\cdots$ such that $\lim _{j} u_{n_{j}+s}=1+\|A\|$ for all $s, 0 \leq s \leq n-1$. This is done by first checking that $\lim _{j}\left|u_{n_{j}+s}\right|=1+\|A\|$ for all s. Indeed, assume otherwise that, for some $n \geq 1$, we have
$\lim \sup _{k \rightarrow \infty} \min \left\{\left|u_{k}\right|, \ldots,\left|u_{k+n-1}\right|\right\}<1+\|A\|$. Then, under $A \neq 0$, there is an $N \geq 1$ and an $\varepsilon, 0<\varepsilon<\|A\|$, such that $\min \left\{\left|u_{k}\right|, \ldots,\left|u_{k+n-1}\right|\right\} \leq 1+\|A\|-\varepsilon$ for all $k \geq N$. For any $j \geq n+N$, let $\alpha_{k}=\lfloor(k+j-N) / n\rfloor$ if $1 \leq k<N$, and $\lfloor(j-N) / n\rfloor$ if $k \geq N$. We have

$$
\begin{aligned}
\left|u_{k} u_{k+1} \cdots u_{k+j-1}\right| & = \begin{cases}\left(\prod_{l=k}^{N-1}\left|u_{l}\right|\right)\left(\prod_{m=0}^{\alpha_{k}-1}\left(\prod_{l=N+m n}^{N+(m+1) n-1}\left|u_{l}\right|\right)\right)\left(\prod_{l=N+\alpha_{k} n}^{k+j-1}\left|u_{l}\right|\right) & \text { if } 1 \leq k<N, \\
\left(\prod_{m=0}^{\alpha_{k}-1}\left(\prod_{l=k+m n}^{k+(m+1) n-1}\left|u_{l}\right|\right)\right)\left(\prod_{l=k+(m+1) n}^{k+j-1}\left|u_{l}\right|\right) & \text { if } k \geq N\end{cases} \\
& \leq(1+\|A\|-\varepsilon)^{\alpha_{k}}(1+\|A\|)^{j-\alpha_{k}}
\end{aligned}
$$

where the first inequality is because at least one of the $\left|u_{l}\right|$'s in each of the α_{k} many products $\prod_{l=N+m n}^{N+(m+1) n-1}\left|u_{l}\right|$ or $\prod_{l=k+m n}^{k+(m+1) n-1}\left|u_{l}\right|$ is at most $1+\|A\|-\varepsilon$, and the second inequality results from $((1+\|A\|) /(1+\|A\|-\varepsilon))^{\alpha_{k}-\lfloor(j-N) / n\rfloor} \geq 1$ since $\alpha_{k} \geq\lfloor(j-N) / n\rfloor$ and $(1+\|A\|) /(1+\|A\|-\varepsilon)>1$. As $j-N=\lfloor(j-N) / n\rfloor n+r$ for some $r, 0 \leq r<n$, we obtain $\lim _{j}\lfloor(j-N) / n\rfloor / j=(1 / n) \lim _{j}(((j-N) / j)-(r / j))=1 / n$. Thus, from the above inequalities, we further deduce that

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \sup _{k \geq 1}\left|u_{k} u_{k+1} \cdots u_{k+j-1}\right|^{1 / j} \leq \lim _{j \rightarrow \infty}(1+\|A\|-\varepsilon)^{\lfloor(j-N) / n\rfloor / j}(1+\|A\|)^{(j-\lfloor(j-N) / n\rfloor) / j} \\
\leq & (1+\|A\|-\varepsilon)^{1 / n}(1+\|A\|)^{1-(1 / n)}<(1+\|A\|)^{1 / n}(1+\|A\|)^{1-(1 / n)}=1+\|A\| .
\end{aligned}
$$

This contradicts our previous condition for the normaloidity of $S+\lambda_{0} A$. Thus we have proved $\lim _{j}\left|u_{n_{j}+s}\right|=1+\|A\|$ for all $s, 0 \leq s \leq n-1$.

The next step is to show that $\lim _{j} u_{n_{j}+s}=1+\|A\|$ for all s. If $s=0$, then, from $\lim _{j}\left|u_{n_{j}}\right|=1+\|A\|$ and $\left|u_{n_{j}}\right| \leq 1+\left|w_{n_{j}}\right| \leq 1+\|A\|$, we also have $\lim _{j}\left|w_{n_{j}}\right|=\|A\|$. On the other hand, we deduce from

$$
(1+\|A\|)^{2}=\lim _{j}\left|u_{n_{j}}\right|^{2}=\lim _{j}\left(1+\left|w_{n_{j}}\right|^{2}+2 \operatorname{Re}\left(\lambda_{0} w_{n_{j}}\right)\right)=1+\|A\|^{2}+2 \lim _{j} \operatorname{Re}\left(\lambda_{0} w_{n_{j}}\right)
$$

that $\lim _{j} \operatorname{Re}\left(\lambda_{0} w_{n_{j}}\right)=\|A\|$. Together with $\lim _{j}\left|\lambda_{0} w_{n_{j}}\right|=\|A\|$, this yields $\lim _{j} \operatorname{Im}\left(\lambda_{0} w_{n_{j}}\right)=$ 0 . Hence $\lim _{j} \lambda_{0} w_{n_{j}}=\|A\|$. Similarly, we can prove $\lim _{j} \lambda_{0} w_{n_{j}+s}=\|A\|$ for all s, $1 \leq s \leq n-1$. Thus $\lim _{j} A_{n, n_{j}}=\bar{\lambda}_{0}\|A\| S_{n+1}$ as required.

To prove the converse, assume that, for any $n \geq 1$, there is a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that $\lim _{j} A_{n, n_{j}}=\bar{\lambda}_{0}\|A\| S_{n+1}$ for some $\lambda_{0},\left|\lambda_{0}\right|=1$. Since $w\left(S_{n+1}+\lambda_{0} A_{n, n_{j}}\right) \leq w\left(S+\lambda_{0} A\right)$ for any n, letting j approach infinity, we obtain

$$
(1+\|A\|) w\left(S_{n+1}\right)=w\left(S_{n+1}+\|A\| S_{n+1}\right) \leq w\left(S+\lambda_{0} A\right) \leq \max \{w(S+\lambda A):|\lambda|=1\}
$$

It follows from $\lim _{j} w\left(S_{n+1}\right)=\lim _{j}(\cos (\pi /(n+2)))=1$ (cf. [8, Lemma 2.4.1 (a)]) that $1+\|A\| \leq \max \{w(S+\lambda A):|\lambda|=1\}$. On the other hand, we also have $w(S+\lambda A) \leq w(S)+$ $w(A) \leq 1+\|A\|$ for any $\lambda,|\lambda|=1$. This proves $\max \{w(S+\lambda A):|\lambda|=1\}=1+\|A\|$.

