Extremality of Bounds for Numerical Radii of Foguel Operators

Hwa-Long Gau^{a,*}, Chi-Kwong Li^b, Kuo-Zhong Wang^c, Pei Yuan Wu^c

^aDepartment of Mathematics, National Central University, Chungli 32001, Taiwan

^bDepartment of Mathematics, College of William & Mary, Williamsburg, Virginia 23187, USA

^cDepartment of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

Abstract

For any operator T on ℓ^2 , its associated Foguel operator F_T is $\begin{bmatrix} S^* & T \\ 0 & S \end{bmatrix}$ on $\ell^2 \oplus \ell^2$, where S is the (simple) unilateral shift. It is easily seen that the numerical radius $w(F_T)$ of F_T satisfies $1 \le w(F_T) \le 1 + (1/2) ||T||$. In this paper, we study when such upper and lower bounds of $w(F_T)$ are attained. For the upper bound, we show that $w(F_T) = 1 + (1/2) ||T||$ if and only if $w(S + T^*S^*T) = 1 + ||T||^2$. When T is a diagonal operator with nonnegative diagonals, we obtain, among other results, that $w(F_T) = 1 + (1/2) ||T||$ if and only if w(ST) = ||T||. As for the lower bound, it is shown that any diagonal T with $w(F_T) = 1$ is compact. Examples of various T's are given to illustrate such attainments of $w(F_T)$.

Keywords: Numerical range, Numerical radius, Foguel operator 2020 MSC: 47A12, 47B02

1. Introduction

A Foguel operator F_T is one of the form $\begin{bmatrix} S^* & T \\ 0 & S \end{bmatrix}$, where T is some operator on ℓ^2 and S is the unilateral shift $S(a_1, a_2, \ldots) = (0, a_1, a_2, \ldots)$ on ℓ^2 . Such operators were first considered by Foguel [2] as an example of a power-bounded operator not similar to a contraction (cf. also [5]). The numerical range W(A) of a (bounded linear) operator Aon a complex Hilbert space H is the subset $\{\langle Ax, x \rangle : x \in H, ||x|| = 1\}$ of the complex plane, where $\langle \cdot, \cdot \rangle$ is the inner product in H and $\|\cdot\|$ its associated norm, and the numerical radius w(A) is $\sup\{|z|: z \in W(A)\}$. After some preliminary results below, including the inequalities $1 \leq w(F_T) \leq 1 + (1/2)||T||$ for $w(F_T)$, we consider in subsequent sections when such upper and lower bounds are attained. We start with the upper bound in Section 2. It is shown that $w(F_T) = 1 + (1/2)||T||$ if and only if $w(S + T^*S^*T) = 1 + ||T||^2$ (Theorem 2.1). For a diagonal operator $T = \text{diag}(a_1, a_2, \ldots)$, the attainment for the upper

^{*}Corresponding author

Email addresses: hlgau@math.ncu.edu.tw (Hwa-Long Gau), ckli@math.wm.edu (Chi-Kwong Li), kzwang@math.nctu.edu.tw (Kuo-Zhong Wang), pywu@math.nctu.edu.tw (Pei Yuan Wu)

bound can be expressed in terms of the diagonal entries of T. One such condition is the existence, for each $n \geq 1$, of positive integers n_j , $j \geq 1$, with $1 \leq n_1 < n_2 < \cdots$ such that $\lim_j T_{n,n_j} = \lambda_1 ||T|| \operatorname{diag} (1, \lambda_2, \ldots, \lambda_2^n)$ for some λ_1 and λ_2 satisfying $|\lambda_1| = |\lambda_2| = 1$, where $T_{n,n_j} = \operatorname{diag} (a_{n_j}, a_{n_j+1}, \ldots, a_{n_j+n})$ for each j (Theorem 2.6). A necessary condition for $w(F_T) = 1 + (1/2) ||T||$ is the normaloidity of the unilateral weighted shift ST, that is, ST satisfies w(ST) = ||ST|| (Theorem 2.4 (b)). If $a_n \geq 0$ for all n, then, the condition w(ST) = ||ST|| is also sufficient, and is equivalent to several other numerical radius and norm equality conditions (Theorem 2.12). In Section 3, we move to consider the attainment of the lower bound for $w(F_T)$. For a diagonal T, we show that the condition $w(F_T) = 1$ implies that T is compact (Theorem 3.4). In particular, if $T = \operatorname{diag}(1, a, a^2, \ldots)$ with |a| < 1, then $w(F_T) = 1$ is equivalent to a = 0 (Proposition 3.6).

For an operator A, $\sigma(A)$ and $\rho(A)$ denote its spectrum and spectral radius, and Re Aand Im A its real part $(A + A^*)/2$ and imaginary part $(A - A^*)/(2i)$, respectively. The identity operator (resp., zero operator) on a space is denoted by I (resp., 0). If the space is identified as \mathbb{C}^n , then they are denoted by I_n and 0_n , respectively. An operator A is positive semidefinite, denoted by $A \ge 0$, if $\langle Ax, x \rangle \ge 0$ for all vectors x. A real matrix $A = [a_{ij}]_{i,j=1}^n$, $1 \le n \le \infty$, is nonnegative, denoted by $A \succcurlyeq 0$, if $a_{ij} \ge 0$ for all i and j. For two real matrices A and B of the same size, $A \preccurlyeq B$ means that $B - A \succcurlyeq 0$. For any m-by-n (complex) matrix $A = [a_{ij}]$, |A| denotes the nonnegative matrix $[|a_{ij}|]$. We use S_n to denote the n-by-n matrix

$$\begin{bmatrix} 0 & & & \\ 1 & 0 & & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}$$

and \mathbb{D} the open unit disc $\{z \in \mathbb{C} : |z| < 1\}$. For any real $t, \lfloor t \rfloor$ is the largest integer smaller than or equal to t.

Properties of the numerical range and numerical radius can be found in [8]. For properties of operators and finite matrices in general, consult [6] and [7], respectively.

To conclude this section, we give some basic properties of nonnegative matrices and Foguel operators for easier later reference.

Proposition 1.1. Let A be an n-by-n matrix $(1 \le n \le \infty)$.

- (a) If B is a real matrix of the same size as A and $|A| \preccurlyeq B$, then $w(A) \le w(B)$.
- (b) If $A \succeq 0$, then $w(A) = w(\operatorname{Re} A)$ and $w(A) \in \overline{W(A)}$.

Proof. (a) If x is any unit vector, then so is |x|. We infer from

$$|\langle Ax, x \rangle| \le \langle |A||x|, |x|\rangle \le \langle B|x|, |x|\rangle \le w(B)$$

that $w(A) \leq w(B)$.

(b) From $A \succeq 0$, we have $|\operatorname{Re}(\lambda A)| \preccurlyeq \operatorname{Re} A$ for any λ , $|\lambda| = 1$. Hence $w(\operatorname{Re}(\lambda A)) \le w(\operatorname{Re} A)$ by (a). It follows that $w(A) = \max\{w(\operatorname{Re}(\lambda A)) : |\lambda| = 1\} \le w(\operatorname{Re} A)$. On the other hand, the inequality $w(\operatorname{Re} A) \le (w(A) + w(A^*))/2 = w(A)$ also holds. These together prove that $w(A) = w(\operatorname{Re} A)$.

To show that $w(A) \in \overline{W(A)}$, let $\{x_k\}_{k=1}^{\infty}$ be a sequence of unit vectors such that $\lim_k |\langle Ax_k, x_k \rangle| = w(A)$. Passing to a subsequence, we may assume that $\langle A|x_k|, |x_k|\rangle$ converges, say, to a. From $|\langle Ax_k, x_k \rangle| \leq \langle A|x_k|, |x_k|\rangle$ for all k, we obtain $w(A) \leq a$. Since a is in $\overline{W(A)}$, we also have $a \leq w(A)$. Hence w(A) = a is in $\overline{W(A)}$.

Proposition 1.2. Let T be an operator on ℓ^2 . Then (a) $1 \le w(F_T^n) \le 1 + (n/2) ||T||$ for $n \ge 1$, and (b) $\sigma(F_T) = \overline{\mathbb{D}}$.

Proof. (a) As

$$F_T^n = \begin{bmatrix} S^{*n} & \sum_{j=0}^{n-1} S^{*j} T S^{n-1-j} \\ 0 & S^n \end{bmatrix},$$

we obtain $W(F_T^n) \supseteq W(S^{*n}) = W(S^*) = \mathbb{D}$ by the fact that S^{*n} is unitarily similar to S^* together with [8, Lemma 1.4.2]. Thus $w(F_T^n) \ge 1$. On the other hand, we also have

$$w(F_T^n) \le w\left(\begin{bmatrix} S^{*n} & 0\\ 0 & S^n \end{bmatrix}\right) + w\left(\begin{bmatrix} 0 & \sum_{j=0}^{n-1} S^{*j}TS^{n-1-j}\\ 0 & 0 \end{bmatrix}\right)$$
$$= 1 + \frac{1}{2} \|\sum_{j=0}^{n-1} S^{*j}TS^{n-1-j}\| \le 1 + \frac{1}{2} \sum_{j=0}^{n-1} \|S^{*j}TS^{n-1-j}\|$$
$$\le 1 + \frac{1}{2} \sum_{j=0}^{n-1} \|T\| = 1 + \frac{n}{2} \|T\|,$$

where we used the fact that $w\left(\begin{bmatrix} 0 & A \\ 0 & 0 \end{bmatrix}\right) = ||A||/2$ (cf. [8, Corollary 2.1.3 (a)]).

