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Abstract

For any operator T on ℓ2, its associated Foguel operator FT is
[
S∗
0

T
S

]
on ℓ2⊕ℓ2, where S is

the (simple) unilateral shift. It is easily seen that the numerical radius w(FT ) of FT satisfies

1 ≤ w(FT ) ≤ 1 + (1/2)∥T∥. In this paper, we study when such upper and lower bounds of

w(FT ) are attained. For the upper bound, we show that w(FT ) = 1+ (1/2)∥T∥ if and only

if w(S + T ∗S∗T ) = 1 + ∥T∥2. When T is a diagonal operator with nonnegative diagonals,

we obtain, among other results, that w(FT ) = 1+(1/2)∥T∥ if and only if w(ST ) = ∥T∥. As

for the lower bound, it is shown that any diagonal T with w(FT ) = 1 is compact. Examples

of various T ’s are given to illustrate such attainments of w(FT ).
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1. Introduction

A Foguel operator FT is one of the form
[
S∗
0

T
S

]
, where T is some operator on ℓ2

and S is the unilateral shift S(a1, a2, . . .) = (0, a1, a2, . . .) on ℓ2. Such operators were

first considered by Foguel [2] as an example of a power-bounded operator not similar to

a contraction (cf. also [5]). The numerical range W (A) of a (bounded linear) operator A

on a complex Hilbert space H is the subset {⟨Ax, x⟩ : x ∈ H, ∥x∥ = 1} of the complex

plane, where ⟨·, ·⟩ is the inner product in H and ∥ · ∥ its associated norm, and the numerical

radius w(A) is sup{|z| : z ∈ W (A)}. After some preliminary results below, including the

inequalities 1 ≤ w(FT ) ≤ 1+ (1/2)∥T∥ for w(FT ), we consider in subsequent sections when

such upper and lower bounds are attained. We start with the upper bound in Section

2. It is shown that w(FT ) = 1 + (1/2)∥T∥ if and only if w(S + T ∗S∗T ) = 1 + ∥T∥2

(Theorem 2.1). For a diagonal operator T = diag (a1, a2, . . . ), the attainment for the upper
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bound can be expressed in terms of the diagonal entries of T . One such condition is the

existence, for each n ≥ 1, of positive integers nj , j ≥ 1, with 1 ≤ n1 < n2 < · · · such

that limj Tn,nj = λ1∥T∥diag (1, λ2, . . . , λ
n
2 ) for some λ1 and λ2 satisfying |λ1| = |λ2| = 1,

where Tn,nj = diag (anj , anj+1, . . . , anj+n) for each j (Theorem 2.6). A necessary condition

for w(FT ) = 1 + (1/2)∥T∥ is the normaloidity of the unilateral weighted shift ST , that is,

ST satisfies w(ST ) = ∥ST∥ (Theorem 2.4 (b)). If an ≥ 0 for all n, then, the condition

w(ST ) = ∥ST∥ is also sufficient, and is equivalent to several other numerical radius and

norm equality conditions (Theorem 2.12). In Section 3, we move to consider the attainment

of the lower bound for w(FT ). For a diagonal T , we show that the condition w(FT ) = 1

implies that T is compact (Theorem 3.4). In particular, if T = diag (1, a, a2, . . . ) with

|a| < 1, then w(FT ) = 1 is equivalent to a = 0 (Proposition 3.6).

For an operator A, σ(A) and ρ(A) denote its spectrum and spectral radius, and ReA

and ImA its real part (A + A∗)/2 and imaginary part (A − A∗)/(2i), respectively. The

identity operator (resp., zero operator) on a space is denoted by I (resp., 0). If the space

is identified as Cn, then they are denoted by In and 0n, respectively. An operator A is

positive semidefinite, denoted by A ≥ 0, if ⟨Ax, x⟩ ≥ 0 for all vectors x. A real matrix

A = [aij ]
n
i,j=1, 1 ≤ n ≤ ∞, is nonnegative, denoted by A ≽ 0, if aij ≥ 0 for all i and j.

For two real matrices A and B of the same size, A ≼ B means that B − A ≽ 0. For any

m-by-n (complex) matrix A = [aij ], |A| denotes the nonnegative matrix [|aij |]. We use Sn

to denote the n-by-n matrix 
0

1 0
. . .

. . .

1 0


and D the open unit disc {z ∈ C : |z| < 1}. For any real t, ⌊t⌋ is the largest integer smaller

than or equal to t.

Properties of the numerical range and numerical radius can be found in [8]. For prop-

erties of operators and finite matrices in general, consult [6] and [7], respectively.

To conclude this section, we give some basic properties of nonnegative matrices and

Foguel operators for easier later reference.

Proposition 1.1. Let A be an n-by-n matrix (1 ≤ n ≤ ∞).

(a) If B is a real matrix of the same size as A and |A| ≼ B, then w(A) ≤ w(B).

(b) If A ≽ 0, then w(A) = w(ReA) and w(A) ∈ W (A).

Proof. (a) If x is any unit vector, then so is |x|. We infer from

|⟨Ax, x⟩| ≤ ⟨|A||x|, |x|⟩ ≤ ⟨B|x|, |x|⟩ ≤ w(B)
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that w(A) ≤ w(B).

(b) From A ≽ 0, we have |Re (λA)| ≼ ReA for any λ, |λ| = 1. Hence w
(
Re (λA)

)
≤

w(ReA) by (a). It follows that w(A) = max{w
(
Re (λA)

)
: |λ| = 1} ≤ w(ReA). On the

other hand, the inequality w(ReA) ≤
(
w(A)+w(A∗)

)
/2 = w(A) also holds. These together

prove that w(A) = w(ReA).

To show that w(A) ∈ W (A), let {xk}∞k=1 be a sequence of unit vectors such that

limk |⟨Axk, xk⟩| = w(A). Passing to a subsequence, we may assume that ⟨A|xk|, |xk|⟩ con-

verges, say, to a. From |⟨Axk, xk⟩| ≤ ⟨A|xk|, |xk|⟩ for all k, we obtain w(A) ≤ a. Since a is

in W (A), we also have a ≤ w(A). Hence w(A) = a is in W (A). ■

Proposition 1.2. Let T be an operator on ℓ2. Then (a) 1 ≤ w(Fn
T ) ≤ 1 + (n/2)∥T∥ for

n ≥ 1, and (b) σ(FT ) = D.

Proof. (a) As

Fn
T =

[
S∗n ∑n−1

j=0 S
∗jTSn−1−j

0 Sn

]
,

we obtain W (Fn
T ) ⊇ W (S∗n) = W (S∗) = D by the fact that S∗n is unitarily similar to S∗

together with [8, Lemma 1.4.2]. Thus w(Fn
T ) ≥ 1. On the other hand, we also have

w(Fn
T ) ≤ w

([
S∗n 0

0 Sn

])
+ w

([
0

∑n−1
j=0 S

∗jTSn−1−j

0 0

])
= 1 +

1

2
∥
n−1∑
j=0

S∗jTSn−1−j∥ ≤ 1 +
1

2

n−1∑
j=0

∥S∗jTSn−1−j∥

≤ 1 +
1

2

n−1∑
j=0

∥T∥ = 1 +
n

2
∥T∥,

where we used the fact that w
( [0

0
A
0

] )
= ∥A∥/2 (cf. [8, Corollary 2.1.3 (a)]).

(b) To prove σ(FT ) = D, we deduce from above that

ρ(FT ) = lim
n→∞

w(Fn
T )

1/n ≤ lim
n→∞

(1 +
n

2
∥T∥)1/n = 1,

where the first equality is by [8, Proposition 1.5.1 (g)]. Thus σ(FT ) ⊆ D. For the converse

containment, let z be a point not in σ(FT ). Then FT − zI is invertible. If
[
A
C

B
D

]
is its

inverse, then [
A B

C D

][
S∗ − zI T

0 S − zI

]
=

[
I 0

0 I

]
,

from which follows A(S∗− zI) = I. This shows that S∗− zI is left invertible. Thus z is not

in D, the left spectrum of S∗ (cf. [6, Solution 82]). Therefore, σ(FT ) ⊇ D. Our assertion

follows. ■
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The bounds for w(Fn
T ) in the preceding proposition are due to Kittaneh by private

communication.