Proof. [Proof of Theorem 2.6] We need only consider $T \neq 0$. Assume first that $w\left(F_{T}\right)=$ $1+(1 / 2)\|T\|$. From Theorem 2.4 (a), we have $w\left(S+\lambda_{2} T^{*} S T\right)=1+\|T\|^{2}$ for some λ_{2}, $\left|\lambda_{2}\right|=1$. If $A=T^{*} S T$, then A is a unilateral weighted shift with weights $\left\{a_{n} \bar{a}_{n+1}\right\}_{n=1}^{\infty}$ and $w\left(S+\lambda_{2} A\right)=1+\|A\|$. Thus, by Proposition 2.7, for any $n \geq 1$ there is a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}, 1 \leq n_{1}<n_{2}<\cdots$, such that $\lim _{j} A_{n+1, n_{j}}=\bar{\lambda}_{2}\|A\| S_{n+2}$. This is the same as $\lim _{j} a_{n_{j}+m} \bar{a}_{n_{j}+m+1}=\bar{\lambda}_{2}\|T\|^{2}$ for all $m, 0 \leq m \leq n$. Passing to subsequences, we may assume that both $\left\{a_{n_{j}+m}\right\}_{j=1}^{\infty}$ and $\left\{a_{n_{j}+m+1}\right\}_{j=1}^{\infty}$ converge for each fixed m. As $\left|a_{k}\right| \leq\|T\|$ for all k, we infer from $\lim _{j}\left|a_{n_{j}+m}\right|\left|a_{n_{j}+m+1}\right|=\|T\|^{2}$ that $\lim _{j}\left|a_{n_{j}+m}\right|=\|T\|$. Moreover, if $a_{k}=\lambda_{k}\left|a_{k}\right|$, where $\left|\lambda_{k}\right|=1$, for $k \geq 1$, then $\lim _{j} \lambda_{n_{j}+m} \bar{\lambda}_{n_{j}+m+1}=\bar{\lambda}_{2}$ for each m. Thus

$$
\lim _{j} \lambda_{n_{j}} \bar{\lambda}_{n_{j}+m}=\lim _{j}\left(\lambda_{n_{j}} \bar{\lambda}_{n_{j}+1}\right)\left(\lambda_{n_{j}+1} \bar{\lambda}_{n_{j}+2}\right) \cdots\left(\lambda_{n_{j}+m-1} \bar{\lambda}_{n_{j}+m}\right)=\bar{\lambda}_{2}^{m}
$$

for $0 \leq m \leq n$. Again, passing to a subsequence, we may assume that $\left\{\lambda_{n_{j}}\right\}_{j=1}^{\infty}$ converges, say, to λ_{1} with $\left|\lambda_{1}\right|=1$. Then we obtain $\lim _{j} \bar{\lambda}_{n_{j}+m}=\bar{\lambda}_{1} \bar{\lambda}_{2}^{m}$ or $\lim _{j} \lambda_{n_{j}+m}=\lambda_{1} \lambda_{2}^{m}$. Together with $\lim _{j}\left|a_{n_{j}+m}\right|=\|T\|$, this yields $\lim _{j} a_{n_{j}+m}=\lambda_{1} \lambda_{2}^{m}\|T\|$ for all $m, 0 \leq m \leq n$. In other words, we have $\lim _{j} T_{n, n_{j}}=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right)$ as required.

To prove the converse, for any $n \geq 1$, let $\left\{n_{j}\right\}_{j=1}^{\infty}$ be such that

$$
\lim _{j} T_{n, n_{j}}=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right) \text { for some } \lambda_{1} \text { and } \lambda_{2},\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1
$$

Then we have $\lim _{j} a_{n_{j}+m} \bar{a}_{n_{j}+m+1}=\bar{\lambda}_{2}\|T\|^{2}$ for $0 \leq m \leq n-1$. If

$$
A=\left[\begin{array}{cccc}
0 & & & \\
a_{1} \bar{a}_{2} & 0 & & \\
& a_{2} \bar{a}_{3} & 0 & \\
& & \ddots & \ddots
\end{array}\right] \text { on } \ell^{2} \text { and } A_{n, k}=\left[\begin{array}{ccccc}
0 & & & \\
a_{k} \bar{a}_{k+1} & 0 & & \\
& \ddots & \ddots & \\
& & a_{k+n-1} \bar{a}_{k+n} & 0
\end{array}\right] \text { on } \mathbb{C}^{n+1}
$$

for $n, k \geq 1$, then the above limits can be expressed as $\lim _{j} A_{n, n_{j}}=\bar{\lambda}_{2}\|T\|^{2} S_{n+1}$. It follows that $\lim _{j}\left\|A_{n, n_{j}}\right\|=\|T\|^{2}$. On the other hand, we also have $\left\|A_{n, n_{j}}\right\| \leq\|A\| \leq\|T\|^{2}$ for all j. Thus $\|A\|=\|T\|^{2}$ and $\lim _{j} A_{n, n_{j}}=\bar{\lambda}_{2}\|A\| S_{n+1}$. We obtain from Proposition 2.7 that $\max \{w(S+\lambda A):|\lambda|=1\}=1+\|A\|=1+\|T\|^{2}$. As $A=T^{*} S T$, the assertion $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ then follows from Theorem 2.4 (a).

The next two propositions are consequences of Theorem 2.6.
Proposition 2.9. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ and $T(m)=\operatorname{diag}\left(a_{m}, a_{m+1}, \ldots\right)$ for $m \geq 1$. Then the following conditions are equivalent:
(a) $w\left(F_{T}\right)=1+(1 / 2)\|T\|$.
(b) $w\left(F_{T\left(m_{0}\right)}\right)=1+(1 / 2)\|T\|$ for some $m_{0} \geq 1$.
(c) $w\left(F_{T(m)}\right)=1+(1 / 2)\|T\|$ for all $m \geq 1$.

Proof. We need only prove (b) $\Rightarrow(\mathrm{c})$. Let $T_{n, k}(m)=\operatorname{diag}\left(a_{m+k-1}, \ldots, a_{m+k+n-1}\right)$ on \mathbb{C}^{n+1} for $n, k, m \geq 1$. Assuming $w\left(F_{T\left(m_{0}\right)}\right)=1+(1 / 2)\|T\|$, we have

$$
1+\frac{1}{2}\|T\|=w\left(F_{T\left(m_{0}\right)}\right) \leq 1+\frac{1}{2}\left\|T\left(m_{0}\right)\right\| \leq 1+\frac{1}{2}\|T\| .
$$

Thus $\left\|T\left(m_{0}\right)\right\|=\|T\|$. By Theorem 2.6, for any $n \geq 1$, there is a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ such that $\lim _{j} T_{n, n_{j}}\left(m_{0}\right)=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right)$ with $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$. Fixing any $m \geq 1$, let j_{0} be such that $n_{j} \geq m$ for all $j \geq j_{0}$ and let $n_{j}^{\prime}=n_{j}+m_{0}-m$ for $j \geq j_{0}$. Then

$$
\begin{equation*}
\lim _{j} T_{n, n_{j}^{\prime}}(m)=\lim _{j} T_{n, n_{j}}\left(m_{0}\right)=\lambda_{1}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{n}\right) . \tag{4}
\end{equation*}
$$

This yields $\lim _{j}\left\|T_{n, n_{j}^{\prime}}(m)\right\|=\|T\|$. Since $\left\|T_{n, n_{j}^{\prime}}(m)\right\| \leq\|T(m)\|$ for all j and m, we obtain $\|T\| \leq\|T(m)\|$. Hence $\|T\|=\|T(m)\|$ for all m. Therefore, (c) follows from (4) via Theorem 2.6.

