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1. Introduction

The study of isometries and projections is at the core of the study and understanding of the structure of a
Banach space. The concept of a bicircular projection unites both. Although it arises from complex analysis,
more precisely from the study of continuous Reinhardt domains [19], it is a purely Banach space notion. A
projection P on a complex Banach space is said to be bicircular if P + A(I — P) is an isometry for every
unimodular A € C, [20]. It turns out that bicircular projections are precisely those projections that are
(norm) Hermitian operators [15], thus the term Hermitian projections is also used. While early results on
bicircular projections were obtained for Banach spaces with nice algebraic structure [21], their connection
with Hermitian operators enables description of bicircular projections on other important Banach spaces
[15]. Further, the knowledge of the isometry group of a given norm (the symmetry group of the norm fune-
tion) allows description of projections P such that P 4+ A(I — P) is an isometry for not necessarily all, but
some unimodular A € C, [11]. Such projections are now known as generalized bicircular projections. They
decompose a Banach space into two complementary subspaces. At the same time, they can be considered
as eigenprojections of a two-point spectrium isometry with one eigenvalue 1 (which can be always assumed
without loss of generality). With this in mind, the results of [18] can be interpreted as follows: Eigenprojec-
tions of a two-point spectrum isometry with an eigenvalue 1 are both Hermitian projections, or the other
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eigenvalue is some n-th root of unity. Furthermore, for any n there is a complex Banach space allowing an
isometry with nonhermitian eigenprojections and spectrum {1, ei2r/ ”} However, it turns out that in many
classical Banach spaces the other eigenvalue is always —1, see e.g. a recent paper [6] for a list of examples
and references. In particular, it was pointed out in [6] that such Banach spaces act as a suitable framework
for studying the spectrum of isometries with an arbitrary finite number of eigenvalues.

It is natural to consider the decomposition of a given space into more subspaces based on the norm
structure, as well as to consider possible spectra of finite spectrum isometries. In this way this problem
can be regarded as a problem within the class of so-called inverse eigenvalue problems which are known to
have various applications, see e.g. [7]. It provides a link between the geometry of the norm, the correspond-
ing decomposition of a space into subspaces and also the spectral properties of the isometries. With this
motivation, we consider generalized circular projections.

Let (X,| - ||) be a complex Banach space and B(X) the algebra of all bounded linear operators on X'
Generalized circular projections were introduced in [14] (although some similar but less general concepts
appeared in earlier papers [2], [5] and [3]) and defined as follows.

Definition 1.1. A collection of nonzero projections {Py,..., P} € B(X), r > 2, is said to be a family of
generalized circular projections (with respect to || - ||) if

1. Pi&---& P, =1 (that is, P;P; = 6;; P; and Z;Zl P;=1), and
2. there exist distinct complex numbers Aq, ..., A, (necessarily of modulus one) such that

T:)\IP1+”'+)\T'PT‘
is an isometry of || - ||, that is, ||Tz| = |Jz| for all z € &

To be more precise, we say that {Py,..., P} is a family of r-circular projections corresponding to the
isometry 1" and cach P; is called an r-circular projection (with respect to || - ||).

Existence of a family {P1,..., P} € B(X) of r-circular projections is equivalent to the existence of an
isometry T of (X, | - ||) with precisely r elements in its spectrum, o(1') = {A1,..., A}, that is, to the
existence of an isometry with spectral decomposition APy + - + A P

Such r-circular projections are always polynomials in the corresponding isometry 1'. More precisely, we
have the following result; see [14, Proposition 2.4].

Proposition 1.2, Let P; € B(X) for j =1,...,r (r>2) and let A\y,..., A, be distinct complex numbers. The
following are equivalent.

1. T= 22:1 AjPj and P, ..., P are projections satisfying Py @ --- @& P = 1.
2. T (T — A1) = 0 and

Hj#(T - )\J'I)

p==Z 7
‘ Hj;éﬂ()\«’f - )‘j)

fori=1,...,r (1.1)

The case r = 2 has been studied extensively in different settings, in particular on various matrix spaces
in [11]. For 2-circular projections the term “generalized bicircular projections” has been used.

Extending the ideas and techniques in the previous study [11], we utilize the structure of the isometry
group of the norm to help study our problem. However, instead of treating just a particular normed space,
we solve the problem for whole families of finite dimensional Banach spaces, where each family consists of
norms with a certain group of symmetries. A key feature of our proofs involves using the knowledge of the
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common isometries of such norms; as such, special techniques arise naturally, and the analysis is necessarily
more technical and involved, requiring some intricate linear algebraic and combinatorial arguments. Thus,
although it might be nice find purely analytic tools to prove our results, our research becomes an interesting
example of a successful interaction of (linear) algebra and analysis.