(b) To prove $\sigma(F_T) = \overline{\mathbb{D}}$, we deduce from above that

$$\rho(F_T) = \lim_{n \to \infty} w(F_T^n)^{1/n} \le \lim_{n \to \infty} (1 + \frac{n}{2} ||T||)^{1/n} = 1,$$

where the first equality is by [8, Proposition 1.5.1 (g)]. Thus $\sigma(F_T) \subseteq \overline{\mathbb{D}}$. For the converse containment, let z be a point not in $\sigma(F_T)$. Then $F_T - zI$ is invertible. If $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is its inverse, then

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} S^* - zI & T \\ 0 & S - zI \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}$$

from which follows $A(S^* - zI) = I$. This shows that $S^* - zI$ is left invertible. Thus z is not in $\overline{\mathbb{D}}$, the left spectrum of S^* (cf. [6, Solution 82]). Therefore, $\sigma(F_T) \supseteq \overline{\mathbb{D}}$. Our assertion follows.

The bounds for $w(F_T^n)$ in the preceding proposition are due to Kittaneh by private communication.

2. Upper bound of $w(F_T)$

As seen from Proposition 1.2 (a), we have $1 \le w(F_T) \le 1 + (1/2) ||T||$ for any operator T on ℓ^2 . The next theorem gives some general conditions for the attainment of this upper bound of $w(F_T)$.

Theorem 2.1. The following conditions are equivalent for any operator T on ℓ^2 :

- (a) $w(F_T) = 1 + (1/2) ||T||,$
- (b) there is a sequence of unit vectors $\{y_n\}_{n=1}^{\infty}$ in ℓ^2 and a complex number λ , $|\lambda| = 1$, such that $\lim_n \langle (\operatorname{Re}(\overline{\lambda}S))y_n, y_n \rangle = 1$ and $\lim_n \langle (\operatorname{Re}(\lambda S))Ty_n, Ty_n \rangle = ||T||^2$,
- (c) $w(S + T^*S^*T) = 1 + ||T||^2$.

Proof. (a) \Rightarrow (b). Note that (a) implies that there are sequences of unit vectors $\{x_n\}$ and $\{y_n\}$ in ℓ^2 , a sequence $\{t_n\}$ in $[0, 2\pi]$, and a sequence $\{\lambda_n\}$ with $|\lambda_n| = 1$ such that $z_n = ((\cos t_n)x_n, (\sin t_n)y_n)$ in $\ell^2 \oplus \ell^2$ satisfies $\lim_n \overline{\lambda}_n \langle F_T z_n, z_n \rangle = 1 + (1/2) ||T||$. Passing to subsequences, we may assume that $\{\langle S^* x_n, x_n \rangle\}$, $\{\langle Sy_n, y_n \rangle\}$, $\{\langle Ty_n, x_n \rangle\}$, $\{t_n\}$, and $\{\lambda_n\}$ all converge. Let $\lim_n t_n = t$ in $[0, 2\pi]$ and $\lim_n \lambda_n = \lambda$. We may further assume that $z_n =$ $((\cos t)x_n, (\sin t)y_n)$ for all n and $\lim_n \langle F_T z_n, z_n \rangle = \lambda (1 + (1/2) ||T||)$. If $\lim_n \langle S^* x_n, x_n \rangle = a$, $\lim_n \langle Sy_n, y_n \rangle = b$, and $\lim_n (\cos t \cdot \sin t) \langle Ty_n, x_n \rangle = c$, then

(1)
$$\lim_{n} \langle F_T z_n, z_n \rangle = (\cos^2 t)a + (\sin^2 t)b + c = \lambda (1 + \frac{1}{2} ||T||).$$

It is easy to see that $|a|, |b| \leq 1$ and hence $|(\cos^2 t)a + (\sin^2 t)b| \leq 1$. Similarly, we have $|c| \leq ||T||/2$. We deduce from (1) that the latter two inequalities must actually be equalities:

(2)
$$|(\cos^2 t)a + (\sin^2 t)b| = 1 \text{ and } |c| = \frac{1}{2}||T||.$$

From the first one, we obtain |a| = |b| = 1. As $(\cos^2 t)a + (\sin^2 t)b$ is a convex combination of a and b, the equalities $|(\cos^2 t)a + (\sin^2 t)b| = |a| = |b| = 1$ yield that $a = b = (\cos^2 t)a + (\sin^2 t)b$. From (1), we obtain

(3)
$$a + c = \lambda (1 + \frac{1}{2} ||T||).$$

Hence

$$1 + \frac{1}{2} \|T\| = |a + c| \le |a| + |c| = 1 + |c| = 1 + \frac{1}{2} \|T\|$$

by (3) and (2). This gives |a + c| = |a| + |c|. Thus c = sa for some $s \ge 0$ or |c| = s|a| = s. We infer from (3) and (2) that

$$\lambda(1 + \frac{1}{2}||T||) = a + c = a + sa = a + |c|a = a(1 + |c|) = a(1 + \frac{1}{2}||T||).$$

Therefore, we obtain $a = \lambda$ and $c = |c|a = |c|\lambda = \lambda ||T||/2$. These yield $\lim_n \langle S^*x_n, x_n \rangle = \lim_n \langle Sy_n, y_n \rangle = \lambda$ and $\lim_n (\cos t \cdot \sin t) \langle Ty_n, x_n \rangle = \lambda ||T||/2$, from which we deduce that $\lim_n \langle (\operatorname{Re}(\lambda S))x_n, x_n \rangle = \lim_n \langle (\operatorname{Re}(\overline{\lambda}S))y_n, y_n \rangle = 1$ and $\cos t \sin t = 1/2$. Hence $\lim_n \langle Ty_n, x_n \rangle = \lambda ||T||$. As

$$0 \le \lim_{n} ||Ty_{n} - \lambda ||T||x_{n}||^{2}$$

=
$$\lim_{n} (||Ty_{n}||^{2} - 2\operatorname{Re}(\overline{\lambda} ||T|| \langle Ty_{n}, x_{n} \rangle) + |\lambda|^{2} ||T||^{2} ||x_{n}||^{2})$$

=
$$\lim_{n} (||Ty_{n}||^{2} - ||T||^{2}) \le 0,$$

we have $\lim_n ||Ty_n - \lambda||T||x_n|| = 0$. Finally, replacing Ty_n by $\lambda ||T||x_n$ in $\langle (\operatorname{Re}(\lambda S))Ty_n, Ty_n \rangle$, taking the limit, and using $\lim_n \langle (\operatorname{Re}(\lambda S))x_n, x_n \rangle = 1$, we conclude that $\lim_n \langle (\operatorname{Re}(\lambda S))Ty_n, Ty_n \rangle = ||T||^2$, completing the proof.

(b) \Rightarrow (c). Note that

$$w(S + T^*S^*T) \le \|S + T^*S^*T\| \le \|S\| + \|T^*S^*T\| \le 1 + \|T\|^2.$$

On the other hand, (b) implies that $\lim_n \langle (\operatorname{Re}(\overline{\lambda}(S+T^*S^*T)))y_n, y_n\rangle$ equals

$$\lim_{n} \left(\langle (\operatorname{Re}(\overline{\lambda}S))y_n, y_n \rangle + \langle T^*(\operatorname{Re}(\overline{\lambda}S^*))Ty_n, y_n \rangle \right) = 1 + ||T||^2.$$

Hence

$$1 + \|T\|^2 \le w \left(\operatorname{Re}\left(\overline{\lambda}(S + T^*S^*T)\right) \right) \le w \left(\overline{\lambda}(S + T^*S^*T)\right) = w(S + T^*S^*T).$$

Therefore, $w(S + T^*S^*T) = 1 + ||T||^2$ holds.

 $(c) \Rightarrow (a)$. From (c), we argue as in the proof of $(a) \Rightarrow (b)$ to obtain a sequence of unit vectors $\{y_n\}$ and a complex number λ with $|\lambda| = 1$ such that $\lim_n \langle (S + T^*S^*T)y_n, y_n \rangle = \lambda (1+||T||^2)$. As before, this yields $\lim_n \langle Sy_n, y_n \rangle = \lambda$ and $\lim_n \langle S^*Ty_n, Ty_n \rangle = \lambda ||T||^2$. Since $|\langle S^*Ty_n, Ty_n \rangle| \le ||S^*Ty_n|| ||Ty_n|| \le ||Ty_n||^2 \le ||T||^2$ for all n, we have $\lim_n ||Ty_n|| = ||T||$. Let $x_n = Ty_n/||Ty_n||$ in ℓ^2 and $z_n = (1/\sqrt{2})(x_n, y_n)$ in $\ell^2 \oplus \ell^2$. Then $||z_n|| = 1$ for all n and

$$\lim_{n} \langle F_{\lambda T} z_n, z_n \rangle = \frac{1}{2} \lim_{n} (\langle S^* x_n, x_n \rangle + \langle S y_n, y_n \rangle + \lambda \langle T y_n, x_n \rangle)$$

$$= \frac{1}{2} \lim_{n} \left(\frac{1}{\|Ty_n\|^2} \langle S^* Ty_n, Ty_n \rangle + \langle S y_n, y_n \rangle + \frac{\lambda}{\|Ty_n\|} \langle Ty_n, Ty_n \rangle \right)$$

$$= \frac{1}{2} \left(\frac{1}{\|T\|^2} \lambda \|T\|^2 + \lambda + \frac{\lambda}{\|T\|} \|T\|^2 \right) = \lambda (1 + \frac{1}{2} \|T\|).$$

It follows that $1 + (1/2) ||T|| = \lim_n |\langle F_{\lambda T} z_n, z_n \rangle| \le w(F_{\lambda T}) = w(F_T)$, where the last equality is a consequence of the unitary similarity of $F_{\lambda T}$ and F_T :

S^*	λT	I	0	$\int S^*$	T	$\int I$	0]
0	S	0	$\overline{\lambda}I$	0	S	0	λI] .

Since $w(F_T) \leq 1 + (1/2) ||T||$ always holds, this proves (a).

The following examples are easy consequences of the preceding theorem. The first one appeared before in [3, Corollary 2.9].