The period $p(\geq 1)$ of a periodic sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is the smallest integer for which $a_{n+p}=a_{n}$ for all $n \geq 1$.

Proposition 2.10. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$, where a_{n} 's are periodic with period $p(\geq 1)$. Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $a_{n}=\lambda_{1} \lambda_{2}^{n}\|T\|$ for $n \geq 1$, where $\left|\lambda_{1}\right|=1$ and $\lambda_{2}^{p}=1$.

Proof. For any $n, k \geq 1$, let $T_{n, k}=\operatorname{diag}\left(a_{k}, a_{k+1}, \ldots, a_{k+n}\right)$. If $w\left(F_{T}\right)=1+(1 / 2)\|T\|$, then, by Theorem 2.6, there is a sequence $\left\{p_{j}\right\}_{j=1}^{\infty}$ such that

$$
\lim _{j} T_{p, p_{j}}=\lambda_{1}^{\prime}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{p}\right) \text { for some } \lambda_{1}^{\prime} \text { and } \lambda_{2} \text { with }\left|\lambda_{1}^{\prime}\right|=\left|\lambda_{2}\right|=1
$$

On the other hand, for the periodic a_{n} 's, we also have

$$
\begin{equation*}
T_{p, k p+l}=T_{p, l} \quad \text { for } k \geq 1 \text { and } 1 \leq l \leq p . \tag{5}
\end{equation*}
$$

By the pigeonhole principle, there is a $q, 1 \leq q \leq p$, and a subsequence of $\left\{p_{j}\right\}$ whose elements are all of the form $k p+q(k \geq 1)$. Passing to this subsequence, we may assume that the p_{j} 's are themselves of this form. Thus, from (5), we have $T_{p, p_{j}}=T_{p, q}$ for all j. This yields that

$$
\operatorname{diag}\left(a_{q}, a_{q+1}, \ldots, a_{q+p}\right)=T_{p, q}=T_{p, p_{j}}=\lambda_{1}^{\prime}\|T\| \operatorname{diag}\left(1, \lambda_{2}, \ldots, \lambda_{2}^{p}\right)
$$

Hence $a_{q+m}=\lambda_{1}^{\prime}\|T\| \lambda_{2}^{m}=a_{q} \lambda_{2}^{m}$ for $0 \leq m \leq p$. In particular, we have $a_{q}=a_{q+p}=a_{q} \lambda_{2}^{p}$. If $a_{q}=0$, then all the a_{n} 's are zero or $T=0$. Otherwise, we have $\lambda_{2}^{p}=1$ and $a_{q+m}=\lambda_{1}^{\prime} \lambda_{2}^{m}\|T\|$ for $0 \leq m \leq p$. Let $\lambda_{1}=\lambda_{1}^{\prime} \lambda_{2}^{-q}$. If $1 \leq n \leq q-1$, then $0 \leq p-q+n \leq p$ and hence

$$
a_{n}=a_{q+(p-q+n)}=\lambda_{1}^{\prime} \lambda_{2}^{p-q+n}\|T\|=\left(\lambda_{1}^{\prime} \lambda_{2}^{-q}\right) \lambda_{2}^{n}\|T\|=\lambda_{1} \lambda_{2}^{n}\|T\| .
$$

On the other hand, if $n \geq q$, say, $n=(k-1) p+q+m$ for some $k \geq 1$ and some m, $0 \leq m \leq p-1$, then

$$
a_{n}=a_{q+m}=\lambda_{1}^{\prime} \lambda_{2}^{m}\|T\|=\left(\lambda_{1}^{\prime} \lambda_{2}^{-q}\right) \lambda_{2}^{q+m}\|T\|=\lambda_{1} \lambda_{2}^{n}\|T\| .
$$

These prove our assertion on the a_{n} 's.
Conversely, if the a_{n} 's are of the asserted form, then $a_{n+1}=\lambda_{2} a_{n}$ for all n. Hence $T=a_{1} \operatorname{diag}\left(1, \lambda_{2}, \lambda_{2}^{2}, \ldots\right)$. Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ by Example 2.5 (a) and Corollary 2.3 (a).

The following are examples for Proposition 2.10.
Example 2.11. (a) If $T=a I$ on ℓ^{2}, then $p=1, \lambda_{1}=a /|a|$ (for $a \neq 0$), and $\lambda_{2}=1$ yield the required expression for the diagonals of T, which implies $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ by Proposition 2.10.
(b) If $T=\operatorname{diag}(1,-1,1,-1, \ldots)$, then $p=2$ and $\lambda_{1}=\lambda_{2}=-1$ yield the required expression, which results in $w\left(F_{T}\right)=1+(1 / 2)\|T\|$.
(c) If $T=\operatorname{diag}(1,0,1,0, \ldots)$, then $w\left(F_{T}\right)<1+(1 / 2)\|T\|$ since no expression for the diagonals of T as in Proposition 2.10 exists.
(d) If $T=\operatorname{diag}(1,1,-1,-1,1,1,-1,-1, \ldots)$, then $w\left(F_{T}\right)<1+(1 / 2)\|T\|$ by Proposition 2.10 .

We remark that the example in (a) above appeared before in [3, Theorem 3.5 (a)], (c) in Example $2.2(\mathrm{~b})$, and the exact value of $w\left(F_{T}\right)$ for T in (d) has been computed in [3, Proposition 3.4].

In the rest of this section, we consider $w\left(F_{T}\right)$ for a diagonal T with nonnegative diagonals. The next theorem gives more conditions for $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ to hold.

Theorem 2.12. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ with $a_{n} \geq 0$ for all n. Then the following conditions are equivalent:
(a) $w\left(F_{T}\right)=1+(1 / 2)\|T\|$,
(b) $\left\|S+S^{*}+T\right\|=2+\|T\|$,
(c) $w\left(S T+S^{*} T\right)=2\|T\|$,
(d) $w(S T+T S)=2\|T\|$,
(e) $w(S+T S T)=w\left(S+T S^{*} T\right)=1+\|T\|^{2}$,
(f) $w(T S T)=\|T\|^{2}$,
(g) $w(S T)=\|T\|$.