Initial research of generalized bicircular projections [11] was also conducted in the finite dimensional
setting, but it led to the study of these mappings in various specific infinite dimensional Banach spaces
and initiated research in other directions that are interesting from the point of view of Banach space
theory. Similarly, we hope that our results on general classes of norms lead to further study in the infinite
dimensional case; perhaps more elegant proofs can be found. Since the study of an arbitrary number of
projections (instead of only two for the bicircular case) is more natural, we hope that this paper will also
be a good starting point for those interested in isometries of Banach spaces, in particular their spectra and
eigenprojections. Description of the isometries between various specific Banach spaces (including matrix
spaces) can be found in the two volumes [9] and [10].

Let G be the isometry group of a norm || - ||, that is, G = {T' € B(X) : |Tz| = ||z|| Vz € X}. Then the
Py, ..., P. in Proposition 1.2 are the eigenprojections of T € G with eigenvalues A1,..., A. In the finite
dimensional case, it is known that for every bounded group G in M, (the set of complex n x n matrices),
there is an invertible matrix S € M, such that S7'GS = {S7IT'S : T € G} is a subgroup of the unitary

group in M,, (by the Auerbach Theorem [4]; see also [8]). If G is the isometry group of the norm || - || then
S71GS will be the isometry group of the norm || - || defined by |[v||s = ||Sv||. Moreover, {P,..., P} is a
family of r-circular projections for (C”,| - ||) if and only if {S™1/ S, ..., S71P.S} is a family of r-circular
projections for (C™, || -||s). Thus, for a finite dimensional Banach space, we may focus on a norm || - || whose

isometry group G is a subgroup of the unitary group. The study of r-circular projections reduces to the
study of the eigenprojections of operators in certain subgroups of the unitary operators.

Similar to early study of bicircular projections, the study is easy if the Banach space under consideration
has nice structure. For our problem, the situation is easy if the norm is an inner product norm so that we
can assume that the isometry group is the full unitary group. We have the following.

Proposition 1.3. Let || - || be the norm on C™ induced by the standard inner product so that the isometry
group is the unitary group in M,.

(a) Any set {P1,...,P.} € M, of non-trivial orthogonal projections satisfying Py & --- & P, = I is a
family of r-circular projections, and Py + - + 1, Py is an isometry for any r distinct complex units
Hasoees e

(b) For any complex units p1, . .., pir with 2 <r < n, there is a family of r-circular projections { Py, ..., Py}
such that 1Py + - - - + puy Py is an isometry for the norm || - ||

As mentioned before, it is helpful to know the isometries of a given norm in order to determine its
r-circular projections. A class of norms may have the same isometry group if they share some common
properties, see [16]. In such a case, the class of norms will have the same r-circular projections.

For example, consider the £,-norm defined by £,(z) = (Z?:l |lz;|P)VP for @ = (x1,...,2,)" € C™ for
p € [1,00], where lo(z) = max{|z1],...,|za|}. If p # 2, then the isometry group of the /,-norm is the
group of generalized permutation matrices, i.e., matrices equal to the product of a permutation matrix
and a diagonal unitary matrix. So, all these norms will have the same r-circular projections. In fact, £,-

norms are examples of symmetric norms (a.k.a. symmetric gauge functions) on C". Recall that || - || is a
symmetric norm on C™ if | Pz|| = ||| for any generalized permutation matrix P. It is known that if ||-|| is a
symmetric norm on C™ not equal to an inner product norm, then the isometry group of || - || is the group of

generalized permutation matrices; e.g., see [16, Theorem 2.5]. Thus, all such norms have the same r-circular
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projections. In such a case, Proposition 1.3(bh) still holds. However, Proposition 1.3(a) fails. Instead, we have
the following.

Proposition 1.4. Let || - || be a symmetric norm on C™ which is not a multiple of the fa-norm. A set
{P1,...,P.} € M, of non-trivial orthogonal projections satisfying Py & --- & Pr = I is a family of r-
circular projections if and only if there are r distinct complex units pq, ..., p, such that py Py + -+ + p,. P,
is a generalized permutation matriz.

Given the simple structure of generalized permutation matrices, it is easy to check whether there are

distinct complex units pq,..., g, such that g Py + -+ - + P is a generalized permutation matrix for
a given family {P,..., .} of non-trivial orthogonal projections satisfying P, & --- & I, = I. For any
distinct complex units pa, ..., gy with 2 < r < n, there are orthogonal projections I, ..., P such that

1Py + - - -+ p P is a generalized permutation matrix. Also, one may theoretically generate all r-circular
projections by considering the eigenvalues and eigenprojections of all generalized permutation matrices (see
e.g. [11] for the case r = 2 and [3] for the case r = 3).

The situation may be more intricate for other classes of norms. In the next three sections, we consider
several classes of norms on matrices including the unitarily invariant norms, the unitary congruence in-
variant norms, and the unitary similarity invariant norms. In each case, we determine the structure of
r-circular projections, and determine all possible values r for the existence of a family of r-circular projec-
tions {P1,..., P} such that 1 Py + - - - + p, Pr is an isometry of a certain form. For instance, in Section 2,
the following is proved in Theorem 2.3.

(a) For a unitarily invariant norm on M, », there is a family of r-circular projections corresponding to
an isometry of the form A — UAV if and only if 2 < r < mn.