2. Upper bound of w(FT )

As seen from Proposition 1.2 (a), we have 1 ≤ w(FT ) ≤ 1 + (1/2)∥T∥ for any operator

T on ℓ2. The next theorem gives some general conditions for the attainment of this upper

bound of w(FT ).

Theorem 2.1. The following conditions are equivalent for any operator T on ℓ2:

(a) w(FT ) = 1 + (1/2)∥T∥,

(b) there is a sequence of unit vectors {yn}∞n=1 in ℓ2 and a complex number λ, |λ| = 1,

such that limn⟨
(
Re (λS)

)
yn, yn⟩ = 1 and limn⟨

(
Re (λS)

)
Tyn, Tyn⟩ = ∥T∥2,

(c) w(S + T ∗S∗T ) = 1 + ∥T∥2.

Proof. (a)⇒(b). Note that (a) implies that there are sequences of unit vectors {xn}
and {yn} in ℓ2, a sequence {tn} in [0, 2π], and a sequence {λn} with |λn| = 1 such that

zn =
(
(cos tn)xn, (sin tn)yn

)
in ℓ2⊕ℓ2 satisfies limn λn⟨FT zn, zn⟩ = 1+(1/2)∥T∥. Passing to

subsequences, we may assume that {⟨S∗xn, xn⟩}, {⟨Syn, yn⟩}, {⟨Tyn, xn⟩}, {tn}, and {λn}
all converge. Let limn tn = t in [0, 2π] and limn λn = λ. We may further assume that zn =(
(cos t)xn, (sin t)yn

)
for all n and limn⟨FT zn, zn⟩ = λ

(
1+ (1/2)∥T∥

)
. If limn⟨S∗xn, xn⟩ = a,

limn⟨Syn, yn⟩ = b, and limn(cos t · sin t)⟨Tyn, xn⟩ = c, then

(1) lim
n
⟨FT zn, zn⟩ = (cos2 t)a+ (sin2 t)b+ c = λ(1 +

1

2
∥T∥).

It is easy to see that |a|, |b| ≤ 1 and hence |(cos2 t)a + (sin2 t)b| ≤ 1. Similarly, we have

|c| ≤ ∥T∥/2. We deduce from (1) that the latter two inequalities must actually be equalities:

(2) |(cos2 t)a+ (sin2 t)b| = 1 and |c| = 1

2
∥T∥.

From the first one, we obtain |a| = |b| = 1. As (cos2 t)a+ (sin2 t)b is a convex combination

of a and b, the equalities |(cos2 t)a+ (sin2 t)b| = |a| = |b| = 1 yield that a = b = (cos2 t)a+

(sin2 t)b. From (1), we obtain

(3) a+ c = λ(1 +
1

2
∥T∥).

Hence

1 +
1

2
∥T∥ = |a+ c| ≤ |a|+ |c| = 1 + |c| = 1 +

1

2
∥T∥
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by (3) and (2). This gives |a+ c| = |a|+ |c|. Thus c = sa for some s ≥ 0 or |c| = s|a| = s.

We infer from (3) and (2) that

λ(1 +
1

2
∥T∥) = a+ c = a+ sa = a+ |c|a = a(1 + |c|) = a(1 +

1

2
∥T∥).

Therefore, we obtain a = λ and c = |c|a = |c|λ = λ∥T∥/2. These yield limn⟨S∗xn, xn⟩ =
limn⟨Syn, yn⟩ = λ and limn(cos t · sin t)⟨Tyn, xn⟩ = λ∥T∥/2, from which we deduce that

limn⟨
(
Re (λS)

)
xn, xn⟩ = limn⟨

(
Re (λS)

)
yn, yn⟩ = 1 and cos t sin t = 1/2. Hence limn⟨Tyn, xn⟩ =

λ∥T∥. As

0 ≤ lim
n

∥∥Tyn − λ∥T∥xn
∥∥2

= lim
n

(
∥Tyn∥2 − 2Re (λ∥T∥⟨Tyn, xn⟩) + |λ|2∥T∥2∥xn∥2

)
= lim

n
(∥Tyn∥2 − ∥T∥2) ≤ 0,

we have limn ∥Tyn−λ∥T∥xn∥ = 0. Finally, replacing Tyn by λ∥T∥xn in ⟨
(
Re (λS)

)
Tyn, Tyn⟩,

taking the limit, and using limn⟨
(
Re (λS)

)
xn, xn⟩ = 1, we conclude that limn⟨

(
Re (λS)

)
Tyn, T yn⟩ =

∥T∥2, completing the proof.

(b)⇒(c). Note that

w(S + T ∗S∗T ) ≤ ∥S + T ∗S∗T∥ ≤ ∥S∥+ ∥T ∗S∗T∥ ≤ 1 + ∥T∥2.

On the other hand, (b) implies that limn

〈(
Re (λ(S + T ∗S∗T ))

)
yn, yn⟩ equals

lim
n

(
⟨(Re (λS))yn, yn⟩+ ⟨T ∗(Re (λS∗))Tyn, yn⟩

)
= 1 + ∥T∥2.

Hence

1 + ∥T∥2 ≤ w
(
Re (λ(S + T ∗S∗T ))

)
≤ w

(
λ(S + T ∗S∗T )

)
= w(S + T ∗S∗T ).

Therefore, w(S + T ∗S∗T ) = 1 + ∥T∥2 holds.

(c)⇒(a). From (c), we argue as in the proof of (a)⇒(b) to obtain a sequence of unit

vectors {yn} and a complex number λ with |λ| = 1 such that limn⟨(S + T ∗S∗T )yn, yn⟩ =
λ(1+∥T∥2). As before, this yields limn⟨Syn, yn⟩ = λ and limn⟨S∗Tyn, T yn⟩ = λ∥T∥2. Since
|⟨S∗Tyn, T yn⟩| ≤ ∥S∗Tyn∥∥Tyn∥ ≤ ∥Tyn∥2 ≤ ∥T∥2 for all n, we have limn ∥Tyn∥ = ∥T∥.
Let xn = Tyn/∥Tyn∥ in ℓ2 and zn = (1/

√
2)(xn, yn) in ℓ2 ⊕ ℓ2. Then ∥zn∥ = 1 for all n and

lim
n
⟨FλT zn, zn⟩ =

1

2
lim
n
(⟨S∗xn, xn⟩+ ⟨Syn, yn⟩+ λ⟨Tyn, xn⟩)

=
1

2
lim
n

( 1

∥Tyn∥2
⟨S∗Tyn, T yn⟩+ ⟨Syn, yn⟩+

λ

∥Tyn∥
⟨Tyn, T yn⟩

)
=

1

2

( 1

∥T∥2
λ∥T∥2 + λ+

λ

∥T∥
∥T∥2

)
= λ(1 +

1

2
∥T∥).
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It follows that 1+(1/2)∥T∥ = limn |⟨FλT zn, zn⟩| ≤ w(FλT ) = w(FT ), where the last equality

is a consequence of the unitary similarity of FλT and FT :[
S∗ λT

0 S

]
=

[
I 0

0 λI

][
S∗ T

0 S

][
I 0

0 λI

]
.

Since w(FT ) ≤ 1 + (1/2)∥T∥ always holds, this proves (a). ■

The following examples are easy consequences of the preceding theorem. The first one

appeared before in [3, Corollary 2.9].

Example 2.2. (a) If T = S, then w(FT ) = 1 + (1/2)∥T∥ = 3/2 since

w(S + S∗S∗S) = w(S + S∗) = 2w(ReS) = 2 = 1 + ∥S∥2.