Proof. The equivalence of (a) and (b) follows from [3, Proposition 3.2 (c)]. To prove $(\mathrm{b}) \Leftrightarrow(\mathrm{c})$, we use the fact that, for any two operators A and B on the same space, $\|A+B\|=$ $\|A\|+\|B\|$ if and only if $\|A\|\|B\|$ is in $\overline{W\left(A^{*} B\right)}$ (cf. [1, Theorem 2.1]). Indeed, the equality in (b) is the same as $\|(\operatorname{Re} S)+(1 / 2) T\|=\|\operatorname{Re} S\|+\|(1 / 2) T\|$, which is equivalent to $\|T\|$ being in $\overline{W((\operatorname{Re} S) T)}$ from above or to $2\|T\|$ in $\overline{W\left(S T+S^{*} T\right)}$. Thus $w\left(S T+S^{*} T\right) \geq 2\|T\|$. Together with $w\left(S T+S^{*} T\right) \leq\left\|S T+S^{*} T\right\| \leq 2\|T\|$, this yields $w\left(S T+S^{*} T\right)=2\|T\|$, that is, (c) holds. Conversely, if $w\left(S T+S^{*} T\right)=2\|T\|$, then, from $S T+S^{*} T \succcurlyeq 0$, we have $2\|T\|=w\left(S T+S^{*} T\right)$ belonging to $\overline{W\left(S T+S^{*} T\right)}$ by Proposition 1.1 (b). Thus from [1, Theorem 2.1], we obtain the equality in (b). The equivalence of (c) and (d) follows from the following equalities:

$$
\begin{aligned}
& w\left(S T+S^{*} T\right)=w\left(\operatorname{Re}\left(S T+S^{*} T\right)\right)=\frac{1}{2} w\left(\left(S T+S^{*} T\right)+\left(T S^{*}+T S\right)\right) \\
= & \frac{1}{2} w\left((S T+T S)+\left(T S^{*}+S^{*} T\right)\right)=w(\operatorname{Re}(S T+T S))=w(S T+T S),
\end{aligned}
$$

where the first (resp., last) equality is by Proposition 1.1 (b) since $S T+S^{*} T \succcurlyeq 0$ (resp., $S T+T S \succcurlyeq 0$). For the equivalence of (a) and (e), note that, by Theorem 2.1, $w\left(F_{T}\right)=$ $1+(1 / 2)\|T\|$ if and only if $w\left(S+T S^{*} T\right)=1+\|T\|^{2}$. However, we also have

$$
w\left(S+T S^{*} T\right)=w\left(\operatorname{Re}\left(S+T S^{*} T\right)\right)=w(\operatorname{Re}(S+T S T))=w(S+T S T)
$$

via Proposition 1.1 (b). Hence (a) and (e) are equivalent.
For the proof of $(\mathrm{e}) \Rightarrow(\mathrm{f})$, since $1+\|T\|^{2}=w(S+T S T) \leq w(S)+w(T S T)=1+w(T S T)$, we obtain $\|T\|^{2} \leq w(T S T)$. Together with $w(T S T) \leq\|T S T\| \leq\|T\|^{2}$, this yields (f).

For $(\mathrm{f}) \Rightarrow(\mathrm{g})$, since $0 \preccurlyeq T S T \preccurlyeq\|T\| S T$, we have $\|T\|^{2}=w(T S T) \leq\|T\| w(S T)$ and hence $\|T\| \leq w(S T)$. Together with $w(S T) \leq\|S T\| \leq\|T\|$, this yields (g).

Finally, we prove the implication $(\mathrm{g}) \Rightarrow(\mathrm{d})$. As before, we may assume that $\|T\|=1$. Then $0 \leq a_{n} \leq 1$ for all n. Let D be the unilateral weighted shift with weights $\left\{d_{n}\right\}_{n=1}^{\infty}$, where $d_{n}=\sqrt{a_{n} a_{n+1}}$ for $n \geq 1$. Since $S T+T S$ is also a unilateral weighted shift with weights $\left\{a_{n}+a_{n+1}\right\}_{n=1}^{\infty}$ and $S T+T S \succcurlyeq 2 D \succcurlyeq 0$, we have $w(S T+T S) \geq 2 w(D)$. We now use Lemma 2.8 to prove $w(D)=1$. Indeed, condition (g) implies that $w(S T)=\|T\|=$ $\|S T\|=1$. Hence $S T$ is normaloid. By Lemma 2.8, for any $\varepsilon, 0<\varepsilon<1$, there is an integer N such that $\sup _{k \geq 1}\left(a_{k} a_{k+1} \cdots a_{k+j-1}\right)^{1 / j}>1-\varepsilon$ for all $j \geq N$. Therefore, for each $j \geq N$, there is a k_{j} such that $\left(a_{k_{j}} a_{k_{j}+1} \cdots a_{k_{j}+j-1}\right)^{1 / j}>1-\varepsilon$. As $0 \leq a_{n} \leq 1$ for all n, we have

$$
\left(a_{k_{j}} a_{k_{j}+1} \cdots a_{k_{j}+j-2}\right)^{1 / 2},\left(a_{k_{j}+1} a_{k_{j}+2} \cdots a_{k_{j}+j-1}\right)^{1 / 2}>(1-\varepsilon)^{j / 2} .
$$

It follows that

$$
d_{k_{j}} d_{k_{j}+1} \cdots d_{k_{j}+j-2}=\left(a_{k_{j}} a_{k_{j}+1}^{2} \cdots a_{k_{j}+j-2}^{2} a_{k_{j}+j-1}\right)^{1 / 2}>(1-\varepsilon)^{j} .
$$

Therefore, for any $j \geq N$, we have

$$
\left\|D^{j-1}\right\|^{1 /(j-1)}=\sup _{k \geq 1}\left(d_{k} d_{k+1} \cdots d_{k+j-2}\right)^{1 /(j-1)} \geq(1-\varepsilon)^{j /(j-1)} .
$$

Hence
$\rho(D)=\lim _{j \rightarrow \infty}\left\|D^{j-1}\right\|^{1 /(j-1)}=\lim _{j \rightarrow \infty} \sup _{k \geq 1}\left(d_{k} d_{k+1} \cdots d_{k+j-2}\right)^{1 /(j-1)} \geq \lim _{j \rightarrow \infty}(1-\varepsilon)^{j /(j-1)}=1-\varepsilon$.
As this is true for any $\varepsilon, 0<\varepsilon<1$, we obtain that

$$
1 \leq \rho(D) \leq w(D) \leq\|D\|=\sup _{n \geq 1} d_{n}=\sup _{n \geq 1} \sqrt{a_{n} a_{n+1}} \leq 1
$$

This results in equalities throughout. In particular, we have $w(D)=1$ and thus

$$
2=2 w(D) \leq w(S T+T S) \leq\|S T+T S\| \leq\|S T\|+\|T S\| \leq 2 .
$$

Therefore, $w(S T+T S)=2$, that is, condition (d) holds as claimed.
Corollary 2.13. Let $T=\operatorname{diag}\left(a_{1}, \ldots, a_{n}, 1,1, \ldots\right)$ with $a_{k} \geq 0$ for $1 \leq k \leq n$. Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $a_{k} \leq 1$ for all k.

Proof. Assume that $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ and let $a=\max _{1 \leq k \leq n} a_{k}$. We check that $a \leq 1$. Indeed, if otherwise $a>1$, then we have $w(S T)=\|T\|=a$ from Theorem 2.12 (g) or Theorem $2.4(\mathrm{~b})$. Let $T^{\prime}=\operatorname{diag}(\underbrace{a, \ldots, a}_{n}, 1,1, \ldots)$. Since $0 \preccurlyeq S T \preccurlyeq S T^{\prime} \preccurlyeq a S$, we obtain $a=w(S T) \leq w\left(S T^{\prime}\right) \leq w(a S)=a$ by Proposition 1.1 (a). It follows that $w\left(S T^{\prime}\right)=$ $a=\left\|T^{\prime}\right\|=\left\|S T^{\prime}\right\|$ or $S T^{\prime}$ is normaloid. Lemma 2.8 then implies that $a=\lim _{j \rightarrow \infty} a^{n / j}=1$, which contradicts our assumption of $a>1$. Thus $a_{k} \leq 1$ for all $k, 1 \leq k \leq n$. The converse is by Example 2.5 (b).