(b) For a unitarily invariant norm on M,,, there is a family of r-circular projections corresponding to an
isometry of the form A+ UA'V if and only if r € {2,...,n?} \ Ju, where Jy = {3,7,11} and J,, = {3,7}
for other n.

More complex results for unitary congruence invariant norms and unitary similarity invariant norms are
proved in Sections 3 and 4. Some remarks and future research directions will be mentioned in Section 5.

2. Unitarily invariant norms

Let M, ,, denote the set of complex m x n matrices (write M, instead if m = n). A norm || - || on M, ,
is unitarily invariant (ui) if |[UAV| = || 4] for any unitary U € M, and V € M,,. This is an important
class of norms comprising the operator norm, the trace norm, and the Schatten p-norms. In this section we
consider r-circular projections with respect to a unitarily invariant norm || || on M,, ,, that is not a multiple
of the Frobenius norm (so m,n > 2). (This restriction is made because the Frobenius norm is induced by
an inner product.) It is known (e.g., see [17]) that the isometries of || - || have the form

(1) A UAV for some unitary U € M, and V € M, or
(2) A UA'V for some unitary U,V € M, in the case m = n.

Thus, we can generate all the r-circular projections by studying the eigenvalues and eigenprojections of
isometries of the form (1) or (2).

On the other hand, given a family of non-trivial projections {F,..., P} acting on M, , such that
Py &---& P. =1, we may check whether it is a family of r-circular projections as follows.

Let

B = {E11,E21,...,Em1,E12,E22,...,Emn}
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be the standard basis for M, ,,, and Pi....,Pr,7 € M, be the matrix representation of P,..., P and
the transposition map A+ A?, respectively. Consider

(1) P21,y 20) = 24P1 + -+ - + 2Py, and

(2) P21y yze) = (4P + -+ 2.P)T if m=n.

Then { P, ..., Py} is a family of r-circular projections if and only if there are distinct complex units 21, ..., 2,
such that
(1) P(z1,. .., 2r) has the form U @ V for some unitary U € M,,,V € M,,, or

(2) m =n and P(2q,..., %) has the form U ® V for some unitary U,V e M,.

In the following, we will take a closer look at the structure of r-circular projections for unitarily invariant
norms. We can then determine all possible values r € [2,mn] for the existence of r-cireular projections,
where [ni,ns] denotes the set of integers ¢ such that ny < £ < na.

It will be convenient to write x @ y for xy®; then the map A > UAV is represented by U @ V! € M.
and if m = n, the transposition map A — A® is represented by the ‘swap’ operation x ® y + y ® = for
z,y € C™. Using this notation we record the following observations.

Lemma 2.1. Let m,n > 2 be positive integers. Let U € My,, V € M, be unitary matrices.

(a) Define T': My, o — My, by T(A) = UAV. Suppose U has orthonormal eigenvectors uq, ..., Uy, with
corresponding eigenvalues pi1, ..., jm; suppose V' has orthonormal eigenvectors vy, ..., v, with cor-
responding eigenvalues vy, ... ,vy. Then T has orthonormal eigenvectors u; @ v; with corresponding
eigenvalues pvy, 1 <i<m,1 <j <n.

(b) Suppose m = n and define T: M, — M,, by T(A) = UA'V. Suppose UV" has orthonormal eigenvectors
1,..., 2y with corresponding eigenvalues i1, ... pn. Then T has orthonormal eigenvectors

(with corresponding eigenvalues ;) and

1 * - * .
vi = ﬁ(,/yk:ch@U Ty @Uiz), 1<j<k<n

(with corresponding eigenvalues £ /5 /iy ). OQur convention for the square roots is that if p; = et
with —m < 0; <7, then \/lt; = e0i/2

Proof. (a) Since T'=U @ V?, the assertion follows immediately.
(b) Assume the hypotheses. Then T'(z @ y) = Uy @ V'x for all 2,y € C". In particular,

T(x; @ Urzy) = pjzg @ Urzy,
so a straightforward computation verifies that
;@ U x;, j=1,...,n,
(with corresponding eigenvalues y;) and

1

E(\/ukasj QU 'z £\ /piar@ U x;), 1<j<k<n
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(with corresponding eigenvalues &, /15, /fix) are orthonormal eigenvectors for 1. Since there are n? such
eigenvectors they form a basis for M,, and the result follows. O

Theorem 2.2. Let || - || be a unitarily invariant norm on My, » not equal to a multiple of the Frobenius norm.
Then {P1,..., P} is a family of generalized circular projections on My, », with respect to || - || if and only if
one of the following holds:

(a) There exist complex units pia, ..., [p 11, ... ,vq with {pv; 1 <i <p 1 <j<gq}={M,....\},
orthogonal projections Uy, ..., U, € My, with Zi.):l U; = In, orthogonal projections Vi,...,V, € M,
with Z?:1 V; = I, such that for j=1,...,r,

Pi(A)= Y UAVy forall A€ Myn.