(b) If T = diag (1, 0, 1, 0, . . . ), then w(FT ) < 1 + (1/2)∥T∥ since T ∗S∗T = 0 and hence

w(S + T ∗S∗T ) = w(S) = 1 < 1 + ∥T∥2.

Corollary 2.3. Let S be the set of all T ’s on ℓ2 which satisfy w(FT ) = 1 + (1/2)∥T∥.

(a) For any nonzero complex number z, T is in S if and only if zT is.

(b) Let A = diag (1, a, a2, . . . ), where |a| = 1. Then T is in S if and only if A∗TA∗ is.

Proof. (a) is an easy consequence of Theorem 2.1 (b).

(b) Since A is unitary, A∗S∗A = aS∗, and ASA∗ = aS, we have

(A∗ ⊕A)FT (A⊕A∗) =

[
aS∗ A∗TA∗

0 aS

]
= a

[
S∗ aA∗TA∗

0 S

]
= aFaA∗TA∗ .

The assertion then follows from (a). ■

We now consider w(FT ) for a diagonal operator T .

Theorem 2.4. Let T = diag (a1, a2, . . . ).

(a) w(FT ) = 1 + (1/2)∥T∥ if and only if w(S + λT ∗ST ) = 1 + ∥T∥2 for some λ, |λ| = 1.

(b) If w(FT ) = 1 + (1/2)∥T∥, then w(ST ) = ∥T∥.

Note that the converse of the implication in (b) is in general false. One example is

T = diag (1, 1,−1,−1, 1, 1,−1,−1, . . . ). Since ST is unitarily similar to S, we have w(ST ) =

w(S) = 1 = ∥T∥, but w(FT ) =
√
5 + 2

√
2/2 < 3/2 by [3, Proposition 3.4].

Proof. [Proof of Theorem 2.4] (a) By Theorem 2.1, we need only prove

w(S + T ∗S∗T ) = w(S + λT ∗ST ) for some λ hboxwith |λ| = 1.
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Indeed, we have w(S + T ∗S∗T ) = max{w
(
Re (λ(S + T ∗S∗T ))

)
: |λ| = 1} and

w
(
Re (λ(S + T ∗S∗T ))

)
= w

(
Re (λS) + Re (λT ∗ST )

)
= w(S + λ

2
T ∗ST ),

where the last equality follows from the fact that

S + λ
2
T ∗ST =


0

1 + λ
2
a1a2 0

1 + λ
2
a2a3 0

. . .
. . .


is a unilateral weighted shift whose numerical range is an (open or closed) circular disc

centered at the origin. Thus

w(S + T ∗S∗T ) = max{w(S + λ
2
T ∗ST ) : |λ| = 1} = max{w(S + λT ∗ST ) : |λ| = 1}

= w(S + λT ∗ST )

for some λ, |λ| = 1.

(b) If w(FT ) = 1 + (1/2)∥T∥, then w(S + T ∗S∗T ) = 1 + ∥T∥2 by Theorem 2.1. Hence

1 + ∥T∥2 ≤ w(S) + w(T ∗S∗T ) ≤ 1 + w(|T ∗|S∗)∥T∥

= 1 + w(T ∗S∗)∥T∥ ≤ 1 + ∥T ∗S∗∥∥T∥ ≤ 1 + ∥T∥2,

where the second inequality follows from |T ∗S∗T | ≼ |T ∗|S∗∥T∥ (cf. Proposition 1.1 (a)),

and the equality w(|T ∗|S∗) = w(T ∗S∗) follows from the unitary similarity of |T ∗|S∗ and

T ∗S∗. This yields equalities throughout and, in particular, w(ST ) = w(T ∗S∗) = ∥T∥
holds. ■

The next two examples illustrate the usefulness of the preceding theorem. The first

appeared before in [3, Corollary 3.6].

Example 2.5. (a) Let T = diag (1, a, a2, . . . ), where |a| = 1. Then w(FT ) = 1+(1/2)∥T∥ =

3/2 since w(S + aT ∗ST ) = w(S + S) = 2 = 1 + ∥T∥2.
(b) Let T = diag (a1, a2, . . . ) with limn an = a and |a| = ∥T∥. Then w(FT ) = 1 +

(1/2)∥T∥ since, in this case, S + T ∗ST is a unilateral weighted shift with weights {1 +

anan+1}∞n=1 satisfying limn |1 + anan+1| = 1 + |a|2 and hence w(S + T ∗ST ) = 1 + |a|2 =

1 + ∥T∥2 by [8, Proposition 2.4.2].

For a diagonal T , the condition in Theorem 2.4 (a) involves the numerical radius of

the unilateral weighted shift S + λT ∗ST . In the following, we express the condition for

w(FT ) = 1 + (1/2)∥T∥ in terms of the diagonals of T more explicitly.

7



Theorem 2.6. Let T = diag (a1, a2, . . . ) on ℓ2 and Tn,k = diag (ak, ak+1, . . . , ak+n) on

Cn+1 for n, k ≥ 1. Then w(FT ) = 1 + (1/2)∥T∥ if and only if for any n ≥ 1 there

are integers 1 ≤ n1 < n2 < · · · such that limj→∞ Tn,nj = λ1∥T∥diag (1, λ2, . . . , λ
n
2 ) for

some λ1 and λ2 with |λ1| = |λ2| = 1. Moreover, in this case, λ2 can be chosen to satisfy

w(S + λ2T
∗ST ) = 1 + ∥T∥2.

The proof is facilitated by the next proposition on unilateral weighted shift.

Proposition 2.7. Let

A =


0

w1 0

w2 0
. . .

. . .

 on ℓ2

and

An,k =



0

wk 0

wk+1 0
. . .

. . .

wk+n−1 0


on Cn+1 for n, k ≥ 1.

Then max{w(S + λA) : |λ| = 1} = 1 + ∥A∥ if and only if for any n ≥ 1 there are integers

1 ≤ n1 < n2 < · · · such that limj→∞An,nj = λ0∥A∥Sn+1 for some λ0, |λ0| = 1. Moreover,

λ0 may be chosen to satisfy w(S + λ0A) = 1 + ∥A∥.

An operator A is normaloid if it satisfies w(A) = ∥A∥. For a unilateral weighted shift,

normaloidity can be characterized in terms of its weights (cf. [9, Theorem 4.6] or [8, Problem

3.4]).

Lemma 2.8. A unilateral weighted shift with weights {wn}∞n=1 is normaloid if and only if

supn≥1 |wn| = limj→∞ supk≥1 |wkwk+1 · · ·wk+j−1|1/j.

Proof. [Proof of Proposition 2.7] First assume that max{w(S + λA) : |λ| = 1} =

1 + ∥A∥. Let λ0, |λ0| = 1, be such that w(S + λ0A) = 1 + ∥A∥. Then ∥S + λ0A∥ ≤
1 + ∥A∥ = w(S + λ0A), which implies that w(S + λ0A) = ∥S + λ0A∥ or S + λ0A is

normaloid. Let un = 1 + λ0wn for n ≥ 1. As S + λ0A is a unilateral weighted shift

with weights {un}∞n=1, Lemma 2.8 yields that limj→∞ supk≥1 |ukuk+1 · · ·uk+j−1|1/j = ∥S +