Corollary 2.14. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right) \neq 0$ with $a_{n}=0$ exactly when $n=n_{j}, 1 \leq n_{j}<$ n_{j+1}, for $j \geq 1$. If $w\left(F_{T}\right)=1+(1 / 2)\|T\|$, then $\left\{n_{j+1}-n_{j}\right\}_{j=1}^{\infty}$ is unbounded.

Proof. Assume the contrary that $n_{j+1}-n_{j} \leq M$ for all j. Then we have

$$
\left|a_{k} a_{k+1} \cdots a_{k+l-1}\right|^{1 / l}=0 \text { for any } k \geq 1 \text { and } l \geq \max \left\{n_{1}, M\right\} .
$$

Thus

$$
\|S T\|=\sup _{n \geq 1}\left|a_{n}\right|>\lim _{l \rightarrow \infty} \sup _{k \geq 1}\left|a_{k} a_{k+1} \cdots a_{k+l-1}\right|^{1 / l}=0 .
$$

By Lemma 2.8, this says that $S T$ is not normaloid or $w(S T)<\|S T\|=\|T\|$. Hence $w\left(F_{T}\right)<$ $1+(1 / 2)\|T\|$ by Theorem $2.4(\mathrm{~b})$. This proves the unboundedness of $\left\{n_{j+1}-n_{j}\right\}_{j=1}^{\infty}$.

Example 2.15. (a) Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$, where $a_{n}=0$ if $n=k(k+1) / 2$ for some $k \geq 1$, and $a_{n}=1$ otherwise. Then $S T=\sum_{n=1}^{\infty} \oplus S_{n}$. Thus

$$
w(S T)=\sup _{n} w\left(S_{n}\right)=\sup _{n} \cos \frac{\pi}{n+1}=1=\|T\|
$$

(cf. [8, Lemma 2.4.1 (a)]), and $w\left(F_{T}\right)=1+(1 / 2)\|T\|=3 / 2$ by Theorem 2.12.
(b) Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$, where

$$
a_{n}= \begin{cases}0 & \text { if } n=k(k+1) / 2 \text { for some } k \geq 1 \\ 1 & \text { if } n=2 \\ 1 / 2 & \text { otherwise }\end{cases}
$$

Then $S T=[0] \oplus S_{2} \oplus(1 / 2) \sum_{n=3}^{\infty} \oplus S_{n}$. Since

$$
w(S T)=\sup \left\{\frac{1}{2}, \frac{1}{2} \cos \frac{\pi}{n+1}: n \geq 3\right\}=\frac{1}{2}<1=\|T\|
$$

we have $w\left(F_{T}\right)<1+(1 / 2)\|T\|=3 / 2$ by Theorem 2.12. This shows that the converse of the assertion in Corollary 2.14 is false.

Finally, for a nonnegative diagonal T, Theorem 2.6 has the following analogue.
Corollary 2.16. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ with $a_{n} \geq 0$ for all n, and

$$
T_{n, k}=\operatorname{diag}\left(a_{k}, a_{k+1}, \ldots, a_{k+n}\right) \text { for } n, k \geq 1
$$

Then $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if for any $n \geq 1$ there is a sequence $\left\{n_{j}\right\}_{n=1}^{\infty}$ of positive integers such that $\lim _{j \rightarrow \infty} T_{n, n_{j}}=\|T\| I_{n+1}$.

Proof. If $w\left(F_{T}\right)=1+(1 / 2)\|T\|$, then Theorem 2.12 (e) yields $w(S+T S T)=1+\|T\|^{2}$. Hence the asserted condition holds since it is the one in Theorem 2.6 with $\lambda_{1}=\lambda_{2}=1$. The converse is also by Theorem 2.6.

3. Lower bound of $w\left(F_{T}\right)$

In this section, we consider conditions on T for $w\left(F_{T}\right)$ to be equal to 1 . We start with a sufficient one.

Proposition 3.1. Let $T=T_{n} \oplus 0$ on ℓ^{2}, where T_{n} is an n-by-n nonnegative symmetric matrix, and let $T_{n+1}=T_{n} \oplus[1]$ on \mathbb{C}^{n+1}. If $w\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}\right) \leq 2$, then $w\left(F_{T}\right)=1$.

For its proof, we need the following lemma.
Lemma 3.2. Let T be an operator on ℓ^{2}. Then
(a) $w\left(F_{T}\right) \geq(1 / 2) \max \left\{w\left(S+S^{*}+\operatorname{Re}(\lambda T)\right):|\lambda|=1\right\}$, and
(b) if T is nonnegative symmetric, then $w\left(F_{T}\right)=w\left(S+S^{*}+T\right) / 2$.

Note that part (b) here is a generalization of [3, Proposition 3.2 (c)].
Proof. [Proof of Lemma 3.2] (a) For any unit vector x in ℓ^{2}, let $y=(\bar{\lambda} x \oplus x) / \sqrt{2}$, where $|\lambda|=1$. Then y is also a unit vector in $\ell^{2} \oplus \ell^{2}$ and

$$
\begin{aligned}
& w\left(F_{T}\right) \geq\left|\left\langle F_{T} y, y\right\rangle\right| \geq \operatorname{Re}\left\langle F_{T} y, y\right\rangle=\frac{1}{2}\left\langle\left(F_{T}+F_{T}^{*}\right) y, y\right\rangle \\
= & \frac{1}{4}\left\langle\left[\begin{array}{cc}
S^{*}+S & T \\
T^{*} & S+S^{*}
\end{array}\right]\left[\begin{array}{c}
\bar{\lambda} x \\
x
\end{array}\right],\left[\begin{array}{c}
\bar{\lambda} x \\
x
\end{array}\right]\right\rangle \\
= & \frac{1}{4}\left(\left\langle\bar{\lambda}\left(S^{*}+S\right) x+T x, \bar{\lambda} x\right\rangle+\left\langle\bar{\lambda} T^{*} x+\left(S+S^{*}\right) x, x\right\rangle\right) \\
= & \frac{1}{2}\left(\left\langle\left(S+S^{*}\right) x, x\right\rangle+\langle(\operatorname{Re}(\lambda T)) x, x\rangle\right) \\
= & \frac{1}{2}\left\langle\left(S+S^{*}+\operatorname{Re}(\lambda T)\right) x, x\right\rangle .
\end{aligned}
$$

Since this is true for any unit vector x and any $\lambda,|\lambda|=1$, the asserted inequality holds.
(b) For a nonnegative T, we have $w\left(F_{T}\right)=w\left(\operatorname{Re} F_{T}\right)$ by Proposition 1.1 (b). Let $U=(1 / \sqrt{2})\left[\begin{array}{cc}{ }_{I}^{I} & I \\ I\end{array}\right]$ on $\ell^{2} \oplus \ell^{2}$. Then U is unitary and

$$
U^{*}\left(\operatorname{Re} F_{T}\right) U=\frac{1}{2} U^{*}\left[\begin{array}{cc}
S+S^{*} & T \\
T & S+S^{*}
\end{array}\right] U=\frac{1}{2}\left[\begin{array}{cc}
S+S^{*}+T & 0 \\
0 & S+S^{*}-T
\end{array}\right] .
$$