Hive=A;

(b) m =n and there exist complex units &1, ...,&, (possibly with repetition) with

an orthonormal basis x1,...,x,, and a unitary U € M,, such that for j =1,...,r,
Py = Z VkkUkp T Z v vt + Z VU
2= Eifr=X; —&ile=A;
where
vjj=x; Uz, j=1,...,n,
vjik = %(ﬁka:j QU zr £&ar @ Utey), 1 <j<k<n

Proof. Apply Lemma 2.1 and set £; = ,/p; in part (b). O

Next, we consider the range of r values for the existence of r-circular projections for a ui norm. Since
an isometry 1': My, — My, has at most mn distinet eigenvalues, we see that r € [2,mn]. As shown in
part (a) of the following theorem, we can get r-circular projections corresponding to isometries of the form
A — UAV for any r € [2,mn]. The situation is different if m = n and we are interested in r-circular
projections corresponding to isometries of the form A + UA'V. It turns out that in this case r cannot be
3 or 7 for any n, and r cannot be 11 when n = 4 as shown in part (b) of the following theorem.

Theorem 2.3. Let || - || be a unitarily invariant norm on My, », not equal to a multiple of the Frobenius norm.

(a) There is a family of r-circular projections corresponding to an isometry of the form A — UAV if and
only if r € [2, mn].

(b) Suppose m =n. Let Jy = {3,7,11} and J, = {3,7} for all other n > 2. There is a family of r-circular
projections corresponding to an isometry of the form A s UA'W if and only if r € [2,n%]\ J,.

Proof. (a) Since dim M,,,, = mn, necessity is clear. To prove sufficiency, let r € [2,mn]. Define { =
e2mi/r ] = E;’; ¢U-bUnE € M, and V = Z?:l ¢/ Ej; € M,. Then the map A — UAV has spectral
decomposition £Py + 2P + -+ + £7 Py
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(b) From Theorem 2.2(h) r-circular projections exist if and only if there exists a set of the form
S={¢, ., & £&:1<j<k<nj#k} (2.2)

with r distinct elements.

Given v = [£1,&,...,&,] € CH*" we define a matrix S, with diagonal entries €7, ... &2, and (j, k)-entry
&k if § < kand =&, if § > k. It will be convenient to abuse notation by writing |S,| for the number
of distinct entries in §,, and a € §, to mean that a is an entry of §,. As our ounly concern is
without loss of generality assume {; = 1 and {; = e%i with pje0,m)forj=2,...,n.

S,| we may

We divide the proof into several steps, starting with the cases n = 2,3 and the necessity.

Step 1. Suppose n = 2. Let ug = [1,1], ug = [1,i]. Then |Sy,| = j for j = 2,4. In fact, only Sy, has 2
distinet entries and 8, has 4 distinet entries for any v = [1, €] with €™ # 1.

Step 2. Let n > 3. We show that |S,| # 3. If v = [1,1,...,1] then S, has 2 distinct entries. If there is
some &; # 1 then we may assume that & = ¢'? # 1 and the upper left 2-by-2 submatrix of S, already has
4 distinct entries. Therefore |S,| # 3.

Step 3. Suppose n = 3. Then |8,, | = k for k =2,4,5,6,8,9, and each §,, contains —1 as an entry if

ve = [1,1,1], wy=[1,1,4], ws=[1,1,e"4], wg=I[L,e™3 %3,

vg = [1,e™/4, /2] vy = [1,4,ie™/9].

Let us remark that §,, is the only 4 distinct entries case, while the 5 distinct entries cases are induced by
every [1,1,e"%] with e #£ i.

Furthermore, S, is the only 6 distinct entries case and all 8 distinct entries cases are induced by
[1,e% e2%] or [1,e'?, —e?¥] or [1,e!, —e '] with €% £ 1. Let us elaborate the last conclusion. If S,
has at least 6 distinet entries then v = [1, €1, e?¥2] with 1 # €'?1 # €'¥2 & 1. Then the off-diagonal entries
of S, are all distinet (recall that ¢q, s € [0,7)), so if S, has less than 9 distinct entries then 1 = —e#(#i %)
or 2% = %k or 25 = ek for {4, k} = {1,2}. If any two of these three equations hold (for example if
elPt = e2iv2 — (—2%1)2) then we get vg; otherwise we get an 8 distinct entries case.

Step 4. Let n > 4. We show that \SL\ = 7. If v has at most one entry different from 1 then S, has at most
5 distinct entries. Suppose that v has at least two distinct entries not equal to 1, which are not both sixth
roots of unity. We may assume that they are £ and &;. Then the upper left 3-by-3 submatrix of &, has at
least 8 distinct entries. Now suppose that & and &3 are distinct sixth roots of unity. If all entries of v are
sixth roots of unity then S, has 6 distinct entries. Otherwise we may assume that &4 is not a sixth root of
unity. Then the upper left 4-by-4 submatrix has at least 6 more distinct entries than the upper left 3-by-3
submatrix does; that is, the upper left 4-by-4 submatrix has at least 12 distinct entries. Therefore |S,| # 7.