Example 2.2. (a) If T = S, then $w(F_T) = 1 + (1/2)||T|| = 3/2$ since

$$w(S + S^*S^*) = w(S + S^*) = 2w(\operatorname{Re} S) = 2 = 1 + ||S||^2.$$

(b) If T = diag(1, 0, 1, 0, ...), then $w(F_T) < 1 + (1/2) ||T||$ since $T^*S^*T = 0$ and hence $w(S + T^*S^*T) = w(S) = 1 < 1 + ||T||^2$.

Corollary 2.3. Let S be the set of all T's on ℓ^2 which satisfy $w(F_T) = 1 + (1/2) ||T||$.

- (a) For any nonzero complex number z, T is in S if and only if zT is.
- (b) Let $A = \text{diag}(1, a, a^2, ...)$, where |a| = 1. Then T is in S if and only if A^*TA^* is.

Proof. (a) is an easy consequence of Theorem 2.1 (b).

(b) Since A is unitary, $A^*S^*A = aS^*$, and $ASA^* = aS$, we have

$$(A^* \oplus A)F_T(A \oplus A^*) = \begin{bmatrix} aS^* & A^*TA^* \\ 0 & aS \end{bmatrix} = a\begin{bmatrix} S^* & \overline{a}A^*TA^* \\ 0 & S \end{bmatrix} = aF_{\overline{a}A^*TA^*}.$$

The assertion then follows from (a).

We now consider $w(F_T)$ for a diagonal operator T.

Theorem 2.4. Let $T = \text{diag}(a_1, a_2, ...)$.

(a) w(F_T) = 1 + (1/2)||T|| if and only if w(S + λT*ST) = 1 + ||T||² for some λ, |λ| = 1.
(b) If w(F_T) = 1 + (1/2)||T||, then w(ST) = ||T||.

Note that the converse of the implication in (b) is in general false. One example is $T = \text{diag}(1, 1, -1, -1, 1, 1, -1, -1, \ldots)$. Since ST is unitarily similar to S, we have w(ST) = w(S) = 1 = ||T||, but $w(F_T) = \sqrt{5 + 2\sqrt{2}/2} < 3/2$ by [3, Proposition 3.4].

Proof. [Proof of Theorem 2.4] (a) By Theorem 2.1, we need only prove

$$w(S + T^*S^*T) = w(S + \lambda T^*ST)$$
 for some λ hboxwith $|\lambda| = 1$

Indeed, we have $w(S + T^*S^*T) = \max\{w(\operatorname{Re}(\lambda(S + T^*S^*T))) : |\lambda| = 1\}$ and

$$w\big(\operatorname{Re}\left(\lambda(S+T^*S^*T)\right)\big) = w\big(\operatorname{Re}\left(\lambda S\right) + \operatorname{Re}\left(\overline{\lambda}T^*ST\right)\big) = w(S+\overline{\lambda}^2T^*ST),$$

where the last equality follows from the fact that

$$S + \overline{\lambda}^2 T^* S T = \begin{bmatrix} 0 & & & \\ 1 + \overline{\lambda}^2 a_1 \overline{a}_2 & 0 & & \\ & & 1 + \overline{\lambda}^2 a_2 \overline{a}_3 & 0 & \\ & & & \ddots & \ddots \end{bmatrix}$$

is a unilateral weighted shift whose numerical range is an (open or closed) circular disc centered at the origin. Thus

$$w(S + T^*S^*T) = \max\{w(S + \overline{\lambda}^2 T^*ST) : |\lambda| = 1\} = \max\{w(S + \lambda T^*ST) : |\lambda| = 1\} = w(S + \lambda T^*ST)$$

for some λ , $|\lambda| = 1$.

(b) If $w(F_T) = 1 + (1/2) ||T||$, then $w(S + T^*S^*T) = 1 + ||T||^2$ by Theorem 2.1. Hence

$$1 + ||T||^2 \le w(S) + w(T^*S^*T) \le 1 + w(|T^*|S^*)||T||$$

= $1 + w(T^*S^*)||T|| \le 1 + ||T^*S^*||||T|| \le 1 + ||T||^2$

where the second inequality follows from $|T^*S^*T| \leq |T^*|S^*||T||$ (cf. Proposition 1.1 (a)), and the equality $w(|T^*|S^*) = w(T^*S^*)$ follows from the unitary similarity of $|T^*|S^*$ and T^*S^* . This yields equalities throughout and, in particular, $w(ST) = w(T^*S^*) = ||T||$ holds.

The next two examples illustrate the usefulness of the preceding theorem. The first appeared before in [3, Corollary 3.6].

Example 2.5. (a) Let $T = \text{diag}(1, a, a^2, ...)$, where |a| = 1. Then $w(F_T) = 1 + (1/2) ||T|| = 3/2$ since $w(S + aT^*ST) = w(S + S) = 2 = 1 + ||T||^2$.

(b) Let $T = \text{diag}(a_1, a_2, ...)$ with $\lim_n a_n = a$ and |a| = ||T||. Then $w(F_T) = 1 + (1/2)||T||$ since, in this case, $S + T^*ST$ is a unilateral weighted shift with weights $\{1 + a_n \overline{a}_{n+1}\}_{n=1}^{\infty}$ satisfying $\lim_n |1 + a_n \overline{a}_{n+1}| = 1 + |a|^2$ and hence $w(S + T^*ST) = 1 + |a|^2 = 1 + ||T||^2$ by [8, Proposition 2.4.2].

For a diagonal T, the condition in Theorem 2.4 (a) involves the numerical radius of the unilateral weighted shift $S + \lambda T^*ST$. In the following, we express the condition for $w(F_T) = 1 + (1/2)||T||$ in terms of the diagonals of T more explicitly. **Theorem 2.6.** Let $T = \text{diag}(a_1, a_2, ...)$ on ℓ^2 and $T_{n,k} = \text{diag}(a_k, a_{k+1}, ..., a_{k+n})$ on \mathbb{C}^{n+1} for $n, k \geq 1$. Then $w(F_T) = 1 + (1/2) ||T||$ if and only if for any $n \geq 1$ there are integers $1 \leq n_1 < n_2 < \cdots$ such that $\lim_{j\to\infty} T_{n,n_j} = \lambda_1 ||T|| \text{diag}(1, \lambda_2, ..., \lambda_2^n)$ for some λ_1 and λ_2 with $|\lambda_1| = |\lambda_2| = 1$. Moreover, in this case, λ_2 can be chosen to satisfy $w(S + \lambda_2 T^*ST) = 1 + ||T||^2$.

The proof is facilitated by the next proposition on unilateral weighted shift.

Proposition 2.7. Let

$$A = \begin{bmatrix} 0 & & & \\ w_1 & 0 & & \\ & w_2 & 0 & \\ & & \ddots & \ddots \end{bmatrix} \quad on \ \ell^2$$

and

$$A_{n,k} = \begin{bmatrix} 0 & & & \\ w_k & 0 & & \\ & w_{k+1} & 0 & & \\ & & \ddots & \ddots & \\ & & & w_{k+n-1} & 0 \end{bmatrix} \quad on \ \mathbb{C}^{n+1} \ for \ n, k \ge 1.$$

Then $\max\{w(S + \lambda A) : |\lambda| = 1\} = 1 + ||A||$ if and only if for any $n \ge 1$ there are integers $1 \le n_1 < n_2 < \cdots$ such that $\lim_{j\to\infty} A_{n,n_j} = \overline{\lambda}_0 ||A|| S_{n+1}$ for some λ_0 , $|\lambda_0| = 1$. Moreover, λ_0 may be chosen to satisfy $w(S + \lambda_0 A) = 1 + ||A||$.

An operator A is normaloid if it satisfies w(A) = ||A||. For a unilateral weighted shift, normaloidity can be characterized in terms of its weights (cf. [9, Theorem 4.6] or [8, Problem 3.4]).

Lemma 2.8. A unilateral weighted shift with weights $\{w_n\}_{n=1}^{\infty}$ is normaloid if and only if $\sup_{n\geq 1} |w_n| = \lim_{j\to\infty} \sup_{k\geq 1} |w_k w_{k+1} \cdots w_{k+j-1}|^{1/j}$.

Proof. [Proof of Proposition 2.7] First assume that $\max\{w(S + \lambda A) : |\lambda| = 1\} = 1 + ||A||$. Let λ_0 , $|\lambda_0| = 1$, be such that $w(S + \lambda_0 A) = 1 + ||A||$. Then $||S + \lambda_0 A|| \leq 1 + ||A|| = w(S + \lambda_0 A)$, which implies that $w(S + \lambda_0 A) = ||S + \lambda_0 A||$ or $S + \lambda_0 A$ is normaloid. Let $u_n = 1 + \lambda_0 w_n$ for $n \geq 1$. As $S + \lambda_0 A$ is a unilateral weighted shift with weights $\{u_n\}_{n=1}^{\infty}$, Lemma 2.8 yields that $\lim_{j\to\infty} \sup_{k\geq 1} |u_k u_{k+1} \cdots u_{k+j-1}|^{1/j} = ||S + \lambda_0 A|| = 1 + ||A||$. We now show that for any $n \geq 1$ there are integers $1 \leq n_1 < n_2 < \cdots$ such that $\lim_j u_{n_j+s} = 1 + ||A||$ for all $s, 0 \leq s \leq n - 1$. This is done by first checking that $\lim_j |u_{n_j+s}| = 1 + ||A||$ for all s. Indeed, assume otherwise that, for some $n \geq 1$, we have