λ0A∥ = 1 + ∥A∥. We now show that for any n ≥ 1 there are integers 1 ≤ n1 < n2 < · · ·
such that limj unj+s = 1 + ∥A∥ for all s, 0 ≤ s ≤ n− 1. This is done by first checking that

limj |unj+s| = 1 + ∥A∥ for all s. Indeed, assume otherwise that, for some n ≥ 1, we have
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lim supk→∞min{|uk|, . . . , |uk+n−1|} < 1 + ∥A∥. Then, under A ̸= 0, there is an N ≥ 1 and

an ε, 0 < ε < ∥A∥, such that min{|uk|, . . . , |uk+n−1|} ≤ 1 + ∥A∥ − ε for all k ≥ N . For any

j ≥ n+N , let αk = ⌊(k + j −N)/n⌋ if 1 ≤ k < N , and ⌊(j −N)/n⌋ if k ≥ N . We have

|ukuk+1 · · ·uk+j−1| =


(N−1∏

l=k

|ul|
)( αk−1∏

m=0

(N+(m+1)n−1∏
l=N+mn

|ul|
))( k+j−1∏

l=N+αkn

|ul|
)

if 1 ≤ k < N,( αk−1∏
m=0

( k+(m+1)n−1∏
l=k+mn

|ul|
))( k+j−1∏

l=k+(m+1)n

|ul|
)

if k ≥ N

≤ (1 + ∥A∥ − ε)αk(1 + ∥A∥)j−αk

≤ (1 + ∥A∥ − ε)⌊(j−N)/n⌋(1 + ∥A∥)j−⌊(j−N)/n⌋,

where the first inequality is because at least one of the |ul|’s in each of the αk many

products
∏N+(m+1)n−1

l=N+mn |ul| or
∏k+(m+1)n−1

l=k+mn |ul| is at most 1 + ∥A∥ − ε, and the second

inequality results from
(
(1 + ∥A∥)/(1 + ∥A∥ − ε)

)αk−⌊(j−N)/n⌋ ≥ 1 since αk ≥ ⌊(j −N)/n⌋
and (1 + ∥A∥)/(1 + ∥A∥ − ε) > 1. As j −N = ⌊(j −N)/n⌋n+ r for some r, 0 ≤ r < n, we

obtain limj⌊(j −N)/n⌋/j = (1/n) limj

(
((j −N)/j)− (r/j)

)
= 1/n. Thus, from the above

inequalities, we further deduce that

lim
j→∞

sup
k≥1

|ukuk+1 · · ·uk+j−1|1/j ≤ lim
j→∞

(1 + ∥A∥ − ε)⌊(j−N)/n⌋/j(1 + ∥A∥)(j−⌊(j−N)/n⌋)/j

≤ (1 + ∥A∥ − ε)1/n(1 + ∥A∥)1−(1/n) < (1 + ∥A∥)1/n(1 + ∥A∥)1−(1/n) = 1 + ∥A∥.

This contradicts our previous condition for the normaloidity of S + λ0A. Thus we have

proved limj |unj+s| = 1 + ∥A∥ for all s, 0 ≤ s ≤ n− 1.

The next step is to show that limj unj+s = 1 + ∥A∥ for all s. If s = 0, then, from

limj |unj | = 1 + ∥A∥ and |unj | ≤ 1 + |wnj | ≤ 1 + ∥A∥, we also have limj |wnj | = ∥A∥. On

the other hand, we deduce from

(1 + ∥A∥)2 = lim
j

|unj |2 = lim
j

(
1 + |wnj |2 + 2Re (λ0wnj )

)
= 1 + ∥A∥2 + 2 lim

j
Re (λ0wnj )

that limj Re (λ0wnj ) = ∥A∥. Together with limj |λ0wnj | = ∥A∥, this yields limj Im (λ0wnj ) =

0. Hence limj λ0wnj = ∥A∥. Similarly, we can prove limj λ0wnj+s = ∥A∥ for all s,

1 ≤ s ≤ n− 1. Thus limj An,nj = λ0∥A∥Sn+1 as required.

To prove the converse, assume that, for any n ≥ 1, there is a sequence {nj}∞j=1 such

that limj An,nj = λ0∥A∥Sn+1 for some λ0, |λ0| = 1. Since w(Sn+1+λ0An,nj ) ≤ w(S+λ0A)

for any n, letting j approach infinity, we obtain

(1 + ∥A∥)w(Sn+1) = w(Sn+1 + ∥A∥Sn+1) ≤ w(S + λ0A) ≤ max{w(S + λA) : |λ| = 1}.
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It follows from limj w(Sn+1) = limj

(
cos(π/(n + 2))

)
= 1 (cf. [8, Lemma 2.4.1 (a)]) that

1+∥A∥ ≤ max{w(S+λA) : |λ| = 1}. On the other hand, we also have w(S+λA) ≤ w(S)+

w(A) ≤ 1 + ∥A∥ for any λ, |λ| = 1. This proves max{w(S + λA) : |λ| = 1} = 1 + ∥A∥. ■

Proof. [Proof of Theorem 2.6] We need only consider T ̸= 0. Assume first that w(FT ) =

1 + (1/2)∥T∥. From Theorem 2.4 (a), we have w(S + λ2T
∗ST ) = 1 + ∥T∥2 for some λ2,

|λ2| = 1. If A = T ∗ST , then A is a unilateral weighted shift with weights {anan+1}∞n=1

and w(S + λ2A) = 1 + ∥A∥. Thus, by Proposition 2.7, for any n ≥ 1 there is a sequence

{nj}∞j=1, 1 ≤ n1 < n2 < · · · , such that limj An+1,nj = λ2∥A∥Sn+2. This is the same as

limj anj+manj+m+1 = λ2∥T∥2 for all m, 0 ≤ m ≤ n. Passing to subsequences, we may

assume that both {anj+m}∞j=1 and {anj+m+1}∞j=1 converge for each fixed m. As |ak| ≤ ∥T∥
for all k, we infer from limj |anj+m||anj+m+1| = ∥T∥2 that limj |anj+m| = ∥T∥. Moreover,

if ak = λk|ak|, where |λk| = 1, for k ≥ 1, then limj λnj+mλnj+m+1 = λ2 for each m. Thus

lim
j

λnjλnj+m = lim
j
(λnjλnj+1)(λnj+1λnj+2) · · · (λnj+m−1λnj+m) = λ

m
2

for 0 ≤ m ≤ n. Again, passing to a subsequence, we may assume that {λnj}∞j=1 converges,

say, to λ1 with |λ1| = 1. Then we obtain limj λnj+m = λ1λ
m
2 or limj λnj+m = λ1λ

m
2 .

Together with limj |anj+m| = ∥T∥, this yields limj anj+m = λ1λ
m
2 ∥T∥ for all m, 0 ≤ m ≤ n.

In other words, we have limj Tn,nj = λ1∥T∥diag (1, λ2, . . . , λ
n
2 ) as required.

To prove the converse, for any n ≥ 1, let {nj}∞j=1 be such that

limj Tn,nj = λ1∥T∥diag (1, λ2, . . . , λ
n
2 ) for some λ1 and λ2, |λ1| = |λ2| = 1.

Then we have limj anj+manj+m+1 = λ2∥T∥2 for 0 ≤ m ≤ n− 1. If

A =

 0

a1a2 0

a2a3 0

. .
.

. .
.

 on ℓ2 and An,k =

 0

akak+1 0

. .
.

. .
.

ak+n−1ak+n 0

 on Cn+1

for n, k ≥ 1, then the above limits can be expressed as limj An,nj = λ2∥T∥2Sn+1. It follows

that limj ∥An,nj∥ = ∥T∥2. On the other hand, we also have ∥An,nj∥ ≤ ∥A∥ ≤ ∥T∥2 for

all j. Thus ∥A∥ = ∥T∥2 and limj An,nj = λ2∥A∥Sn+1. We obtain from Proposition 2.7

that max{w(S + λA) : |λ| = 1} = 1 + ∥A∥ = 1 + ∥T∥2. As A = T ∗ST , the assertion

w(FT ) = 1 + (1/2)∥T∥ then follows from Theorem 2.4 (a). ■

The next two propositions are consequences of Theorem 2.6.

Proposition 2.9. Let T = diag (a1, a2, . . . ) and T (m) = diag (am, am+1, . . . ) for m ≥ 1.

Then the following conditions are equivalent:

(a) w(FT ) = 1 + (1/2)∥T∥.
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(b) w(FT (m0)) = 1 + (1/2)∥T∥ for some m0 ≥ 1.