Step 5. Suppose n = 4. We show that |S,| # 11. Suppose there exists w11 = [21, 29, 23, 24] such that Sy,
has 11 distinct entries. Then the set {22, : 1 < j < k <4} U{—2zj2 : 1 < j < k < 4} has at most 11
elements. So z;2, = 2,2, Or 22, = —2,%,; since the elements of S, , are unchanged by replacing z; with
—2;, we may assume the former. We must have {j, k,p.q} = {1,2,3,4} (otherwise we have z, = z, for
some r # s, giving at most 10 distinct entries for S,,,). By permuting if necessary, we may assume that
2129 = 2324. Replace [21, 29, 23, 24] by ﬁ[zl,zg,z&zd so that 2129 = 2324 = 1. Thus, u1 = [a,&,ﬁ,B].

Then £1 € §,,, and S

wyy 1s invariant nunder complex conjugation, so §,,,, has an even number of distinct

entries. Contradiction.
We have thus far proven the necessity of our statement, as well as sufficiency for n = 2,3. To prove
sufficiency for n > 4, we establish some auxiliary results first.
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Step 6. Let n > 3. We show that for each integer r satisfying 4n — 4 < r < 6n — 10, there exists a vector
x € C" such that 2y = 1, all other entries of  are distinct numbers in the upper half-plane, —1 ¢ S,, and
|S2| = .

Let = € with 8 € (0,7/2). Let n > 3 and = = [1,pt,...,pu" 2, " 9] with 0 < d < n — 3. If we
choose p so that 26(n — 1 4 d) < « then the entries of S, are

[L 20Dy ot g2 a2,

50 |Sz| = 4n — 4+ 2d. If d > 0 and we choose p so that p2("= %4 — —j then |S,;| = 4n — 3 + 2d. In both
cases —1 is not an entry of §;. By varving d we get the conclusion.

Step 7. We claim that, for all integers n > 3 and 4n — 4 < r < n?, there exists a vector € C” such that
x1 = 1, all other entries of x are distinct numbers in the upper half-plane, —1 ¢ S.., and S; has r distinct
entries.

The proof is by induction on n. Taking = equal to [1,e"™/6 e'™/3] or [1,e'™/6 ¢i™/4] shows that the claim
holds for n = 3. Now suppose the claim holds when n = m > 3, so for each r € [4m — 4, m?] there exists
a vector x € C™ such that 1 = 1, all other entries of x are distinct numbers in the upper half-plane, and
—1 ¢ S;. We may write z; = €™ with 0 = a1 < ag < -+ < @y Choose a1 1 € (0,7/2) such that a,, 1 is
not a Q-linear combination of 1,ay, ..., ay,. Let y = [z, e™@m+1]. Then Sy has r+2m+1 distinct entries and
—1¢ 8,. Thus the assertion holds for n =m+1and 6(m+1)—9=6m—3 <r <m?+2m+1= (m+1)2
Combining this with Step 6 we see that the claim holds for n = m + 1, and result holds by induction.

Step 8. We prove the sufficiency of our statement for n = 4. Observe that if 1 = 1 and —1 € §,., then
ISiz1)| = [Se|: if 21 = L and —1 ¢ S, then |Sp, 3| = 1 + [S,| (the extra element in Sj, 1) is —1). Applying
this observation to Step 3 we see that r € {2,4,5,6,8,9,10} can be achieved for all n > 4. Coupled with
Step 7 we get the conclusion.

Step 9. We claim that, for all integers n > 5 and 2 <r < 4n — 4, r £ 3,7, there exists a vector & € C"
such that 2y =1, =1 € §;, and |S;| = 7.
The proof is by induction on n. Let

Uy = [1’ 1, Eifr/lO‘ Ez’ﬂ'/lO\ eiﬂ'/4L Uy = [1: 1, Ez’?r/‘G1 eiﬁ/:}’,ﬂ'

Then |S,,| = k and —1 € 8, for k = 11,12, Applying the observation in Step 8 to Step 7 shows that the
assertion holds for n =5, 13 < r < 17. Thus the claim holds for n = 5.

Now suppose the claim holds for n = m > 5. Applying the observation in Step 8 the assertion holds
forn=m+1and 2 <7 < 4m — 4. Applying the observation in Step 8 to Step 7 the assertion holds for
n=m-+1and 4m —3 <+ <m?2+ 1. Note that m2 +1 > 4(m + 1) — 4 since m > 5. Thus the claim holds
forn=m+1.

Together Step 7 and Step 9 show that the theorem holds for n > 5. O

3. Unitary congruence invariant norms

In this section, we consider unitary congruence invariant (uci) norms on square matrices, i.e., [|A| =
|UAU"|| for any unitary matrix U. Tt is natural to consider such norms on the space of symmetric matrices
and the space of skew-symmetric matrices (since these are reducing subspaces for the map A — UAU?),
and the space of general square matrices when a matrix A € M,, is viewed as a bilinear form (z,y) + x* Ay.
As we will see, the structure of r-circular projections for uci norms is more intricate. The case r = 3 was
studied in [1].
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To facilitate our discussion, let S, (respectively K,) denote the space of complex n x n symmetric
(respectively skew-symmetric) matrices. To avoid the trivialities of one-dimensional spaces we assume n > 2
for S, M, and n > 3 for K,,. Let V be one of M,,, S,,, or K,,. Then a uci norm || - | : V" — R is a norm
for which the operator Ty, defined by Ty (A) = UAUY, is an isometry whenever U is unitary.