 $\limsup_{k\to\infty} \min\{|u_k|,\ldots,|u_{k+n-1}|\} < 1 + ||A||. \text{ Then, under } A \neq 0, \text{ there is an } N \geq 1 \text{ and}$ an ε , $0 < \varepsilon < ||A||$, such that $\min\{|u_k|,\ldots,|u_{k+n-1}|\} \leq 1 + ||A|| - \varepsilon$ for all $k \geq N$. For any $j \geq n+N$, let $\alpha_k = \lfloor (k+j-N)/n \rfloor$ if $1 \leq k < N$, and $\lfloor (j-N)/n \rfloor$ if $k \geq N$. We have

$$\begin{aligned} |u_{k}u_{k+1}\cdots u_{k+j-1}| &= \begin{cases} \left(\prod_{l=k}^{N-1}|u_{l}|\right)\left(\prod_{m=0}^{\alpha_{k}-1}\left(\prod_{l=N+mn}^{N+(m+1)n-1}|u_{l}|\right)\right)\left(\prod_{l=N+\alpha_{k}n}^{k+j-1}|u_{l}|\right) & \text{if } 1 \leq k < N, \\ \left(\prod_{m=0}^{\alpha_{k}-1}\left(\prod_{l=k+mn}^{k+(m+1)n-1}|u_{l}|\right)\right)\left(\prod_{l=k+(m+1)n}^{k+j-1}|u_{l}|\right) & \text{if } k \geq N \end{cases} \\ &\leq (1+||A||-\varepsilon)^{\alpha_{k}}(1+||A||)^{j-\alpha_{k}} \\ &\leq (1+||A||-\varepsilon)^{\lfloor (j-N)/n \rfloor}(1+||A||)^{j-\lfloor (j-N)/n \rfloor}, \end{aligned}$$

where the first inequality is because at least one of the $|u_l|$'s in each of the α_k many products $\prod_{l=N+mn}^{N+(m+1)n-1} |u_l|$ or $\prod_{l=k+mn}^{k+(m+1)n-1} |u_l|$ is at most $1 + ||A|| - \varepsilon$, and the second inequality results from $((1 + ||A||)/(1 + ||A|| - \varepsilon))^{\alpha_k - \lfloor (j-N)/n \rfloor} \ge 1$ since $\alpha_k \ge \lfloor (j-N)/n \rfloor$ and $(1 + ||A||)/(1 + ||A|| - \varepsilon) > 1$. As $j - N = \lfloor (j - N)/n \rfloor n + r$ for some $r, 0 \le r < n$, we obtain $\lim_j \lfloor (j - N)/n \rfloor/j = (1/n) \lim_j (((j - N)/j) - (r/j)) = 1/n$. Thus, from the above inequalities, we further deduce that

$$\lim_{j \to \infty} \sup_{k \ge 1} |u_k u_{k+1} \cdots u_{k+j-1}|^{1/j} \le \lim_{j \to \infty} (1 + ||A|| - \varepsilon)^{\lfloor (j-N)/n \rfloor/j} (1 + ||A||)^{(j-\lfloor (j-N)/n \rfloor)/j} \le (1 + ||A|| - \varepsilon)^{1/n} (1 + ||A||)^{1-(1/n)} < (1 + ||A||)^{1/n} (1 + ||A||)^{1-(1/n)} = 1 + ||A||.$$

This contradicts our previous condition for the normaloidity of $S + \lambda_0 A$. Thus we have proved $\lim_j |u_{n_j+s}| = 1 + ||A||$ for all $s, 0 \le s \le n-1$.

The next step is to show that $\lim_j u_{n_j+s} = 1 + ||A||$ for all s. If s = 0, then, from $\lim_j |u_{n_j}| = 1 + ||A||$ and $|u_{n_j}| \le 1 + |w_{n_j}| \le 1 + ||A||$, we also have $\lim_j |w_{n_j}| = ||A||$. On the other hand, we deduce from

$$(1 + ||A||)^2 = \lim_j |u_{n_j}|^2 = \lim_j (1 + |w_{n_j}|^2 + 2\operatorname{Re}(\lambda_0 w_{n_j})) = 1 + ||A||^2 + 2\lim_j \operatorname{Re}(\lambda_0 w_{n_j})$$

that $\lim_{j} \operatorname{Re}(\lambda_{0}w_{n_{j}}) = ||A||$. Together with $\lim_{j} |\lambda_{0}w_{n_{j}}| = ||A||$, this yields $\lim_{j} \operatorname{Im}(\lambda_{0}w_{n_{j}}) = 0$. Hence $\lim_{j} \lambda_{0}w_{n_{j}} = ||A||$. Similarly, we can prove $\lim_{j} \lambda_{0}w_{n_{j}+s} = ||A||$ for all s, $1 \leq s \leq n-1$. Thus $\lim_{j} A_{n,n_{j}} = \overline{\lambda}_{0} ||A|| S_{n+1}$ as required.

To prove the converse, assume that, for any $n \ge 1$, there is a sequence $\{n_j\}_{j=1}^{\infty}$ such that $\lim_j A_{n,n_j} = \overline{\lambda}_0 ||A|| S_{n+1}$ for some λ_0 , $|\lambda_0| = 1$. Since $w(S_{n+1} + \lambda_0 A_{n,n_j}) \le w(S + \lambda_0 A)$ for any n, letting j approach infinity, we obtain

$$(1 + ||A||)w(S_{n+1}) = w(S_{n+1} + ||A||S_{n+1}) \le w(S + \lambda_0 A) \le \max\{w(S + \lambda A) : |\lambda| = 1\}$$

It follows from $\lim_{j \to \infty} w(S_{n+1}) = \lim_{j \to \infty} (\cos(\pi/(n+2))) = 1$ (cf. [8, Lemma 2.4.1 (a)]) that $1 + ||A|| \le \max\{w(S+\lambda A) : |\lambda| = 1\}$. On the other hand, we also have $w(S+\lambda A) \le w(S) + w(A) \le 1 + ||A||$ for any λ , $|\lambda| = 1$. This proves $\max\{w(S+\lambda A) : |\lambda| = 1\} = 1 + ||A||$.

Proof. [Proof of Theorem 2.6] We need only consider $T \neq 0$. Assume first that $w(F_T) = 1 + (1/2)||T||$. From Theorem 2.4 (a), we have $w(S + \lambda_2 T^*ST) = 1 + ||T||^2$ for some λ_2 , $|\lambda_2| = 1$. If $A = T^*ST$, then A is a unilateral weighted shift with weights $\{a_n \overline{a}_{n+1}\}_{n=1}^{\infty}$ and $w(S + \lambda_2 A) = 1 + ||A||$. Thus, by Proposition 2.7, for any $n \geq 1$ there is a sequence $\{n_j\}_{j=1}^{\infty}, 1 \leq n_1 < n_2 < \cdots$, such that $\lim_j A_{n+1,n_j} = \overline{\lambda_2} ||A|| S_{n+2}$. This is the same as $\lim_j a_{n_j+m} \overline{a}_{n_j+m+1} = \overline{\lambda_2} ||T||^2$ for all $m, 0 \leq m \leq n$. Passing to subsequences, we may assume that both $\{a_{n_j+m}\}_{j=1}^{\infty}$ and $\{a_{n_j+m+1}\}_{j=1}^{\infty}$ converge for each fixed m. As $|a_k| \leq ||T||$ for all k, we infer from $\lim_j |a_{n_j+m}||a_{n_j+m+1}| = ||T||^2$ that $\lim_j |a_{n_j+m}|| = ||T||$. Moreover, if $a_k = \lambda_k |a_k|$, where $|\lambda_k| = 1$, for $k \geq 1$, then $\lim_j \lambda_{n_j+m} \overline{\lambda}_{n_j+m+1} = \overline{\lambda_2}$ for each m. Thus

$$\lim_{j} \lambda_{n_j} \overline{\lambda}_{n_j+m} = \lim_{j} (\lambda_{n_j} \overline{\lambda}_{n_j+1}) (\lambda_{n_j+1} \overline{\lambda}_{n_j+2}) \cdots (\lambda_{n_j+m-1} \overline{\lambda}_{n_j+m}) = \overline{\lambda}_2^m$$

for $0 \leq m \leq n$. Again, passing to a subsequence, we may assume that $\{\lambda_{n_j}\}_{j=1}^{\infty}$ converges, say, to λ_1 with $|\lambda_1| = 1$. Then we obtain $\lim_j \overline{\lambda}_{n_j+m} = \overline{\lambda}_1 \overline{\lambda}_2^m$ or $\lim_j \lambda_{n_j+m} = \lambda_1 \lambda_2^m$. Together with $\lim_j |a_{n_j+m}| = ||T||$, this yields $\lim_j a_{n_j+m} = \lambda_1 \lambda_2^m ||T||$ for all $m, 0 \leq m \leq n$. In other words, we have $\lim_j T_{n,n_j} = \lambda_1 ||T|| \operatorname{diag}(1, \lambda_2, \ldots, \lambda_2^n)$ as required.

To prove the converse, for any $n \ge 1$, let $\{n_j\}_{j=1}^{\infty}$ be such that

$$\lim_{j} T_{n,n_{j}} = \lambda_{1} \| T \| \operatorname{diag} (1, \lambda_{2}, \dots, \lambda_{2}^{n}) \text{ for some } \lambda_{1} \text{ and } \lambda_{2}, |\lambda_{1}| = |\lambda_{2}| = 1.$$

Then we have $\lim_{j} a_{n_j+m} \overline{a}_{n_j+m+1} = \overline{\lambda}_2 ||T||^2$ for $0 \le m \le n-1$. If

$$A = \begin{bmatrix} 0 & & & \\ a_1 \overline{a}_2 & 0 & & \\ & a_2 \overline{a}_3 & 0 & \\ & & \ddots & \ddots \end{bmatrix} \text{ on } \ell^2 \text{ and } A_{n,k} = \begin{bmatrix} 0 & & & & \\ a_k \overline{a}_{k+1} & 0 & & \\ & \ddots & \ddots & \\ & & a_{k+n-1} \overline{a}_{k+n} & 0 \end{bmatrix} \text{ on } \mathbb{C}^{n+1}$$

for $n, k \ge 1$, then the above limits can be expressed as $\lim_j A_{n,n_j} = \overline{\lambda}_2 ||T||^2 S_{n+1}$. It follows that $\lim_j ||A_{n,n_j}|| = ||T||^2$. On the other hand, we also have $||A_{n,n_j}|| \le ||A|| \le ||T||^2$ for all j. Thus $||A|| = ||T||^2$ and $\lim_j A_{n,n_j} = \overline{\lambda}_2 ||A|| S_{n+1}$. We obtain from Proposition 2.7 that $\max\{w(S + \lambda A) : |\lambda| = 1\} = 1 + ||A|| = 1 + ||T||^2$. As $A = T^*ST$, the assertion $w(F_T) = 1 + (1/2)||T||$ then follows from Theorem 2.4 (a).