(c) w(FT (m)) = 1 + (1/2)∥T∥ for all m ≥ 1.

Proof. We need only prove (b)⇒(c). Let Tn,k(m) = diag (am+k−1, . . . , am+k+n−1) on

Cn+1 for n, k,m ≥ 1. Assuming w(FT (m0)) = 1 + (1/2)∥T∥, we have

1 +
1

2
∥T∥ = w(FT (m0)) ≤ 1 +

1

2
∥T (m0)∥ ≤ 1 +

1

2
∥T∥.

Thus ∥T (m0)∥ = ∥T∥. By Theorem 2.6, for any n ≥ 1, there is a sequence {nj}∞j=1 such

that limj Tn,nj (m0) = λ1∥T∥diag (1, λ2, . . . , λ
n
2 ) with |λ1| = |λ2| = 1. Fixing any m ≥ 1, let

j0 be such that nj ≥ m for all j ≥ j0 and let n′
j = nj +m0 −m for j ≥ j0. Then

(4) lim
j

Tn,n′
j
(m) = lim

j
Tn,nj (m0) = λ1∥T∥diag (1, λ2, . . . , λ

n
2 ).

This yields limj ∥Tn,n′
j
(m)∥ = ∥T∥. Since ∥Tn,n′

j
(m)∥ ≤ ∥T (m)∥ for all j and m, we obtain

∥T∥ ≤ ∥T (m)∥. Hence ∥T∥ = ∥T (m)∥ for allm. Therefore, (c) follows from (4) via Theorem

2.6. ■

The period p (≥ 1) of a periodic sequence {an}∞n=1 is the smallest integer for which

an+p = an for all n ≥ 1.

Proposition 2.10. Let T = diag (a1, a2, . . . ), where an’s are periodic with period p (≥ 1).

Then w(FT ) = 1 + (1/2)∥T∥ if and only if an = λ1λ
n
2∥T∥ for n ≥ 1, where |λ1| = 1 and

λp
2 = 1.

Proof. For any n, k ≥ 1, let Tn,k = diag (ak, ak+1, . . . , ak+n). If w(FT ) = 1 + (1/2)∥T∥,
then, by Theorem 2.6, there is a sequence {pj}∞j=1 such that

limj Tp,pj = λ′
1∥T∥diag (1, λ2, . . . , λ

p
2) for some λ′

1 and λ2 with |λ′
1| = |λ2| = 1.

On the other hand, for the periodic an’s, we also have

(5) Tp, kp+l = Tp,l for k ≥ 1 and 1 ≤ l ≤ p.

By the pigeonhole principle, there is a q, 1 ≤ q ≤ p, and a subsequence of {pj} whose

elements are all of the form kp + q (k ≥ 1). Passing to this subsequence, we may assume

that the pj ’s are themselves of this form. Thus, from (5), we have Tp,pj = Tp,q for all j.

This yields that

diag (aq, aq+1, . . . , aq+p) = Tp,q = Tp,pj = λ′
1∥T∥diag (1, λ2, . . . , λ

p
2).

Hence aq+m = λ′
1∥T∥λm

2 = aqλ
m
2 for 0 ≤ m ≤ p. In particular, we have aq = aq+p = aqλ

p
2. If

aq = 0, then all the an’s are zero or T = 0. Otherwise, we have λp
2 = 1 and aq+m = λ′

1λ
m
2 ∥T∥

for 0 ≤ m ≤ p. Let λ1 = λ′
1λ

−q
2 . If 1 ≤ n ≤ q − 1, then 0 ≤ p− q + n ≤ p and hence

an = aq+(p−q+n) = λ′
1λ

p−q+n
2 ∥T∥ = (λ′

1λ
−q
2 )λn

2∥T∥ = λ1λ
n
2∥T∥.
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On the other hand, if n ≥ q, say, n = (k − 1)p + q + m for some k ≥ 1 and some m,

0 ≤ m ≤ p− 1, then

an = aq+m = λ′
1λ

m
2 ∥T∥ = (λ′

1λ
−q
2 )λq+m

2 ∥T∥ = λ1λ
n
2∥T∥.

These prove our assertion on the an’s.

Conversely, if the an’s are of the asserted form, then an+1 = λ2an for all n. Hence

T = a1diag (1, λ2, λ
2
2, . . . ). Then w(FT ) = 1 + (1/2)∥T∥ by Example 2.5 (a) and Corollary

2.3 (a). ■

The following are examples for Proposition 2.10.

Example 2.11. (a) If T = aI on ℓ2, then p = 1, λ1 = a/|a| (for a ̸= 0), and λ2 = 1 yield

the required expression for the diagonals of T , which implies w(FT ) = 1 + (1/2)∥T∥ by

Proposition 2.10.

(b) If T = diag (1,−1, 1,−1, . . . ), then p = 2 and λ1 = λ2 = −1 yield the required

expression, which results in w(FT ) = 1 + (1/2)∥T∥.
(c) If T = diag (1, 0, 1, 0, . . . ), then w(FT ) < 1 + (1/2)∥T∥ since no expression for the

diagonals of T as in Proposition 2.10 exists.

(d) If T = diag (1, 1,−1,−1, 1, 1,−1,−1, . . . ), then w(FT ) < 1+(1/2)∥T∥ by Proposition

2.10.

We remark that the example in (a) above appeared before in [3, Theorem 3.5 (a)], (c)

in Example 2.2 (b), and the exact value of w(FT ) for T in (d) has been computed in [3,

Proposition 3.4].

In the rest of this section, we consider w(FT ) for a diagonal T with nonnegative diago-

nals. The next theorem gives more conditions for w(FT ) = 1 + (1/2)∥T∥ to hold.

Theorem 2.12. Let T = diag (a1, a2, . . . ) with an ≥ 0 for all n. Then the following

conditions are equivalent:

(a) w(FT ) = 1 + (1/2)∥T∥,

(b) ∥S + S∗ + T∥ = 2 + ∥T∥,

(c) w(ST + S∗T ) = 2∥T∥,

(d) w(ST + TS) = 2∥T∥,

(e) w(S + TST ) = w(S + TS∗T ) = 1 + ∥T∥2,

(f) w(TST ) = ∥T∥2,

(g) w(ST ) = ∥T∥.
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Proof. The equivalence of (a) and (b) follows from [3, Proposition 3.2 (c)]. To prove

(b)⇔(c), we use the fact that, for any two operators A and B on the same space, ∥A+B∥ =

∥A∥+ ∥B∥ if and only if ∥A∥∥B∥ is in W (A∗B) (cf. [1, Theorem 2.1]). Indeed, the equality

in (b) is the same as ∥(ReS) + (1/2)T∥ = ∥ReS∥ + ∥(1/2)T∥, which is equivalent to ∥T∥
being in W

(
(ReS)T

)
from above or to 2∥T∥ in W (ST + S∗T ). Thus w(ST +S∗T ) ≥ 2∥T∥.

Together with w(ST +S∗T ) ≤ ∥ST +S∗T∥ ≤ 2∥T∥, this yields w(ST +S∗T ) = 2∥T∥, that
is, (c) holds. Conversely, if w(ST + S∗T ) = 2∥T∥, then, from ST + S∗T ≽ 0, we have

2∥T∥ = w(ST + S∗T ) belonging to W (ST + S∗T ) by Proposition 1.1 (b). Thus from [1,

Theorem 2.1], we obtain the equality in (b). The equivalence of (c) and (d) follows from

the following equalities:

w(ST + S∗T ) = w
(
Re (ST + S∗T )

)
=

1

2
w
(
(ST + S∗T ) + (TS∗ + TS)

)
=

1

2
w
(
(ST + TS) + (TS∗ + S∗T )

)
= w

(
Re (ST + TS)

)
= w(ST + TS),

where the first (resp., last) equality is by Proposition 1.1 (b) since ST + S∗T ≽ 0 (resp.,

ST + TS ≽ 0). For the equivalence of (a) and (e), note that, by Theorem 2.1, w(FT ) =

1 + (1/2)∥T∥ if and only if w(S + TS∗T ) = 1 + ∥T∥2. However, we also have

w(S + TS∗T ) = w
(
Re (S + TS∗T )

)
= w

(
Re (S + TST )

)
= w(S + TST )

via Proposition 1.1 (b). Hence (a) and (e) are equivalent.