As mentioned before, it is necessary to understand the isometries of a given norm to determine its r-
circular projections. By [16, Theorem 2.8], an isometry for a ueci norm on S, that is not an inner product
norm has the form

(S1) A — UAU" for some unitary U € M,,.

By [16, Theorem 2.9], an isometry for a uci norm on K, that is not an inner product norm has the form

(K1) A UAU" for some unitary U € M,,, or
(K2) A (UAU?) for some unitary U € My and ¢(X) is obtained from X by interchanging its (1,4) and
(2,3) entries, as well as its (4,1) and (3,2) entries, in the case n = 4.

By [12, Theorem 7.3], if a uci norm on M,, is not ui, then an isometry has the form
A Ti(A+ AY /2 +To(A— AY)/2, where

(M1) Tj is a unitary operator on Sy, or T has the form A — VAV? for some unitary V € M,,
(M2) Tj is a unitary operator on K, or Ts has the form (K1) or (K2) above.

Note that if T} has the form X — UXU? and T has the form Y — UYU? for the same unitary U € M,
then T has the form A — UAU?®. If Ty has the form X — UXU? for some unitary U € M,, and Ts has the
form Y — (iU)Y (iU)* = —UY U", then T has the form A — UA*U".

Similar to the situation for ui norms, one can generate “all” r-circular projections for a uci norm | - || on
Sy, K, M, respectively, by studying all the eigenvalues and eigenprojections of the isometries of the norm
il

On the other hand, given a family of projections {F4,..., P.}, one may use the matrix representations
of Pq,..., P, with respect to the orthonormal basis

Bli{EﬁISJSH}U{%(E”ﬁ»EJZ)1§?<]§’n},
By = {%(EU — k)1 <i<j<n}, and B=DByUBs,

for S,. K. and M, respectively. Similar to the discussion in Section 2, if P1,..., P, are the matrix repre-
sentations of the projections P, ..., P, with respect to the orthonormal basis By, Bs or By U By depending
on the underlying space, one only needs to check whether there are complex units ji1,..., gy such that
p1Pr + -+ -+ 1, P, corresponds to a matrix representation of an isometry T for the uci norm || - ||. It is worth
noting that given a unitary U € M,,, the matrix representation of the map A — U AU with respect to the
basis B1 U Ba has the form

U Uls,
UoUlk, )’

where U @ Uls, € Myny1)2 and U @ Uk, € My, (,,_1)/2 are the matrix representations of the restrictions
of U ® U on the subspace S,, and K, with respect to the bases By and B, respectively. Moreover, the
following statements hold.
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(a) For a uci norm on Sy, {P,..., P} is a family of r-circular projections if and only if there are complex
units p1, ..., ptr and unitary U € M, such that 1Py + -+ o Pr = U @ Ulsg,,-

(b) For a uci norm on K, {Py,..., P} is a family of r-circular projections if and only if there are complex
units pq, ..., iy and unitary U € M,, such that
(b.1) p1P1+ -+ e Pr =U ®Ulg,, or
(b.2) n=4and iy Pr+-- -+, P, = (UU|g,)Q, where Q is the matrix representation of ¢ with respect

to the basis Ba. Note that @) € Mg is the permutation matrix corresponding to the exchange of
the basic vectors F1y — Ey; and Fag — Eas.

(¢) For a uci norm on M, which is not ui, {Py,..., Pr} is a family of r-circular projections if and only if
there are complex units ey, ..., g, and unitary U € M, such that puyPy + - + p. P = Ty @ T3 such
that
(c.1) Ti € Myny1)/2 is a unitary operator or 7y = U @ Ulg, for some unitary U € M, and
(¢.2) T2 € My, (—1y/2 is a unitary operator, To = V @ Vg, for some unitary V € M, or n =4 and Ty

has the form in (b.2).

In the following lemma, we obtain additional information about the structure of the eigenvalues and
eigenprojections of maps of the form A — UAU" on S,,, K,,, and M,,. The results allow us to determine »

for the existence of r-circular projections.

Lemma 3.1. Let U € M, be unitary with eigenvalues pi1, ..., jty, and corresponding orthonormal eigenvectors
Ui, ..., Uy. Then the map Ty: A — UAU? has

1. eigenvalues {yi;p0; = 1 <i,j < n} (with corresponding eigenvectors uzu;) when Ty acts on My;

2. eigenvalues {p;p1; 0 1 < i < j < n} (with corresponding eigenvectors uiuz + ujul) when Ty acts on S,;
and

3. eigenvalues {puey 1 1 < i < j < n,i# j} (with corresponding eigenvectors uu; — uju;) when Ty acts

on K;,.