The next two propositions are consequences of Theorem 2.6.

Proposition 2.9. Let $T = \text{diag}(a_1, a_2, ...)$ and $T(m) = \text{diag}(a_m, a_{m+1}, ...)$ for $m \ge 1$. Then the following conditions are equivalent:

(a) $w(F_T) = 1 + (1/2) ||T||.$

- (b) $w(F_{T(m_0)}) = 1 + (1/2) ||T||$ for some $m_0 \ge 1$.
- (c) $w(F_{T(m)}) = 1 + (1/2) ||T||$ for all $m \ge 1$.

Proof. We need only prove (b) \Rightarrow (c). Let $T_{n,k}(m) = \text{diag}(a_{m+k-1},\ldots,a_{m+k+n-1})$ on \mathbb{C}^{n+1} for $n, k, m \ge 1$. Assuming $w(F_{T(m_0)}) = 1 + (1/2) ||T||$, we have

$$1 + \frac{1}{2} \|T\| = w(F_{T(m_0)}) \le 1 + \frac{1}{2} \|T(m_0)\| \le 1 + \frac{1}{2} \|T\|.$$

Thus $||T(m_0)|| = ||T||$. By Theorem 2.6, for any $n \ge 1$, there is a sequence $\{n_j\}_{j=1}^{\infty}$ such that $\lim_j T_{n,n_j}(m_0) = \lambda_1 ||T|| \operatorname{diag}(1,\lambda_2,\ldots,\lambda_2^n)$ with $|\lambda_1| = |\lambda_2| = 1$. Fixing any $m \ge 1$, let j_0 be such that $n_j \ge m$ for all $j \ge j_0$ and let $n'_j = n_j + m_0 - m$ for $j \ge j_0$. Then

(4)
$$\lim_{j} T_{n,n'_{j}}(m) = \lim_{j} T_{n,n_{j}}(m_{0}) = \lambda_{1} ||T|| \operatorname{diag}(1,\lambda_{2},\ldots,\lambda_{2}^{n}).$$

This yields $\lim_j ||T_{n,n'_j}(m)|| = ||T||$. Since $||T_{n,n'_j}(m)|| \le ||T(m)||$ for all j and m, we obtain $||T|| \le ||T(m)||$. Hence ||T|| = ||T(m)|| for all m. Therefore, (c) follows from (4) via Theorem 2.6.

The period $p (\geq 1)$ of a periodic sequence $\{a_n\}_{n=1}^{\infty}$ is the smallest integer for which $a_{n+p} = a_n$ for all $n \geq 1$.

Proposition 2.10. Let $T = \text{diag}(a_1, a_2, ...)$, where a_n 's are periodic with period $p (\geq 1)$. Then $w(F_T) = 1 + (1/2) ||T||$ if and only if $a_n = \lambda_1 \lambda_2^n ||T||$ for $n \geq 1$, where $|\lambda_1| = 1$ and $\lambda_2^p = 1$.

Proof. For any $n, k \ge 1$, let $T_{n,k} = \text{diag}(a_k, a_{k+1}, \dots, a_{k+n})$. If $w(F_T) = 1 + (1/2) ||T||$, then, by Theorem 2.6, there is a sequence $\{p_j\}_{j=1}^{\infty}$ such that

$$\lim_{j} T_{p,p_{j}} = \lambda_{1}' \|T\| \operatorname{diag} (1, \lambda_{2}, \dots, \lambda_{2}^{p}) \text{ for some } \lambda_{1}' \text{ and } \lambda_{2} \text{ with } |\lambda_{1}'| = |\lambda_{2}| = 1.$$

On the other hand, for the periodic a_n 's, we also have

(5)
$$T_{p,kp+l} = T_{p,l} \text{ for } k \ge 1 \text{ and } 1 \le l \le p$$

By the pigeonhole principle, there is a q, $1 \leq q \leq p$, and a subsequence of $\{p_j\}$ whose elements are all of the form kp + q ($k \geq 1$). Passing to this subsequence, we may assume that the p_j 's are themselves of this form. Thus, from (5), we have $T_{p,p_j} = T_{p,q}$ for all j. This yields that

$$\operatorname{diag}\left(a_{q}, a_{q+1}, \dots, a_{q+p}\right) = T_{p,q} = T_{p,p_{j}} = \lambda_{1}^{\prime} \|T\| \operatorname{diag}\left(1, \lambda_{2}, \dots, \lambda_{2}^{p}\right).$$

Hence $a_{q+m} = \lambda'_1 ||T|| \lambda_2^m = a_q \lambda_2^m$ for $0 \le m \le p$. In particular, we have $a_q = a_{q+p} = a_q \lambda_2^p$. If $a_q = 0$, then all the a_n 's are zero or T = 0. Otherwise, we have $\lambda_2^p = 1$ and $a_{q+m} = \lambda'_1 \lambda_2^m ||T||$ for $0 \le m \le p$. Let $\lambda_1 = \lambda'_1 \lambda_2^{-q}$. If $1 \le n \le q-1$, then $0 \le p-q+n \le p$ and hence

$$a_n = a_{q+(p-q+n)} = \lambda_1' \lambda_2^{p-q+n} ||T|| = (\lambda_1' \lambda_2^{-q}) \lambda_2^n ||T|| = \lambda_1 \lambda_2^n ||T||.$$

On the other hand, if $n \ge q$, say, n = (k-1)p + q + m for some $k \ge 1$ and some m, $0 \le m \le p - 1$, then

$$a_n = a_{q+m} = \lambda_1' \lambda_2^m ||T|| = (\lambda_1' \lambda_2^{-q}) \lambda_2^{q+m} ||T|| = \lambda_1 \lambda_2^n ||T||.$$

These prove our assertion on the a_n 's.

Conversely, if the a_n 's are of the asserted form, then $a_{n+1} = \lambda_2 a_n$ for all n. Hence $T = a_1 \operatorname{diag}(1, \lambda_2, \lambda_2^2, \ldots)$. Then $w(F_T) = 1 + (1/2) ||T||$ by Example 2.5 (a) and Corollary 2.3 (a).

The following are examples for Proposition 2.10.

Example 2.11. (a) If T = aI on ℓ^2 , then p = 1, $\lambda_1 = a/|a|$ (for $a \neq 0$), and $\lambda_2 = 1$ yield the required expression for the diagonals of T, which implies $w(F_T) = 1 + (1/2)||T||$ by Proposition 2.10.

(b) If T = diag(1, -1, 1, -1, ...), then p = 2 and $\lambda_1 = \lambda_2 = -1$ yield the required expression, which results in $w(F_T) = 1 + (1/2) ||T||$.

(c) If T = diag(1, 0, 1, 0, ...), then $w(F_T) < 1 + (1/2)||T||$ since no expression for the diagonals of T as in Proposition 2.10 exists.

(d) If T = diag(1, 1, -1, -1, 1, 1, -1, -1, ...), then $w(F_T) < 1 + (1/2) ||T||$ by Proposition 2.10.

We remark that the example in (a) above appeared before in [3, Theorem 3.5 (a)], (c) in Example 2.2 (b), and the exact value of $w(F_T)$ for T in (d) has been computed in [3, Proposition 3.4].

In the rest of this section, we consider $w(F_T)$ for a diagonal T with nonnegative diagonals. The next theorem gives more conditions for $w(F_T) = 1 + (1/2) ||T||$ to hold.

Theorem 2.12. Let $T = \text{diag}(a_1, a_2, ...)$ with $a_n \ge 0$ for all n. Then the following conditions are equivalent:

- (a) $w(F_T) = 1 + (1/2) ||T||,$
- (b) $||S + S^* + T|| = 2 + ||T||,$
- (c) $w(ST + S^*T) = 2||T||,$
- (d) w(ST + TS) = 2||T||,
- (e) $w(S + TST) = w(S + TS^*T) = 1 + ||T||^2$,
- (f) $w(TST) = ||T||^2$,
- (g) w(ST) = ||T||.

Proof. The equivalence of (a) and (b) follows from [3, Proposition 3.2 (c)]. To prove (b) \Leftrightarrow (c), we use the fact that, for any two operators A and B on the same space, ||A+B|| =||A|| + ||B|| if and only if ||A|| ||B|| is in $\overline{W(A^*B)}$ (cf. [1, Theorem 2.1]). Indeed, the equality in (b) is the same as $||(\operatorname{Re} S) + (1/2)T|| = ||\operatorname{Re} S|| + ||(1/2)T||$, which is equivalent to ||T||being in $\overline{W((\operatorname{Re} S)T)}$ from above or to 2||T|| in $\overline{W(ST+S^*T)}$. Thus $w(ST+S^*T) \ge 2||T||$. Together with $w(ST+S^*T) \le ||ST+S^*T|| \le 2||T||$, this yields $w(ST+S^*T) = 2||T||$, that is, (c) holds. Conversely, if $w(ST+S^*T) = 2||T||$, then, from $ST + S^*T \ge 0$, we have $2||T|| = w(ST+S^*T)$ belonging to $\overline{W(ST+S^*T)}$ by Proposition 1.1 (b). Thus from [1, Theorem 2.1], we obtain the equality in (b). The equivalence of (c) and (d) follows from the following equalities:

$$w(ST + S^*T) = w \left(\operatorname{Re} \left(ST + S^*T \right) \right) = \frac{1}{2} w \left((ST + S^*T) + (TS^* + TS) \right)$$
$$= \frac{1}{2} w \left((ST + TS) + (TS^* + S^*T) \right) = w \left(\operatorname{Re} \left(ST + TS \right) \right) = w(ST + TS),$$

where the first (resp., last) equality is by Proposition 1.1 (b) since $ST + S^*T \succeq 0$ (resp., $ST + TS \succeq 0$). For the equivalence of (a) and (e), note that, by Theorem 2.1, $w(F_T) = 1 + (1/2)||T||$ if and only if $w(S + TS^*T) = 1 + ||T||^2$. However, we also have

$$w(S+TS^*T) = w\left(\operatorname{Re}\left(S+TS^*T\right)\right) = w\left(\operatorname{Re}\left(S+TST\right)\right) = w(S+TST)$$

via Proposition 1.1 (b). Hence (a) and (e) are equivalent.