For any unit vector x in ℓ^{2}, we have

$$
\left|\left\langle\left(S+S^{*}-T\right) x, x\right\rangle\right| \leq\left\langle\left(S+S^{*}+T\right)\right| x|,|x|\rangle \leq w\left(S+S^{*}+T\right) .
$$

This shows that $w\left(S+S^{*}-T\right) \leq w\left(S+S^{*}+T\right)$. Thus

$$
w\left(F_{T}\right)=w\left(\operatorname{Re} F_{T}\right)=\frac{1}{2} \max \left\{w\left(S+S^{*}+T\right), w\left(S+S^{*}-T\right)\right\}=\frac{1}{2} w\left(S+S^{*}+T\right) .
$$

Proof. [Proof of Proposition 3.1] In the following, we show that $w\left(S+S^{*}+T\right) \leq 2$ and then apply Lemma 3.2 (b). Let $x=\left(x_{1}, x_{2}, \ldots\right)$ be any unit vector in ℓ^{2} and let

$$
\begin{aligned}
x^{\prime}= & \left(x_{1}, \ldots, x_{n+1}\right) \text { in } \mathbb{C}^{n+1} . \text { We have } \\
& \left|\left\langle\left(S+S^{*}+T\right) x, x\right\rangle\right| \leq\left\langle\left(S+S^{*}+T\right)\right| x|,|x|\rangle \\
= & \left\langle\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}\right)\right| x^{\prime}\left|,\left|x^{\prime}\right|\right\rangle-\left|x_{n+1}\right|^{2}+2 \sum_{j=n+1}^{\infty}\left|x_{j} x_{j+1}\right| \\
\leq & \left.2\left\|\left|x^{\prime}\right|\right\|^{2}-\left|x_{n+1}\right|^{2}+\sum_{j=n+1}^{\infty}\left(\left|x_{j}\right|^{2}+\left|x_{j+1}\right|^{2}\right) \quad \text { (because } w\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}\right) \leq 2\right) \\
= & 2 \sum_{j=1}^{n+1}\left|x_{j}\right|^{2}+2 \sum_{j=n+2}^{\infty}\left|x_{j}\right|^{2}=2\|x\|^{2}=2 .
\end{aligned}
$$

Hence $w\left(S+S^{*}+T\right) \leq 2$. By Lemma 3.2 (b), we obtain $w\left(F_{T}\right) \leq 1$. As $w\left(F_{T}\right) \geq 1$ is always true, we conclude that $w\left(F_{T}\right)=1$.

Example 3.3. (a) Let $T=\operatorname{diag}(0, \ldots, 0, a, 0,0, \ldots)$ with $|a| \leq 1 / n(n \geq 1)$. Since $\left|F_{T}\right| \preccurlyeq F_{T^{\prime}}$ for $T^{\prime}=\operatorname{diag}(0, \ldots, 0,1 / n, 0,0, \ldots)$, we have $w\left(F_{T}\right) \leq w\left(F_{T^{\prime}}\right)$. We now check that $w\left(F_{T^{\prime}}\right)=1$. Indeed, if $T_{n+1}^{\prime}=\operatorname{diag}(0, \ldots, 0,1 / n, 1)$ on \mathbb{C}^{n+1}, then

$$
2 I_{n+1}-\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}^{\prime}\right)=\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & \ddots & \ddots & & \\
& \ddots & 2 & -1 & \\
& & -1 & 2-(1 / n) & -1 \\
& & & -1 & 1
\end{array}\right]
$$

It is easily shown by induction that its j th $(1 \leq j \leq n+1)$ leading principal submatrix,

$$
\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & \ddots & \\
& \ddots & \ddots & -1 \\
& & -1 & 2
\end{array}\right](1 \leq j \leq n-1),\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & \ddots & \ddots & \\
& \ddots & 2 & -1 \\
& & -1 & 2-(1 / n)
\end{array}\right](j=n),
$$

or $2 I_{n+1}-\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}^{\prime}\right)(j=n+1)$, has determinant $j+1, n$, or 0 , respectively. Thus $2 I_{n+1}-\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}^{\prime}\right) \geq 0$ by Sylvester's criterion [7, Theorem 7.2.5 (c)]. Hence $w\left(S_{n+1}+S_{n+1}^{*}+T_{n+1}^{\prime}\right) \leq 2$ and $w\left(F_{T^{\prime}}\right)=1$ by Proposition 3.1. It follows that $w\left(F_{T}\right)=1$.
(b) Let $T=\operatorname{diag}(a, a, 0,0, \ldots)$ with $|a| \leq(3-\sqrt{5}) / 2$. Then, as in (a) above, we may assume that $a=(3-\sqrt{5}) / 2$ and infer that

$$
S_{3}+S_{3}^{*}+T_{3}^{\prime}=\left[\begin{array}{ccc}
a & 1 & 0 \\
1 & a & 1 \\
0 & 1 & 1
\end{array}\right] \leq 2 I_{3}
$$

where $T_{3}^{\prime}=\operatorname{diag}(a, a, 1)$. Hence $w\left(F_{T}\right)=1$ by Proposition 3.1.

We remark that part (a) above also follows from [4, Proposition 2.7 and Theroem 2.8].
In the remaining part of this section, we consider the relationship between $w\left(F_{T}\right)=1$ and the compactness of T. Recall that, for a compact T, it is known that $w\left(F_{T}\right)=1+(1 / 2)\|T\|$ if and only if $T=0$. The next theorem says that, for a diagonal $T, w\left(F_{T}\right)=1$ implies the compactness of T.

Theorem 3.4. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$. If $w\left(F_{T}\right)=1$, then T is compact.
The following lemma is needed for its proof.
Lemma 3.5. If $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$, then $\left\|S+S^{*}+T\right\| \geq 2$.
Proof. Note that $\left\|S+S^{*}+T\right\|=2 w\left(\operatorname{Re} F_{T^{\prime}}\right)$, where $T^{\prime}=\operatorname{diag}\left(\bar{a}_{1}, a_{2}, \bar{a}_{3}, a_{4}, \ldots\right)$, by $[3$, Proposition 3.2 (a)]. Since $W\left(F_{T^{\prime}}\right) \supseteq \mathbb{D}$, we have $w\left(\operatorname{Re} F_{T^{\prime}}\right) \geq 1$. Thus $\left\|S+S^{*}+T\right\| \geq 2$ as asserted.

Proof. [Proof of Theorem 3.4] We claim that if the a_{n} 's are real and $\left\|S+S^{*}+T\right\|=$ 2 , then T is compact. For this, we first assume that $a_{n} \geq 0$ for all n. Let $T_{n}=$

$$
2 \leq\left\|S+S^{*}+T_{n}\right\|=w\left(S+S^{*}+T_{n}\right) \leq w\left(S+S^{*}+T\right)=\left\|S+S^{*}+T\right\|=2
$$

by Lemma 3.5 and Proposition 1.1 (a). Thus the above inequalities become equalities throughout, which yield that $w\left(S+S^{*}+T_{n}\right)=2$ for all $n \geq 1$. By Lemma 3.2 (b), we have $w\left(F_{T_{n}}\right)=1$. Hence [4, Proposition 2.7 and Theorem 2.8] yields that $\left|a_{n}\right| \leq 1 / n$ for all n. The compactness of T for this case follows.