Proof. Direct verification. O

Thus there is an r-circular projection associated to an isometry 7y (with U7 unitary) acting on M, or S,
(respectively K,,) if and only if there exist complex units jq, ..., pt, such that

Ss = {piprj 11 <i,j <n} (respectively Sg = {paprj 1 1 <i < j < n}) (3.3)
has exactly r elements.
Theorem 3.2. Let || - || be a uci norm on S, that is not an inner product norm, where n > 2. A family of
operators { Py, ..., P,} is a family of generalized circular projections if and only if there exist complex units

Py with {ppy 0 1 <@ < j < p}b ={\,..., A}, and orthogonal projections Uy,...,U, € M, with
;’:1 U; = I, such that for j =1,... 7,

1
P;(A) = Z §(UiAU,§ + UgAU})  forall A€ S,.
Hiltk=A;
Moreover, there is a family of r-circular projections corresponding to the norm || - || if and only if r €

2,n(n +1)/2).
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Proof. Since every isometry for || - || has the form A — UAU?" for some unitary U € M, the first statement
follows readily from Lemma 3.1.

For the last statement, the necessity is clear because dim S,, = n(n + 1)/2. To prove the sufficiency, we
first establish the following.

Claim. Let r,n be integers satisfyingn > 2, 2n—1 <r <n(n+1)/2. There exist distinct integers 0 = aq <
-+ < ay, such that the cardinality of {a; +a; : 1 <1i,j <n} equals 7.

The proof is by induction on n. Setting a; = 0, as = 1 proves the claim for n = 2.

Suppose the claim is true for n = k. Choose integers 0 = a7 < -+- < aj so that the cardinality of
{a; +a; : 1 <1i,j <k} is c. Choose agq1 = 2ax + 1. Then the cardinality of {a; +a; : 1 <i4,j <k+ 1} is
¢+ k + 1. By the induction hypothesis {a; +a; : 1 <4,j < k + 1} can have cardinalities ranging from 3k
to k(k+1)/2+k+1=(k+1)(k+2)/2. But we can also attain cardinalities from 2(k 4+ 1) — 1 to 3k by
choosing a; = j — 1 for j=1,...,k and a1 = k + d and letting d range from 0 to £ — 1, so by induction
the claim is proven.

To finish the proof of the theorem, we exhibit a set of the form Ss in (3.3) of size r. First let 2n—1 < r <
n(n +1)/2. By the claim above, we can choose integers 0 = a; < --- < a, so that {a; +a;:1<4,j <n}
has r distinct elements. Let p1; = eimei/3an Then {pip; 1 <i,j <n} has size r.

Now let 2 <7 < 2n — 1. Let p; = 2=/ Then {,uz-,uj 1<, < n} consists of the complete set of
rth roots of unity, and hence has size r. O

Theorem 3.3. Let || - || be a uci norm on K, that is not an inner product norm, where n > 2. A family
of operators {Py, ..., P.} is a family of generalized circular projections if and only if one of the following
holds.

(a) There exist complex units ju1, ..., pp with {pip; = 1 < i < j < p} = {A,..., A}, and orthogonal
projections Uy, ..., U, € M, with Z§:1 U; = I, such that for j =1,...,r,

Pi(A)= > %(UiAU}é + ULAUY)  forall A€ K,,.
Hife=A;

Moreover, there is a family of r-circular projections corresponding to an isometry of the form A — UAU?
on K, if and only if r € [2,n(n—1)/2].

(b) n=4 and {Py, ..., P.} correspond to the eigenprojections of a map of the form A — b(UAU?) for some
unitary U € My. Moreover, there is a family of r-circular projections corresponding to an isometry of
the form A w— (UAU?Y) if and only if r € {2,4,6}.

Proof. Since every isometry for || - || has the form (K1) or (K2), the first statements of (a) and (b) follow
readily from Lemma 3.1.

For the second statement of (a), the necessity is clear because dim K,, = n(n — 1)/2. To prove the
sufficiency, we establish the following.

Claim. Let r,n be integers satisfying n > 3, 2n—3 <r < n(n—1)/2. There exist distinct integers 0 = a; <
- < ay such that the cardinality of {a; +a;: 1 <i,j <n,i# j} equalsr.

We prove the claim by induction on n. Setting a; = 0, ag = 1, ag = 2 proves the claim for n = 3.
Suppose the claim is true for n = k. Choose integers 0 = a7 < --- < ap so that the cardinality of
{ai+a; 1 <i,j<k,i# j}isec Choose a1 = 2ax. Then the cardinality of {a;+a; : 1 <i,j < k+1,i # j}
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is ¢ + k. By the induction hypothesis {a; +a; : 1 <i,j < k+1,i# j} can have cardinalities ranging from
3k —3to k(k—1)/2+k=k(k+1)/2. But we can also attain cardinalities from 2(k + 1) — 3 to 3k — 3 hy
choosing aj = j—1for j=1,...,k and a1 = k 4+ d and letting d range from 0 to k — 2, so by induction
the claim is proven.