For the proof of (e)⇒(f), since 1+∥T∥2 = w(S+TST ) ≤ w(S)+w(TST ) = 1+w(TST ),

we obtain ∥T∥2 ≤ w(TST ). Together with w(TST ) ≤ ∥TST∥ ≤ ∥T∥2, this yields (f).
For (f)⇒(g), since 0 ≼ TST ≼ ∥T∥ST , we have ∥T∥2 = w(TST ) ≤ ∥T∥w(ST ) and

hence ∥T∥ ≤ w(ST ). Together with w(ST ) ≤ ∥ST∥ ≤ ∥T∥, this yields (g).
Finally, we prove the implication (g)⇒(d). As before, we may assume that ∥T∥ = 1.

Then 0 ≤ an ≤ 1 for all n. Let D be the unilateral weighted shift with weights {dn}∞n=1,

where dn =
√
anan+1 for n ≥ 1. Since ST + TS is also a unilateral weighted shift with

weights {an + an+1}∞n=1 and ST + TS ≽ 2D ≽ 0, we have w(ST + TS) ≥ 2w(D). We now

use Lemma 2.8 to prove w(D) = 1. Indeed, condition (g) implies that w(ST ) = ∥T∥ =

∥ST∥ = 1. Hence ST is normaloid. By Lemma 2.8, for any ε, 0 < ε < 1, there is an integer

N such that supk≥1(akak+1 · · · ak+j−1)
1/j > 1− ε for all j ≥ N . Therefore, for each j ≥ N ,

there is a kj such that (akjakj+1 · · · akj+j−1)
1/j > 1− ε. As 0 ≤ an ≤ 1 for all n, we have

(akjakj+1 · · · akj+j−2)
1/2, (akj+1akj+2 · · · akj+j−1)

1/2 > (1− ε)j/2.

It follows that

dkjdkj+1 · · · dkj+j−2 = (akja
2
kj+1 · · · a2kj+j−2akj+j−1)

1/2 > (1− ε)j .
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Therefore, for any j ≥ N , we have

∥Dj−1∥1/(j−1) = sup
k≥1

(dkdk+1 · · · dk+j−2)
1/(j−1) ≥ (1− ε)j/(j−1).

Hence

ρ(D) = lim
j→∞

∥Dj−1∥1/(j−1) = lim
j→∞

sup
k≥1

(dkdk+1 · · · dk+j−2)
1/(j−1) ≥ lim

j→∞
(1−ε)j/(j−1) = 1−ε.

As this is true for any ε, 0 < ε < 1, we obtain that

1 ≤ ρ(D) ≤ w(D) ≤ ∥D∥ = sup
n≥1

dn = sup
n≥1

√
anan+1 ≤ 1.

This results in equalities throughout. In particular, we have w(D) = 1 and thus

2 = 2w(D) ≤ w(ST + TS) ≤ ∥ST + TS∥ ≤ ∥ST∥+ ∥TS∥ ≤ 2.

Therefore, w(ST + TS) = 2, that is, condition (d) holds as claimed. ■

Corollary 2.13. Let T = diag (a1, . . . , an, 1, 1, . . . ) with ak ≥ 0 for 1 ≤ k ≤ n. Then

w(FT ) = 1 + (1/2)∥T∥ if and only if ak ≤ 1 for all k.

Proof. Assume that w(FT ) = 1 + (1/2)∥T∥ and let a = max1≤k≤n ak. We check that

a ≤ 1. Indeed, if otherwise a > 1, then we have w(ST ) = ∥T∥ = a from Theorem 2.12

(g) or Theorem 2.4 (b). Let T ′ = diag (a, . . . , a︸ ︷︷ ︸
n

, 1, 1, . . . ). Since 0 ≼ ST ≼ ST ′ ≼ aS, we

obtain a = w(ST ) ≤ w(ST ′) ≤ w(aS) = a by Proposition 1.1 (a). It follows that w(ST ′) =

a = ∥T ′∥ = ∥ST ′∥ or ST ′ is normaloid. Lemma 2.8 then implies that a = limj→∞ an/j = 1,

which contradicts our assumption of a > 1. Thus ak ≤ 1 for all k, 1 ≤ k ≤ n. The converse

is by Example 2.5 (b). ■

Corollary 2.14. Let T = diag (a1, a2, . . . ) ̸= 0 with an = 0 exactly when n = nj, 1 ≤ nj <

nj+1, for j ≥ 1. If w(FT ) = 1 + (1/2)∥T∥, then {nj+1 − nj}∞j=1 is unbounded.

Proof. Assume the contrary that nj+1 − nj ≤ M for all j. Then we have

|akak+1 · · · ak+l−1|1/l = 0 for any k ≥ 1 and l ≥ max{n1,M}.

Thus

∥ST∥ = sup
n≥1

|an| > lim
l→∞

sup
k≥1

|akak+1 · · · ak+l−1|1/l = 0.

By Lemma 2.8, this says that ST is not normaloid or w(ST ) < ∥ST∥ = ∥T∥. Hence w(FT ) <

1 + (1/2)∥T∥ by Theorem 2.4 (b). This proves the unboundedness of {nj+1 − nj}∞j=1. ■
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Example 2.15. (a) Let T = diag (a1, a2, . . . ), where an = 0 if n = k(k + 1)/2 for some

k ≥ 1, and an = 1 otherwise. Then ST =
∑∞

n=1⊕Sn. Thus

w(ST ) = sup
n

w(Sn) = sup
n

cos
π

n+ 1
= 1 = ∥T∥

(cf. [8, Lemma 2.4.1 (a)]), and w(FT ) = 1 + (1/2)∥T∥ = 3/2 by Theorem 2.12.

(b) Let T = diag (a1, a2, . . . ), where

an =


0 if n = k(k + 1)/2 for some k ≥ 1,

1 if n = 2,

1/2 otherwise.

Then ST = [0]⊕ S2 ⊕ (1/2)
∑∞

n=3⊕Sn. Since

w(ST ) = sup{1
2
,
1

2
cos

π

n+ 1
: n ≥ 3} =

1

2
< 1 = ∥T∥,

we have w(FT ) < 1 + (1/2)∥T∥ = 3/2 by Theorem 2.12. This shows that the converse of

the assertion in Corollary 2.14 is false.

Finally, for a nonnegative diagonal T , Theorem 2.6 has the following analogue.

Corollary 2.16. Let T = diag (a1, a2, . . . ) with an ≥ 0 for all n, and

Tn,k = diag (ak, ak+1, . . . , ak+n) for n, k ≥ 1.

Then w(FT ) = 1 + (1/2)∥T∥ if and only if for any n ≥ 1 there is a sequence {nj}∞n=1 of

positive integers such that limj→∞ Tn,nj = ∥T∥In+1.

Proof. If w(FT ) = 1+ (1/2)∥T∥, then Theorem 2.12 (e) yields w(S+TST ) = 1+ ∥T∥2.
Hence the asserted condition holds since it is the one in Theorem 2.6 with λ1 = λ2 = 1.

The converse is also by Theorem 2.6. ■

3. Lower bound of w(FT )

In this section, we consider conditions on T for w(FT ) to be equal to 1. We start with

a sufficient one.

Proposition 3.1. Let T = Tn ⊕ 0 on ℓ2, where Tn is an n-by-n nonnegative symmetric

matrix, and let Tn+1 = Tn ⊕ [1] on Cn+1. If w(Sn+1 + S∗
n+1 + Tn+1) ≤ 2, then w(FT ) = 1.