Now assume that the a_{n} 's are all real. Let $C=S+S^{*}+T$ and, for each $n \geq 2$, let

$$
C_{2 n}=\left[\begin{array}{cccc}
a_{1} & 1 & & \\
1 & a_{2} & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & a_{2 n}
\end{array}\right]
$$

be the $(2 n)$-by- $(2 n)$ leading principal submatrix of C. Note that $\|C\|=2$ by our assumption. We rearrange the standard basis $\left\{e_{j}\right\}_{j=1}^{2 n}$ of $\mathbb{C}^{2 n}$ via the permutation $(1,2, \ldots, 2 n) \rightarrow$ $(1,3, \ldots, 2 n-1,2,4, \ldots, 2 n)$. Then $C_{2 n}$ is permutationally similar to the matrix

$$
C_{2 n}^{\prime}=\left[\begin{array}{cc}
D_{2 n}^{\prime} & I_{n}+S_{n} \\
I_{n}+S_{n}^{*} & D_{2 n}^{\prime \prime}
\end{array}\right],
$$

where $D_{2 n}^{\prime}=\operatorname{diag}\left(a_{1}, a_{3}, \ldots, a_{2 n-1}\right)$ and $D_{2 n}^{\prime \prime}=\operatorname{diag}\left(a_{2}, a_{4}, \ldots, a_{2 n}\right)$. Then $C_{2 n}^{\prime 2}=\left[\begin{array}{cc}E_{n} & * \\ * & F_{n}\end{array}\right]$, where

$$
E_{n}=D_{2 n}^{\prime 2}+\left(I_{n}+S_{n}\right)\left(I_{n}+S_{n}^{*}\right)=\left[\begin{array}{cccc}
1+a_{1}^{2} & 1 & & \\
1 & 2+a_{3}^{2} & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 2+a_{2 n-1}^{2}
\end{array}\right]
$$

and

$$
F_{n}=D_{2 n}^{\prime \prime 2}+\left(I_{n}+S_{n}^{*}\right)\left(I_{n}+S_{n}\right)=\left[\begin{array}{cccc}
2+a_{2}^{2} & 1 & & \\
1 & \ddots & \ddots & \\
& \ddots & 2+a_{2 n-2}^{2} & 1 \\
& & 1 & 1+a_{2 n}^{2}
\end{array}\right]
$$

Let

$$
E_{n}^{\prime}=\left[\begin{array}{cccc}
2+a_{3}^{2} & 1 & & \\
1 & 2+a_{5}^{2} & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 2+a_{2 n-1}^{2}
\end{array}\right]
$$

Then

$$
w\left(E_{n}^{\prime}\right)=\left\|E_{n}^{\prime}\right\| \leq\left\|E_{n}\right\| \leq\left\|C_{2 n}^{\prime 2}\right\|=\left\|C_{2 n}^{\prime}\right\|^{2}=\left\|C_{2 n}\right\|^{2} \leq\|C\|^{2}=4
$$

for all $n \geq 2$. Let $T^{\prime}=\operatorname{diag}\left(a_{3}^{2}, a_{5}^{2}, a_{7}^{2}, \ldots\right)$ and $C^{\prime}=S+S^{*}+T^{\prime}$. Since E_{n}^{\prime} is the $(n-1)$ -by- $(n-1)$ leading principal submatrix of $C^{\prime}+2 I$, we have $w\left(C^{\prime}+2 I\right)=\lim _{n} w\left(E_{n}^{\prime}\right) \leq 4$. Note that $C^{\prime} \succcurlyeq 0$ implies that $w\left(C^{\prime}\right)=\left\|C^{\prime}\right\|$ is in $\overline{W\left(C^{\prime}\right)}$ by Proposition 1.1 (b). Hence $w\left(C^{\prime}+2 I\right)=w\left(C^{\prime}\right)+2$ by [1, Theorem 2.1]. It follows that $w\left(C^{\prime}\right) \leq 2$. On the other hand, we also have $w\left(C^{\prime}\right)=\left\|C^{\prime}\right\| \geq 2$ by Lemma 3.5. This shows that $w\left(C^{\prime}\right)=2$. As T^{\prime} has nonnegative diagonals, the first paragraph of our proof yields that $\lim _{n} a_{2 n+1}=0$. In a similar fashion, considering

$$
F_{n}^{\prime}=\left[\begin{array}{cccc}
2+a_{2}^{2} & 1 & & \\
1 & 2+a_{4}^{2} & \ddots & \\
& \ddots & \ddots & 1 \\
& & 1 & 2+a_{2 n-2}^{2}
\end{array}\right]
$$

instead of E_{n}^{\prime} and following the arguments as above, we also obtain $\lim _{n} a_{2 n}=0$. These together prove our claim of the compactness of T.

Finally, for the general case of complex a_{n} 's, we have

$$
2 \leq\left\|S+S^{*}+\operatorname{Re} T\right\|=w\left(S+S^{*}+\operatorname{Re} T\right) \leq 2 w\left(F_{T}\right)=2
$$

by Lemmas 3.5 and 3.2 (a). This shows that $\left\|S+S^{*}+\operatorname{Re} T\right\|=2$. From our claim in the beginning of the proof, we obtain $\lim _{n} \operatorname{Re} a_{n}=0$. Similarly, as $\operatorname{Im} T=\operatorname{Re}(-i T)$, the above arguments also result in $\lim _{n} \operatorname{Im} a_{n}=0$. Hence $\lim _{n} a_{n}=0$ and T is compact.

The next proposition is in contrast to the known result that if $T=\operatorname{diag}\left(1, a, a^{2}, \ldots\right)$ with $|a|=1$, then $w\left(F_{T}\right)=3 / 2$ and $W\left(F_{T}\right)$ is open but not a circular disc (cf. [3, Corollary 3.6]).

Proposition 3.6. Let $T=\operatorname{diag}\left(1, a, a^{2}, \ldots\right)$ with $|a|<1$. Then the following are equivalent:
(a) $w\left(F_{T}\right)=1$,
(b) $a=0$,
(c) $W\left(F_{T}\right)=\mathbb{D}$,
(d) $W\left(F_{T}\right)$ is open, and
(e) $\left\|C_{\lambda}\right\|=2$ for all $\lambda,|\lambda|=1$, where $C_{\lambda}=S+S^{*}+T_{\lambda}$ with $T_{\lambda}=\operatorname{diag}\left(1, \lambda^{2} a, \bar{\lambda}^{4} \bar{a}^{2}, \ldots\right)$.

The proofs of some equivalences here need the following two lemmas. In the first one, $W_{e}(A)$ denotes the essential numerical range of operator A on an infinite-dimensional space (cf. [8, Section 4.2]).

Lemma 3.7. Let T be a compact operator on ℓ^{2}. Then $W\left(F_{T}\right)$ is open if and only if $W\left(F_{T}\right)=\mathbb{D}$.