For the proof of (e) \Rightarrow (f), since $1 + ||T||^2 = w(S + TST) \le w(S) + w(TST) = 1 + w(TST)$, we obtain $||T||^2 \le w(TST)$. Together with $w(TST) \le ||TST|| \le ||T||^2$, this yields (f).

For (f) \Rightarrow (g), since $0 \preccurlyeq TST \preccurlyeq ||T||ST$, we have $||T||^2 = w(TST) \le ||T||w(ST)$ and hence $||T|| \le w(ST)$. Together with $w(ST) \le ||ST|| \le ||T||$, this yields (g).

Finally, we prove the implication $(g) \Rightarrow (d)$. As before, we may assume that ||T|| = 1. Then $0 \le a_n \le 1$ for all n. Let D be the unilateral weighted shift with weights $\{d_n\}_{n=1}^{\infty}$, where $d_n = \sqrt{a_n a_{n+1}}$ for $n \ge 1$. Since ST + TS is also a unilateral weighted shift with weights $\{a_n + a_{n+1}\}_{n=1}^{\infty}$ and $ST + TS \ge 2D \ge 0$, we have $w(ST + TS) \ge 2w(D)$. We now use Lemma 2.8 to prove w(D) = 1. Indeed, condition (g) implies that w(ST) = ||T|| = ||ST|| = 1. Hence ST is normaloid. By Lemma 2.8, for any ε , $0 < \varepsilon < 1$, there is an integer N such that $\sup_{k\ge 1}(a_k a_{k+1} \cdots a_{k+j-1})^{1/j} > 1 - \varepsilon$ for all $j \ge N$. Therefore, for each $j \ge N$, there is a k_j such that $(a_{k_j} a_{k_j+1} \cdots a_{k_j+j-1})^{1/j} > 1 - \varepsilon$. As $0 \le a_n \le 1$ for all n, we have

$$(a_{k_j}a_{k_j+1}\cdots a_{k_j+j-2})^{1/2}, \ (a_{k_j+1}a_{k_j+2}\cdots a_{k_j+j-1})^{1/2} > (1-\varepsilon)^{j/2}.$$

It follows that

$$d_{k_j}d_{k_j+1}\cdots d_{k_j+j-2} = (a_{k_j}a_{k_j+1}^2\cdots a_{k_j+j-2}^2a_{k_j+j-1})^{1/2} > (1-\varepsilon)^j.$$

Therefore, for any $j \ge N$, we have

$$\|D^{j-1}\|^{1/(j-1)} = \sup_{k \ge 1} (d_k d_{k+1} \cdots d_{k+j-2})^{1/(j-1)} \ge (1-\varepsilon)^{j/(j-1)}$$

Hence

$$\rho(D) = \lim_{j \to \infty} \|D^{j-1}\|^{1/(j-1)} = \lim_{j \to \infty} \sup_{k \ge 1} (d_k d_{k+1} \cdots d_{k+j-2})^{1/(j-1)} \ge \lim_{j \to \infty} (1-\varepsilon)^{j/(j-1)} = 1-\varepsilon.$$

As this is true for any ε , $0 < \varepsilon < 1$, we obtain that

$$1 \le \rho(D) \le w(D) \le ||D|| = \sup_{n \ge 1} d_n = \sup_{n \ge 1} \sqrt{a_n a_{n+1}} \le 1.$$

This results in equalities throughout. In particular, we have w(D) = 1 and thus

$$2 = 2w(D) \le w(ST + TS) \le ||ST + TS|| \le ||ST|| + ||TS|| \le 2.$$

Therefore, w(ST + TS) = 2, that is, condition (d) holds as claimed.

Corollary 2.13. Let $T = \text{diag}(a_1, ..., a_n, 1, 1, ...)$ with $a_k \ge 0$ for $1 \le k \le n$. Then $w(F_T) = 1 + (1/2) ||T||$ if and only if $a_k \le 1$ for all k.

Proof. Assume that $w(F_T) = 1 + (1/2) ||T||$ and let $a = \max_{1 \le k \le n} a_k$. We check that $a \le 1$. Indeed, if otherwise a > 1, then we have w(ST) = ||T|| = a from Theorem 2.12 (g) or Theorem 2.4 (b). Let $T' = \text{diag}(\underbrace{a, \ldots, a}_{n}, 1, 1, \ldots)$. Since $0 \preccurlyeq ST \preccurlyeq ST' \preccurlyeq aS$, we obtain $a = w(ST) \le w(ST') \le w(aS) = a$ by Proposition 1.1 (a). It follows that w(ST') = a = ||T'|| = ||ST'|| or ST' is normaloid. Lemma 2.8 then implies that $a = \lim_{j \to \infty} a^{n/j} = 1$, which contradicts our assumption of a > 1. Thus $a_k \le 1$ for all $k, 1 \le k \le n$. The converse is by Example 2.5 (b).

Corollary 2.14. Let $T = \text{diag}(a_1, a_2, ...) \neq 0$ with $a_n = 0$ exactly when $n = n_j$, $1 \leq n_j < n_{j+1}$, for $j \geq 1$. If $w(F_T) = 1 + (1/2) ||T||$, then $\{n_{j+1} - n_j\}_{j=1}^{\infty}$ is unbounded.

Proof. Assume the contrary that $n_{j+1} - n_j \leq M$ for all j. Then we have

$$|a_k a_{k+1} \cdots a_{k+l-1}|^{1/l} = 0$$
 for any $k \ge 1$ and $l \ge \max\{n_1, M\}$.

Thus

$$||ST|| = \sup_{n \ge 1} |a_n| > \lim_{l \to \infty} \sup_{k \ge 1} |a_k a_{k+1} \cdots a_{k+l-1}|^{1/l} = 0.$$

By Lemma 2.8, this says that ST is not normaloid or w(ST) < ||ST|| = ||T||. Hence $w(F_T) < 1 + (1/2)||T||$ by Theorem 2.4 (b). This proves the unboundedness of $\{n_{j+1} - n_j\}_{j=1}^{\infty}$.

Example 2.15. (a) Let $T = \text{diag}(a_1, a_2, ...)$, where $a_n = 0$ if n = k(k+1)/2 for some $k \ge 1$, and $a_n = 1$ otherwise. Then $ST = \sum_{n=1}^{\infty} \oplus S_n$. Thus

$$w(ST) = \sup_{n} w(S_n) = \sup_{n} \cos \frac{\pi}{n+1} = 1 = ||T||$$

(cf. [8, Lemma 2.4.1 (a)]), and $w(F_T) = 1 + (1/2) ||T|| = 3/2$ by Theorem 2.12.

(b) Let $T = \text{diag}(a_1, a_2, ...)$, where

$$a_n = \begin{cases} 0 & \text{if } n = k(k+1)/2 \text{ for some } k \ge 1, \\ 1 & \text{if } n = 2, \\ 1/2 & \text{otherwise.} \end{cases}$$

Then $ST = [0] \oplus S_2 \oplus (1/2) \sum_{n=3}^{\infty} \oplus S_n$. Since

$$w(ST) = \sup\{\frac{1}{2}, \frac{1}{2}\cos\frac{\pi}{n+1} : n \ge 3\} = \frac{1}{2} < 1 = ||T||,$$

we have $w(F_T) < 1 + (1/2)||T|| = 3/2$ by Theorem 2.12. This shows that the converse of the assertion in Corollary 2.14 is false.

Finally, for a nonnegative diagonal T, Theorem 2.6 has the following analogue.

Corollary 2.16. Let $T = \text{diag}(a_1, a_2, \dots)$ with $a_n \ge 0$ for all n, and

$$T_{n,k} = \text{diag}(a_k, a_{k+1}, \dots, a_{k+n}) \text{ for } n, k \ge 1.$$

Then $w(F_T) = 1 + (1/2) ||T||$ if and only if for any $n \ge 1$ there is a sequence $\{n_j\}_{n=1}^{\infty}$ of positive integers such that $\lim_{j\to\infty} T_{n,n_j} = ||T|| I_{n+1}$.

Proof. If $w(F_T) = 1 + (1/2) ||T||$, then Theorem 2.12 (e) yields $w(S + TST) = 1 + ||T||^2$. Hence the asserted condition holds since it is the one in Theorem 2.6 with $\lambda_1 = \lambda_2 = 1$. The converse is also by Theorem 2.6.

3. Lower bound of $w(F_T)$

In this section, we consider conditions on T for $w(F_T)$ to be equal to 1. We start with a sufficient one.

Proposition 3.1. Let $T = T_n \oplus 0$ on ℓ^2 , where T_n is an n-by-n nonnegative symmetric matrix, and let $T_{n+1} = T_n \oplus [1]$ on \mathbb{C}^{n+1} . If $w(S_{n+1} + S_{n+1}^* + T_{n+1}) \leq 2$, then $w(F_T) = 1$.

For its proof, we need the following lemma.

Lemma 3.2. Let T be an operator on ℓ^2 . Then

- (a) $w(F_T) \ge (1/2) \max\{w(S + S^* + \operatorname{Re}(\lambda T)) : |\lambda| = 1\}, and$
- (b) if T is nonnegative symmetric, then $w(F_T) = w(S + S^* + T)/2$.

Note that part (b) here is a generalization of [3, Proposition 3.2 (c)].