For its proof, we need the following lemma.

Lemma 3.2. Let T be an operator on ℓ2. Then
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(a) w(FT ) ≥ (1/2)max{w
(
S + S∗ +Re (λT )

)
: |λ| = 1}, and

(b) if T is nonnegative symmetric, then w(FT ) = w(S + S∗ + T )/2.

Note that part (b) here is a generalization of [3, Proposition 3.2 (c)].

Proof. [Proof of Lemma 3.2] (a) For any unit vector x in ℓ2, let y = (λx⊕x)/
√
2, where

|λ| = 1. Then y is also a unit vector in ℓ2 ⊕ ℓ2 and

w(FT ) ≥ |⟨FT y, y⟩| ≥ Re ⟨FT y, y⟩ =
1

2
⟨(FT + F ∗

T )y, y⟩

=
1

4

〈[
S∗ + S T

T ∗ S + S∗

][
λx

x

]
,

[
λx

x

]〉
=

1

4

(
⟨λ(S∗ + S)x+ Tx, λx⟩+ ⟨λT ∗x+ (S + S∗)x, x⟩

)
=

1

2

(
⟨(S + S∗)x, x⟩+ ⟨(Re (λT ))x, x⟩

)
=

1

2
⟨
(
S + S∗ +Re (λT )

)
x, x⟩.

Since this is true for any unit vector x and any λ, |λ| = 1, the asserted inequality holds.

(b) For a nonnegative T , we have w(FT ) = w(ReFT ) by Proposition 1.1 (b). Let

U = (1/
√
2)

[
I
I

I
−I

]
on ℓ2 ⊕ ℓ2. Then U is unitary and

U∗(ReFT )U =
1

2
U∗

[
S + S∗ T

T S + S∗

]
U =

1

2

[
S + S∗ + T 0

0 S + S∗ − T

]
.

For any unit vector x in ℓ2, we have

|⟨(S + S∗ − T )x, x⟩| ≤ ⟨(S + S∗ + T )|x|, |x|⟩ ≤ w(S + S∗ + T ).

This shows that w(S + S∗ − T ) ≤ w(S + S∗ + T ). Thus

w(FT ) = w(ReFT ) =
1

2
max{w(S + S∗ + T ), w(S + S∗ − T )} =

1

2
w(S + S∗ + T ).

■

Proof. [Proof of Proposition 3.1] In the following, we show that w(S + S∗ + T ) ≤ 2

and then apply Lemma 3.2 (b). Let x = (x1, x2, . . . ) be any unit vector in ℓ2 and let
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x′ = (x1, . . . , xn+1) in Cn+1. We have

|⟨(S + S∗ + T )x, x⟩| ≤ ⟨(S + S∗ + T )|x|, |x|⟩

= ⟨(Sn+1 + S∗
n+1 + Tn+1)|x′|, |x′|⟩ − |xn+1|2 + 2

∞∑
j=n+1

|xjxj+1|

≤ 2∥|x′|∥2 − |xn+1|2 +
∞∑

j=n+1

(|xj |2 + |xj+1|2) (because w(Sn+1 + S∗
n+1 + Tn+1) ≤ 2)

= 2

n+1∑
j=1

|xj |2 + 2

∞∑
j=n+2

|xj |2 = 2∥x∥2 = 2.

Hence w(S + S∗ + T ) ≤ 2. By Lemma 3.2 (b), we obtain w(FT ) ≤ 1. As w(FT ) ≥ 1 is

always true, we conclude that w(FT ) = 1. ■

Example 3.3. (a) Let T = diag (0, . . . , 0, a
nth

, 0, 0, . . . ) with |a| ≤ 1/n (n ≥ 1). Since

|FT | ≼ FT ′ for T ′ = diag (0, . . . , 0, 1/n, 0, 0, . . . ), we have w(FT ) ≤ w(FT ′). We now check

that w(FT ′) = 1. Indeed, if T ′
n+1 = diag (0, . . . , 0, 1/n, 1) on Cn+1, then

2In+1 − (Sn+1 + S∗
n+1 + T ′

n+1) =



2 −1

−1
. . .

. . .

. . . 2 −1

−1 2− (1/n) −1

−1 1


.

It is easily shown by induction that its jth (1 ≤ j ≤ n+ 1) leading principal submatrix,
2 −1

−1 2
. . .

. . .
. . . −1

−1 2

 (1 ≤ j ≤ n− 1),


2 −1

−1
. . .

. . .

. . . 2 −1

−1 2− (1/n)

 (j = n),

or 2In+1 − (Sn+1 + S∗
n+1 + T ′

n+1) (j = n+ 1), has determinant j + 1, n, or 0, respectively.

Thus 2In+1−(Sn+1+S∗
n+1+T ′

n+1) ≥ 0 by Sylvester’s criterion [7, Theorem 7.2.5 (c)]. Hence

w(Sn+1 + S∗
n+1 + T ′

n+1) ≤ 2 and w(FT ′) = 1 by Proposition 3.1. It follows that w(FT ) = 1.

(b) Let T = diag (a, a, 0, 0, . . . ) with |a| ≤ (3 −
√
5)/2. Then, as in (a) above, we may

assume that a = (3−
√
5)/2 and infer that

S3 + S∗
3 + T ′

3 =


a 1 0

1 a 1

0 1 1

 ≤ 2I3,

where T ′
3 = diag (a, a, 1). Hence w(FT ) = 1 by Proposition 3.1.
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We remark that part (a) above also follows from [4, Proposition 2.7 and Theroem 2.8].

In the remaining part of this section, we consider the relationship between w(FT ) = 1 and

the compactness of T . Recall that, for a compact T , it is known that w(FT ) = 1+(1/2)∥T∥
if and only if T = 0. The next theorem says that, for a diagonal T , w(FT ) = 1 implies the

compactness of T .

Theorem 3.4. Let T = diag (a1, a2, . . . ). If w(FT ) = 1, then T is compact.

The following lemma is needed for its proof.

Lemma 3.5. If T = diag (a1, a2, . . . ), then ∥S + S∗ + T∥ ≥ 2.

Proof. Note that ∥S+S∗+T∥ = 2w(ReFT ′), where T ′ = diag (a1, a2, a3, a4, . . . ), by [3,

Proposition 3.2 (a)]. Since W (FT ′) ⊇ D, we have w(ReFT ′) ≥ 1. Thus ∥S + S∗ + T∥ ≥ 2

as asserted. ■

Proof. [Proof of Theorem 3.4] We claim that if the an’s are real and ∥S + S∗ + T∥ =

2, then T is compact. For this, we first assume that an ≥ 0 for all n. Let Tn =

diag (0, . . . , 0, an
nth

, 0, 0, . . .) for n ≥ 1. Since 0 ≼ S + S∗ + Tn ≼ S + S∗ + T , we have

2 ≤ ∥S + S∗ + Tn∥ = w(S + S∗ + Tn) ≤ w(S + S∗ + T ) = ∥S + S∗ + T∥ = 2

by Lemma 3.5 and Proposition 1.1 (a). Thus the above inequalities become equalities

throughout, which yield that w(S+S∗+Tn) = 2 for all n ≥ 1. By Lemma 3.2 (b), we have

w(FTn) = 1. Hence [4, Proposition 2.7 and Theorem 2.8] yields that |an| ≤ 1/n for all n.

The compactness of T for this case follows.

Now assume that the an’s are all real. Let C = S + S∗ + T and, for each n ≥ 2, let

C2n =


a1 1

1 a2
. . .