Proof. If $W\left(F_{T}\right)$ is open, then $\overline{W\left(F_{T}\right)}=W_{e}\left(F_{T}\right)=W_{e}\left(S^{*} \oplus S\right)=\overline{\mathbb{D}}$, where the first equality is by [8, Corollary 4.5.5]. Since $W\left(F_{T}\right)$ already contains \mathbb{D}, we obtain $W\left(F_{T}\right)=$ \mathbb{D}.

Lemma 3.8. Let $T=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$. Then $w\left(F_{T}\right)=1$ if and only if $\left\|C_{\lambda}\right\|=2$ for all λ, $|\lambda|=1$, where $C_{\lambda}=S+S^{*}+T_{\lambda}$ with $T_{\lambda}=\operatorname{diag}\left(\bar{a}_{1}, \lambda^{2} a_{2}, \bar{\lambda}^{4} \bar{a}_{3}, \ldots\right)$.

Proof. It was proved in [3, Proposition 3.2 (a)] that $w\left(\operatorname{Re}\left(\lambda F_{T}\right)\right)=(1 / 2)\left\|C_{\lambda}\right\|$ for any λ, $|\lambda|=1$, and hence $w\left(F_{T}\right)=(1 / 2) \max \left\{\left\|C_{\lambda}\right\|:|\lambda|=1\right\}$. If $w\left(F_{T}\right)=1$, then, as $W\left(F_{T}\right) \supseteq \mathbb{D}$, we have $\overline{W\left(F_{T}\right)}=\overline{\mathbb{D}}$. Thus $1=w\left(\operatorname{Re}\left(\lambda F_{T}\right)\right)=(1 / 2)\left\|C_{\lambda}\right\|$ or $\left\|C_{\lambda}\right\|=2$ for all $\lambda,|\lambda|=1$. The converse follows from $w\left(F_{T}\right)=(1 / 2) \max \left\{\left\|C_{\lambda}\right\|:|\lambda|=1\right\}$.

Proof. [Proof of Proposition 3.6] (a) \Rightarrow (b). Let $a=\lambda_{0}|a|$ for some λ_{0} with $\left|\lambda_{0}\right|=1$. If λ is such that $\lambda^{2} \lambda_{0}=1$, then λF_{T} is unitarily similar to $F_{|T|}$ by [3, Lemma 3.1 (a)]. Hence we may assume that $w\left(F_{T}\right)=1$ with $T=\operatorname{diag}\left(1, a, a^{2}, \ldots\right), 0 \leq a<1$. For any $t, 0<t<1$, let $x_{t}=\sqrt{1-t^{2}}\left(1, t, t^{2}, \ldots\right)$ in ℓ^{2}. Then x_{t} is a unit vector, $\left\langle S x_{t}, x_{t}\right\rangle=$ $\left\langle S^{*} x_{t}, x_{t}\right\rangle=t$, and $\left\langle T x_{t}, x_{t}\right\rangle=\left(1-t^{2}\right) /\left(1-a t^{2}\right)$. Assuming that $0<a<1$, we show
that $\left\langle\left(S+S^{*}+T\right) x_{t_{0}}, x_{t_{0}}\right\rangle>2$ for some $t_{0}, 0<t_{0}<1$. Indeed, this asserted inequality is the same as $2 t_{0}+\left(1-t_{0}^{2}\right) /\left(1-a t_{0}^{2}\right)>2$ or $2 a t_{0}^{2}+t_{0}-1>0$. For $0<a<1$, we have $0<(-1+\sqrt{1+8 a}) /(4 a)<1$. Thus if t_{0} is such that $(-1+\sqrt{1+8 a}) /(4 a)<t_{0}<1$, then $0<t_{0}<1$ and $2 a t_{0}^{2}+t_{0}-1>0$, which means that t_{0} meets our requirement that $\left\langle\left(S+S^{*}+T\right) x_{t_{0}}, x_{t_{0}}\right\rangle>2$. Hence $w\left(S+S^{*}+T\right)>2$ and $w\left(F_{T}\right)=(1 / 2) \max \left\{\left\|C_{\lambda}\right\|:|\lambda|=\right.$ $1\}>1$. This contradicts our assumption that $w\left(F_{T}\right)=1$ and thus a must be 0 .
$(\mathrm{b}) \Rightarrow(\mathrm{c})$ was shown in [4, Proposition 2.7], (c) $\Leftrightarrow(\mathrm{d})($ resp., $(\mathrm{a}) \Leftrightarrow(\mathrm{e}))$ is by Lemma 3.7 (resp., Lemma 3.8), and $(\mathrm{c}) \Rightarrow(\mathrm{a})$ is trivial. Thus the proof is completed.

In the preceding proposition, the equivalence of (a) and (b) can also be proved by using [4, Lemma 2.3 (d)]. This is given below.

Proof. [Alternative proof of Proposition $3.6(\mathrm{a}) \Leftrightarrow(\mathrm{b})$] As in the previous proof, we may assume that $0 \leq a<1$. Let $C=S+S^{*}+T$. As $T \succcurlyeq 0$, (a) is equivalent to $w(C)=\|C\|=2$ (cf. [3, Proposition 3.2 (c)]). Hence [4, Lemma 2.3 (d)] says that the latter is equivalent to the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ defined by $b_{1}=1$ and $b_{n}=1 /\left(2-a^{n-1}-b_{n-1}\right)$ for $n \geq 2$ satisfying $1 / 2 \leq b_{n} \leq 1$ for all n. In particular, this latter condition implies that $1 / 2 \leq b_{2}=1 /(1-a) \leq 1$ or that $a=0$. This proves $(\mathrm{a}) \Rightarrow(\mathrm{b})$. For the converse, if $a=0$, then $b_{n}=1 /\left(2-b_{n-1}\right)$ for $n \geq 2$. Hence $b_{n}=1$ for all n by induction. Therefore, $w\left(F_{T}\right)=1$ follows.

We end this paper with the question: Does $w\left(F_{T}\right)=1$ imply the compactness of T ? By Theorem 3.4, the answer is affirmative for a diagonal T.

Declaration of competing interest

No competing interest.

Acknowledgements.

Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo; his research was partially supported by the Simons Foundation Grant 851334. The researches of H.-L. Gau and K.-Z. Wang were partially supported by National Science and Technology Council of the Republic of China under projects MOST 111-2115-M-008-004 and MOST 110-2115-M-A49-009-MY2, respectively.

References

[1] M. Barraa, M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130 (2002) 273-286.
[2] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964) 788-790.
[3] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Numerical ranges of Foguel operators, Linear Algebra Appl. 610 (2021) 766-784.
[4] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Numerical range of the Foguel-Halmos operator, Studia Math. 263 (2022) 267-291.
[5] P. R. Halmos, On Foguel's answer to Nagy's problem, Proc. Amer. Math. Soc. 15 (1964) 791-793.
[6] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
[7] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
[8] P. Y. Wu, H.-L. Gau, Numerical Ranges of Hilbert Space Operators, Cambridge University Press, Cambridge, 2021.
[9] S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math. Anal. 9 (2015) 173-193.

[^0]: * Corresponding author

 Email addresses: hlgau@math.ncu.edu.tw (Hwa-Long Gau), ckli@math.wm.edu (Chi-Kwong Li), kzwang@math.nctu.edu.tw (Kuo-Zhong Wang), pywu@math.nctu.edu.tw (Pei Yuan Wu)