Proof. [Proof of Lemma 3.2] (a) For any unit vector x in ℓ^2 , let $y = (\overline{\lambda}x \oplus x)/\sqrt{2}$, where $|\lambda| = 1$. Then y is also a unit vector in $\ell^2 \oplus \ell^2$ and

$$w(F_T) \ge |\langle F_T y, y \rangle| \ge \operatorname{Re} \langle F_T y, y \rangle = \frac{1}{2} \langle (F_T + F_T^*)y, y \rangle$$
$$= \frac{1}{4} \Big\langle \begin{bmatrix} S^* + S & T \\ T^* & S + S^* \end{bmatrix} \begin{bmatrix} \overline{\lambda}x \\ x \end{bmatrix}, \begin{bmatrix} \overline{\lambda}x \\ x \end{bmatrix} \Big\rangle$$
$$= \frac{1}{4} \big(\langle \overline{\lambda}(S^* + S)x + Tx, \overline{\lambda}x \rangle + \langle \overline{\lambda}T^*x + (S + S^*)x, x \rangle \big)$$
$$= \frac{1}{2} \big(\langle (S + S^*)x, x \rangle + \langle (\operatorname{Re} (\lambda T))x, x \rangle \big)$$
$$= \frac{1}{2} \big(\langle S + S^* + \operatorname{Re} (\lambda T) \big)x, x \rangle.$$

Since this is true for any unit vector x and any λ , $|\lambda| = 1$, the asserted inequality holds.

(b) For a nonnegative T, we have $w(F_T) = w(\operatorname{Re} F_T)$ by Proposition 1.1 (b). Let $U = (1/\sqrt{2}) \begin{bmatrix} I & I \\ I & -I \end{bmatrix}$ on $\ell^2 \oplus \ell^2$. Then U is unitary and

$$U^*(\operatorname{Re} F_T)U = \frac{1}{2}U^* \left[\begin{array}{cc} S + S^* & T \\ T & S + S^* \end{array} \right] U = \frac{1}{2} \left[\begin{array}{cc} S + S^* + T & 0 \\ 0 & S + S^* - T \end{array} \right].$$

For any unit vector x in ℓ^2 , we have

$$|\langle (S + S^* - T)x, x \rangle| \le \langle (S + S^* + T)|x|, |x| \rangle \le w(S + S^* + T).$$

This shows that $w(S + S^* - T) \le w(S + S^* + T)$. Thus

$$w(F_T) = w(\operatorname{Re} F_T) = \frac{1}{2} \max\{w(S + S^* + T), w(S + S^* - T)\} = \frac{1}{2}w(S + S^* + T).$$

Proof. [Proof of Proposition 3.1] In the following, we show that $w(S + S^* + T) \leq 2$ and then apply Lemma 3.2 (b). Let $x = (x_1, x_2, ...)$ be any unit vector in ℓ^2 and let

 $x' = (x_1, \ldots, x_{n+1})$ in \mathbb{C}^{n+1} . We have

$$\begin{aligned} |\langle (S+S^*+T)x,x\rangle| &\leq \langle (S+S^*+T)|x|,|x|\rangle \\ &= \langle (S_{n+1}+S_{n+1}^*+T_{n+1})|x'|,|x'|\rangle - |x_{n+1}|^2 + 2\sum_{j=n+1}^{\infty} |x_jx_{j+1}| \\ &\leq 2|||x'|||^2 - |x_{n+1}|^2 + \sum_{j=n+1}^{\infty} (|x_j|^2 + |x_{j+1}|^2) \quad (\text{because } w(S_{n+1}+S_{n+1}^*+T_{n+1}) \leq 2) \\ &= 2\sum_{j=1}^{n+1} |x_j|^2 + 2\sum_{j=n+2}^{\infty} |x_j|^2 = 2||x||^2 = 2. \end{aligned}$$

Hence $w(S + S^* + T) \leq 2$. By Lemma 3.2 (b), we obtain $w(F_T) \leq 1$. As $w(F_T) \geq 1$ is always true, we conclude that $w(F_T) = 1$.

Example 3.3. (a) Let $T = \text{diag}(0, \ldots, 0, a, 0, 0, \ldots)$ with $|a| \leq 1/n$ $(n \geq 1)$. Since $|F_T| \preccurlyeq F_{T'}$ for $T' = \text{diag}(0, \ldots, 0, 1/n, 0, 0, \ldots)$, we have $w(F_T) \leq w(F_{T'})$. We now check that $w(F_{T'}) = 1$. Indeed, if $T'_{n+1} = \text{diag}(0, \ldots, 0, 1/n, 1)$ on \mathbb{C}^{n+1} , then

$$2I_{n+1} - (S_{n+1} + S_{n+1}^* + T_{n+1}') = \begin{bmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & & \\ & \ddots & 2 & -1 & \\ & & -1 & 2 - (1/n) & -1 \\ & & & -1 & 1 \end{bmatrix}.$$

It is easily shown by induction that its *j*th $(1 \le j \le n+1)$ leading principal submatrix,

$$\begin{bmatrix} 2 & -1 & & \\ -1 & 2 & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{bmatrix} (1 \le j \le n-1), \begin{bmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & 2 & -1 \\ & & -1 & 2 - (1/n) \end{bmatrix} (j=n),$$

or $2I_{n+1} - (S_{n+1} + S_{n+1}^* + T'_{n+1})$ (j = n + 1), has determinant j + 1, n, or 0, respectively. Thus $2I_{n+1} - (S_{n+1} + S_{n+1}^* + T'_{n+1}) \ge 0$ by Sylvester's criterion [7, Theorem 7.2.5 (c)]. Hence $w(S_{n+1} + S_{n+1}^* + T'_{n+1}) \le 2$ and $w(F_{T'}) = 1$ by Proposition 3.1. It follows that $w(F_T) = 1$.

(b) Let T = diag(a, a, 0, 0, ...) with $|a| \le (3 - \sqrt{5})/2$. Then, as in (a) above, we may assume that $a = (3 - \sqrt{5})/2$ and infer that

$$S_3 + S_3^* + T_3' = \begin{bmatrix} a & 1 & 0 \\ 1 & a & 1 \\ 0 & 1 & 1 \end{bmatrix} \le 2I_3,$$

where $T'_3 = \text{diag}(a, a, 1)$. Hence $w(F_T) = 1$ by Proposition 3.1.

We remark that part (a) above also follows from [4, Proposition 2.7 and Theorem 2.8].

In the remaining part of this section, we consider the relationship between $w(F_T) = 1$ and the compactness of T. Recall that, for a compact T, it is known that $w(F_T) = 1 + (1/2) ||T||$ if and only if T = 0. The next theorem says that, for a diagonal T, $w(F_T) = 1$ implies the compactness of T.

Theorem 3.4. Let $T = \text{diag}(a_1, a_2, \dots)$. If $w(F_T) = 1$, then T is compact.

The following lemma is needed for its proof.

Lemma 3.5. If $T = \text{diag}(a_1, a_2, ...)$, then $||S + S^* + T|| \ge 2$.

Proof. Note that $||S + S^* + T|| = 2w(\operatorname{Re} F_{T'})$, where $T' = \operatorname{diag}(\overline{a}_1, a_2, \overline{a}_3, a_4, \ldots)$, by [3, Proposition 3.2 (a)]. Since $W(F_{T'}) \supseteq \mathbb{D}$, we have $w(\operatorname{Re} F_{T'}) \ge 1$. Thus $||S + S^* + T|| \ge 2$ as asserted.

Proof. [Proof of Theorem 3.4] We claim that if the a_n 's are real and $||S + S^* + T|| = 2$, then T is compact. For this, we first assume that $a_n \ge 0$ for all n. Let $T_n = \text{diag}(0, \ldots, 0, a_n, 0, 0, \ldots)$ for $n \ge 1$. Since $0 \preccurlyeq S + S^* + T_n \preccurlyeq S + S^* + T$, we have

$$2 \le ||S + S^* + T_n|| = w(S + S^* + T_n) \le w(S + S^* + T) = ||S + S^* + T|| = 2$$

by Lemma 3.5 and Proposition 1.1 (a). Thus the above inequalities become equalities throughout, which yield that $w(S + S^* + T_n) = 2$ for all $n \ge 1$. By Lemma 3.2 (b), we have $w(F_{T_n}) = 1$. Hence [4, Proposition 2.7 and Theorem 2.8] yields that $|a_n| \le 1/n$ for all n. The compactness of T for this case follows.