. . .
. . . 1

1 a2n


be the (2n)-by-(2n) leading principal submatrix of C. Note that ∥C∥ = 2 by our assump-

tion. We rearrange the standard basis {ej}2nj=1 of C2n via the permutation (1, 2, . . . , 2n) →
(1, 3, . . . , 2n− 1, 2, 4, . . . , 2n). Then C2n is permutationally similar to the matrix

C ′
2n =

[
D′

2n In + Sn

In + S∗
n D′′

2n

]
,
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whereD′
2n = diag (a1, a3, . . . , a2n−1) andD′′

2n = diag (a2, a4, . . . , a2n). Then C ′2
2n =

[
En∗

∗
Fn

]
,

where

En = D′2
2n + (In + Sn)(In + S∗

n) =


1 + a21 1

1 2 + a23
. . .

. . .
. . . 1

1 2 + a22n−1


and

Fn = D′′2
2n + (In + S∗

n)(In + Sn) =


2 + a22 1

1
. . .

. . .

. . . 2 + a22n−2 1

1 1 + a22n

 .

Let

E′
n =


2 + a23 1

1 2 + a25
. . .

. . .
. . . 1

1 2 + a22n−1

 .

Then

w(E′
n) = ∥E′

n∥ ≤ ∥En∥ ≤ ∥C ′2
2n∥ = ∥C ′

2n∥2 = ∥C2n∥2 ≤ ∥C∥2 = 4

for all n ≥ 2. Let T ′ = diag (a23, a
2
5, a

2
7, . . . ) and C ′ = S + S∗ + T ′. Since E′

n is the (n− 1)-

by-(n − 1) leading principal submatrix of C ′ + 2I, we have w(C ′ + 2I) = limnw(E
′
n) ≤ 4.

Note that C ′ ≽ 0 implies that w(C ′) = ∥C ′∥ is in W (C ′) by Proposition 1.1 (b). Hence

w(C ′ + 2I) = w(C ′) + 2 by [1, Theorem 2.1]. It follows that w(C ′) ≤ 2. On the other

hand, we also have w(C ′) = ∥C ′∥ ≥ 2 by Lemma 3.5. This shows that w(C ′) = 2. As T ′

has nonnegative diagonals, the first paragraph of our proof yields that limn a2n+1 = 0. In a

similar fashion, considering

F ′
n =


2 + a22 1

1 2 + a24
. . .

. . .
. . . 1

1 2 + a22n−2


instead of E′

n and following the arguments as above, we also obtain limn a2n = 0. These

together prove our claim of the compactness of T .

Finally, for the general case of complex an’s, we have

2 ≤ ∥S + S∗ +ReT∥ = w(S + S∗ +ReT ) ≤ 2w(FT ) = 2
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by Lemmas 3.5 and 3.2 (a). This shows that ∥S + S∗ + ReT∥ = 2. From our claim in the

beginning of the proof, we obtain limnRe an = 0. Similarly, as ImT = Re (−iT ), the above

arguments also result in limn Im an = 0. Hence limn an = 0 and T is compact. ■

The next proposition is in contrast to the known result that if T = diag (1, a, a2, . . . )

with |a| = 1, then w(FT ) = 3/2 and W (FT ) is open but not a circular disc (cf. [3, Corollary

3.6]).

Proposition 3.6. Let T = diag (1, a, a2, . . . ) with |a| < 1. Then the following are equiva-

lent:

(a) w(FT ) = 1,

(b) a = 0,

(c) W (FT ) = D,

(d) W (FT ) is open, and

(e) ∥Cλ∥ = 2 for all λ, |λ| = 1, where Cλ = S+S∗+Tλ with Tλ = diag (1, λ2a, λ
4
a2, . . . ).

The proofs of some equivalences here need the following two lemmas. In the first one,

We(A) denotes the essential numerical range of operator A on an infinite-dimensional space

(cf. [8, Section 4.2]).

Lemma 3.7. Let T be a compact operator on ℓ2. Then W (FT ) is open if and only if

W (FT ) = D.

Proof. If W (FT ) is open, then W (FT ) = We(FT ) = We(S
∗ ⊕ S) = D, where the first

equality is by [8, Corollary 4.5.5]. Since W (FT ) already contains D, we obtain W (FT ) =

D. ■

Lemma 3.8. Let T = diag (a1, a2, . . . ). Then w(FT ) = 1 if and only if ∥Cλ∥ = 2 for all λ,

|λ| = 1, where Cλ = S + S∗ + Tλ with Tλ = diag (a1, λ
2a2, λ

4
a3, . . . ).

Proof. It was proved in [3, Proposition 3.2 (a)] that w
(
Re (λFT )

)
= (1/2)∥Cλ∥ for any λ,

|λ| = 1, and hence w(FT ) = (1/2)max{∥Cλ∥ : |λ| = 1}. If w(FT ) = 1, then, as W (FT ) ⊇ D,
we have W (FT ) = D. Thus 1 = w

(
Re (λFT )

)
= (1/2)∥Cλ∥ or ∥Cλ∥ = 2 for all λ, |λ| = 1.

The converse follows from w(FT ) = (1/2)max{∥Cλ∥ : |λ| = 1}. ■

Proof. [Proof of Proposition 3.6] (a)⇒(b). Let a = λ0|a| for some λ0 with |λ0| = 1.

If λ is such that λ2λ0 = 1, then λFT is unitarily similar to F|T | by [3, Lemma 3.1 (a)].

Hence we may assume that w(FT ) = 1 with T = diag (1, a, a2, . . . ), 0 ≤ a < 1. For any

t, 0 < t < 1, let xt =
√
1− t2(1, t, t2, . . . ) in ℓ2. Then xt is a unit vector, ⟨Sxt, xt⟩ =

⟨S∗xt, xt⟩ = t, and ⟨Txt, xt⟩ = (1 − t2)/(1 − at2). Assuming that 0 < a < 1, we show

20



that ⟨(S + S∗ + T )xt0 , xt0⟩ > 2 for some t0, 0 < t0 < 1. Indeed, this asserted inequality

is the same as 2t0 + (1 − t20)/(1 − at20) > 2 or 2at20 + t0 − 1 > 0. For 0 < a < 1, we have

0 < (−1 +
√
1 + 8a)/(4a) < 1. Thus if t0 is such that (−1 +

√
1 + 8a)/(4a) < t0 < 1,

then 0 < t0 < 1 and 2at20 + t0 − 1 > 0, which means that t0 meets our requirement that

⟨(S + S∗ + T )xt0 , xt0⟩ > 2. Hence w(S + S∗ + T ) > 2 and w(FT ) = (1/2)max{∥Cλ∥ : |λ| =
1} > 1. This contradicts our assumption that w(FT ) = 1 and thus a must be 0.

(b)⇒(c) was shown in [4, Proposition 2.7], (c)⇔(d) (resp., (a)⇔(e)) is by Lemma 3.7

(resp., Lemma 3.8), and (c)⇒(a) is trivial. Thus the proof is completed. ■

In the preceding proposition, the equivalence of (a) and (b) can also be proved by using

[4, Lemma 2.3 (d)]. This is given below.

Proof. [Alternative proof of Proposition 3.6 (a)⇔(b)] As in the previous proof, we

may assume that 0 ≤ a < 1. Let C = S + S∗ + T . As T ≽ 0, (a) is equivalent to

w(C) = ∥C∥ = 2 (cf. [3, Proposition 3.2 (c)]). Hence [4, Lemma 2.3 (d)] says that the

latter is equivalent to the sequence {bn}∞n=1 defined by b1 = 1 and bn = 1/(2− an−1− bn−1)

for n ≥ 2 satisfying 1/2 ≤ bn ≤ 1 for all n. In particular, this latter condition implies

that 1/2 ≤ b2 = 1/(1 − a) ≤ 1 or that a = 0. This proves (a)⇒(b). For the converse, if

a = 0, then bn = 1/(2 − bn−1) for n ≥ 2. Hence bn = 1 for all n by induction. Therefore,

w(FT ) = 1 follows. ■

We end this paper with the question: Does w(FT ) = 1 imply the compactness of T? By

Theorem 3.4, the answer is affirmative for a diagonal T .
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