Now assume that the a_n 's are all real. Let $C = S + S^* + T$ and, for each $n \ge 2$, let

$$C_{2n} = \begin{bmatrix} a_1 & 1 & & \\ 1 & a_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & a_{2n} \end{bmatrix}$$

be the (2n)-by-(2n) leading principal submatrix of C. Note that ||C|| = 2 by our assumption. We rearrange the standard basis $\{e_j\}_{j=1}^{2n}$ of \mathbb{C}^{2n} via the permutation $(1, 2, \ldots, 2n) \rightarrow (1, 3, \ldots, 2n - 1, 2, 4, \ldots, 2n)$. Then C_{2n} is permutationally similar to the matrix

$$C'_{2n} = \begin{bmatrix} D'_{2n} & I_n + S_n \\ I_n + S_n^* & D''_{2n} \end{bmatrix},$$

where $D'_{2n} = \text{diag}(a_1, a_3, \dots, a_{2n-1})$ and $D''_{2n} = \text{diag}(a_2, a_4, \dots, a_{2n})$. Then $C'^2_{2n} = \begin{bmatrix} E_n & * \\ * & F_n \end{bmatrix}$, where

$$E_n = D_{2n}^{\prime 2} + (I_n + S_n)(I_n + S_n^*) = \begin{bmatrix} 1 + a_1^2 & 1 & & \\ 1 & 2 + a_3^2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2 + a_{2n-1}^2 \end{bmatrix}$$

and

$$F_n = D_{2n}^{\prime\prime 2} + (I_n + S_n^*)(I_n + S_n) = \begin{bmatrix} 2 + a_2^2 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & 2 + a_{2n-2}^2 & 1 \\ & & 1 & 1 + a_{2n}^2 \end{bmatrix}.$$

Let

$$E'_{n} = \begin{bmatrix} 2+a_{3}^{2} & 1 & & \\ 1 & 2+a_{5}^{2} & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2+a_{2n-1}^{2} \end{bmatrix}.$$

Then

$$w(E'_n) = ||E'_n|| \le ||E_n|| \le ||C'^2_{2n}|| = ||C'_{2n}||^2 = ||C_{2n}||^2 \le ||C||^2 = 4$$

for all $n \geq 2$. Let $T' = \text{diag}(a_3^2, a_5^2, a_7^2, ...)$ and $C' = S + S^* + T'$. Since E'_n is the (n-1)by-(n-1) leading principal submatrix of C' + 2I, we have $w(C' + 2I) = \lim_n w(E'_n) \leq 4$. Note that $C' \geq 0$ implies that $w(C') = \|C'\|$ is in $\overline{W(C')}$ by Proposition 1.1 (b). Hence w(C' + 2I) = w(C') + 2 by [1, Theorem 2.1]. It follows that $w(C') \leq 2$. On the other hand, we also have $w(C') = \|C'\| \geq 2$ by Lemma 3.5. This shows that w(C') = 2. As T'has nonnegative diagonals, the first paragraph of our proof yields that $\lim_n a_{2n+1} = 0$. In a similar fashion, considering

$$F'_{n} = \begin{bmatrix} 2+a_{2}^{2} & 1 & & \\ 1 & 2+a_{4}^{2} & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 2+a_{2n-2}^{2} \end{bmatrix}$$

instead of E'_n and following the arguments as above, we also obtain $\lim_n a_{2n} = 0$. These together prove our claim of the compactness of T.

Finally, for the general case of complex a_n 's, we have

 $2 \le ||S + S^* + \operatorname{Re} T|| = w(S + S^* + \operatorname{Re} T) \le 2w(F_T) = 2$

by Lemmas 3.5 and 3.2 (a). This shows that $||S + S^* + \operatorname{Re} T|| = 2$. From our claim in the beginning of the proof, we obtain $\lim_n \operatorname{Re} a_n = 0$. Similarly, as $\operatorname{Im} T = \operatorname{Re}(-iT)$, the above arguments also result in $\lim_n \operatorname{Im} a_n = 0$. Hence $\lim_n a_n = 0$ and T is compact.

The next proposition is in contrast to the known result that if $T = \text{diag}(1, a, a^2, ...)$ with |a| = 1, then $w(F_T) = 3/2$ and $W(F_T)$ is open but not a circular disc (cf. [3, Corollary 3.6]).

Proposition 3.6. Let $T = \text{diag}(1, a, a^2, ...)$ with |a| < 1. Then the following are equivalent:

- (a) $w(F_T) = 1$,
- (b) a = 0,
- (c) $W(F_T) = \mathbb{D}$,
- (d) $W(F_T)$ is open, and
- (e) $||C_{\lambda}|| = 2$ for all λ , $|\lambda| = 1$, where $C_{\lambda} = S + S^* + T_{\lambda}$ with $T_{\lambda} = \text{diag}(1, \lambda^2 a, \overline{\lambda}^4 \overline{a}^2, \dots)$.

The proofs of some equivalences here need the following two lemmas. In the first one, $W_e(A)$ denotes the essential numerical range of operator A on an infinite-dimensional space (cf. [8, Section 4.2]).

Lemma 3.7. Let T be a compact operator on ℓ^2 . Then $W(F_T)$ is open if and only if $W(F_T) = \mathbb{D}$.

Proof. If $W(F_T)$ is open, then $\overline{W(F_T)} = W_e(F_T) = W_e(S^* \oplus S) = \overline{\mathbb{D}}$, where the first equality is by [8, Corollary 4.5.5]. Since $W(F_T)$ already contains \mathbb{D} , we obtain $W(F_T) = \mathbb{D}$.

Lemma 3.8. Let $T = \text{diag}(a_1, a_2, \ldots)$. Then $w(F_T) = 1$ if and only if $||C_{\lambda}|| = 2$ for all λ , $|\lambda| = 1$, where $C_{\lambda} = S + S^* + T_{\lambda}$ with $T_{\lambda} = \text{diag}(\overline{a}_1, \lambda^2 a_2, \overline{\lambda}^4 \overline{a}_3, \ldots)$.

Proof. It was proved in [3, Proposition 3.2 (a)] that $w(\operatorname{Re}(\lambda F_T)) = (1/2) \|C_{\lambda}\|$ for any λ , $|\lambda| = 1$, and hence $w(F_T) = (1/2) \max\{\|C_{\lambda}\| : |\lambda| = 1\}$. If $w(F_T) = 1$, then, as $W(F_T) \supseteq \mathbb{D}$, we have $\overline{W(F_T)} = \overline{\mathbb{D}}$. Thus $1 = w(\operatorname{Re}(\lambda F_T)) = (1/2) \|C_{\lambda}\|$ or $\|C_{\lambda}\| = 2$ for all λ , $|\lambda| = 1$. The converse follows from $w(F_T) = (1/2) \max\{\|C_{\lambda}\| : |\lambda| = 1\}$.

Proof. [Proof of Proposition 3.6] (a) \Rightarrow (b). Let $a = \lambda_0 |a|$ for some λ_0 with $|\lambda_0| = 1$. If λ is such that $\lambda^2 \lambda_0 = 1$, then λF_T is unitarily similar to $F_{|T|}$ by [3, Lemma 3.1 (a)]. Hence we may assume that $w(F_T) = 1$ with $T = \text{diag}(1, a, a^2, ...), 0 \leq a < 1$. For any t, 0 < t < 1, let $x_t = \sqrt{1 - t^2}(1, t, t^2, ...)$ in ℓ^2 . Then x_t is a unit vector, $\langle Sx_t, x_t \rangle = \langle S^*x_t, x_t \rangle = t$, and $\langle Tx_t, x_t \rangle = (1 - t^2)/(1 - at^2)$. Assuming that 0 < a < 1, we show that $\langle (S + S^* + T)x_{t_0}, x_{t_0} \rangle > 2$ for some t_0 , $0 < t_0 < 1$. Indeed, this asserted inequality is the same as $2t_0 + (1 - t_0^2)/(1 - at_0^2) > 2$ or $2at_0^2 + t_0 - 1 > 0$. For 0 < a < 1, we have $0 < (-1 + \sqrt{1 + 8a})/(4a) < 1$. Thus if t_0 is such that $(-1 + \sqrt{1 + 8a})/(4a) < t_0 < 1$, then $0 < t_0 < 1$ and $2at_0^2 + t_0 - 1 > 0$, which means that t_0 meets our requirement that $\langle (S + S^* + T)x_{t_0}, x_{t_0} \rangle > 2$. Hence $w(S + S^* + T) > 2$ and $w(F_T) = (1/2) \max\{ ||C_\lambda|| : |\lambda| = 1\} > 1$. This contradicts our assumption that $w(F_T) = 1$ and thus a must be 0.

 $(b)\Rightarrow(c)$ was shown in [4, Proposition 2.7], $(c)\Leftrightarrow(d)$ (resp., $(a)\Leftrightarrow(e)$) is by Lemma 3.7 (resp., Lemma 3.8), and $(c)\Rightarrow(a)$ is trivial. Thus the proof is completed.

In the preceding proposition, the equivalence of (a) and (b) can also be proved by using [4, Lemma 2.3 (d)]. This is given below.

Proof. [Alternative proof of Proposition 3.6 (a) \Leftrightarrow (b)] As in the previous proof, we may assume that $0 \leq a < 1$. Let $C = S + S^* + T$. As $T \succeq 0$, (a) is equivalent to w(C) = ||C|| = 2 (cf. [3, Proposition 3.2 (c)]). Hence [4, Lemma 2.3 (d)] says that the latter is equivalent to the sequence $\{b_n\}_{n=1}^{\infty}$ defined by $b_1 = 1$ and $b_n = 1/(2 - a^{n-1} - b_{n-1})$ for $n \geq 2$ satisfying $1/2 \leq b_n \leq 1$ for all n. In particular, this latter condition implies that $1/2 \leq b_2 = 1/(1-a) \leq 1$ or that a = 0. This proves (a) \Rightarrow (b). For the converse, if a = 0, then $b_n = 1/(2 - b_{n-1})$ for $n \geq 2$. Hence $b_n = 1$ for all n by induction. Therefore, $w(F_T) = 1$ follows.

We end this paper with the question: Does $w(F_T) = 1$ imply the compactness of T? By Theorem 3.4, the answer is affirmative for a diagonal T.

Declaration of competing interest

No competing interest.

Acknowledgements.

Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo; his research was partially supported by the Simons Foundation Grant 851334. The researches of H.-L. Gau and K.-Z. Wang were partially supported by National Science and Technology Council of the Republic of China under projects MOST 111-2115-M-008-004 and MOST 110-2115-M-A49-009-MY2, respectively.

References

- M. Barraa, M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130 (2002) 273–286.
- [2] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964) 788–790.
- [3] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Numerical ranges of Foguel operators, Linear Algebra Appl. 610 (2021) 766–784.
- [4] H.-L. Gau, K.-Z. Wang, P. Y. Wu, Numerical range of the Foguel–Halmos operator, Studia Math. 263 (2022) 267–291.
- [5] P. R. Halmos, On Foguel's answer to Nagy's problem, Proc. Amer. Math. Soc. 15 (1964) 791–793.
- [6] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- [7] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
- [8] P. Y. Wu, H.-L. Gau, Numerical Ranges of Hilbert Space Operators, Cambridge University Press, Cambridge, 2021.
- [9] S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math. Anal. 9 (2015) 173–193.