Now, we finish the proof of the second statement of (a). We will exhibit a set of the form Sk in (3.3) of
size r. First let 2n—3 < r < n(n—1)/2. By the above claim, we can choose integers 0 = ay < --- < ay, so that
{a; +a; : 1 <4d,j <n,i#j}has r distinet elements. Let p; = e%/3% Then {5 : 1 < i, < n,i # j}
has size r.

Now let 2 <r < 2n — 3. Let p; = e27(G=1/7 Then {paprj 1 1 < i, j < n,i# j} consists of the complete
set of rth roots of unity, and hence has size r.

Next, we turn to the last statement of (b). For U € My unitary we define 7" on K4 by T'(A) = (U AU?").
If U = diag(p1, pr2, pa, pra) € My, then T has eigenvalues

S = {ppa, prpz, /det(U), —/det(U), popua, prapea}

and corresponding eigenvectors

{e1 Neg,eq Nes, %(\/Mgﬂs e1 Aeg+ /ipies Aes), %(\/ﬂws e1 Aeg — /g ea Aes),eg Aeg ez Aeg),

where e; A e = ejef — ekej-. Now, for U = diag(1,1,1,1) the set § has 2 distinct values; for U =
diag(1,4, —1, —i} the set S has 4 distinet values; for U = diag(1,w,w?, w?) with w = e27/6 the set S
has 6 distinct values.

It remains to show that r = 3,5 are impossible. We claim that, up to a unit multiple, T" has eigenvalues
of the form 1,—1,«,a, 3, 3, where a, 3 may be real or complex, whence T cannot have 3 or 5 distinct
eigenvalues. To prove our claim, assume U € My is unitary. We may replace U hy U/ det(U)U 4 and
assume that det(U) = 1. Let P,R € Mg be the matrices representing the transformations A — )(4)
and A — UAUY, respectively, acting on Ky with respect to the lexicographically ordered basis {e; A es =
erel —egel 11 < r < s < 4}. Then P is obtained from Ig by interchanging columns 3 and 4, and
R = C5(U) is the 2-compound matrix of U/. Note that the entries of R are given by det(U(w, 3)), where
U(w,3) € My is the submatrix of U with rows and columns indexed by the entries of « and 3, where
a,fe{(j1,42) : 1 <j1 < ja <4}

By Jacobi’s theorem on complementary minors (e.g. see [13, Section 0.8.4]), if U(&/, ') is the comple-
mentary submatrix of U(a, ), then det(U(a, 5)) = (=1)*1Fe2+F1+h2 det(o/, 3'). Consequently, we have
R = DRD with D = Eig + Eg1 + E34 + Ey3 — Eo5 — Esy, and thus PR = (DPD)(DRD) = DPRD.
Hence PR is unitarily similar to PR, so the complex eigenvalues of PR occur in conjugate pairs. Since
det(PR) = —1, we sce that T = PR has cigenvalues 1, —1,a, &, 3, 3. Our claim follows. O

Note that we do not give a general description of the structure of Pp,..., P in (b). Nevertheless, if T'
has the form A — (UAU*), it is easy to write down the matrix representation of T as a unitary matrix in
Mg, and determine its eigenvalues and eigenvectors.

Finally, we turn to the generalized cireular projections for a uei norm on M,, that is not ui. To put our
result into perspective, we note that for a ui norm on M,, its isometry group consists of operators of the
form A+ UAV or A+ UA'V for some unitary matrices U,V € M,. So, in Section 2 we have determined
all values r for the existence of a family of r-circular projections according to these two types of isometries.
The situation for a nei norm on M,, is different; we have the following three possibilities for the isometry
group (see [12,16] and references therein).

(a) The isometry group consists of operators of the form A +— UAU® for a unitary matrix U € M,.
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(b) The isometry group consists of operators of the form A — UAU" or A — UA'U" for some unitary
UeM,.

(¢) The isometry group contains an element of the form A — [(A+ A") + W(A — AY)W?]/2 for some
non-scalar unitary W € My, in which case the isometry group contains all the maps of the form
A [UA+ AU + V(A — AHVT]/2 for any unitary U,V € M,,.

In case (¢) it is possible that the isometry group contains many other elements, such as operators of the
form A [T1(A+ AY) +Th(A — A")]/2 for any unitary operators 177 and T on S, and Ky, respectively. In
these cases one can easily construct r-circular projections with r within a certain desired range as noted in
Proposition 1.3. Hence, we will focus on r-circular projections corresponding to isometries of the forms in
()-(0)

Note also that not much is said about the structure of r-circular projections in Theorem 3.4 for the
following reason. Suppose that a family of r-circular projections {Py,. .., Pr} corresponds to the isometry
A= Ty (A4 A")/2 +T5(A — A")/2. We can always assume that P;(S,) € S, and P;(K,) C K, for
J =1,...,r. If T} is a unitary operator for 7 € {1,2}, then the structure of I,..., P, is quite liberal
as shown in Proposition 1.3. Otherwise, Theorems 3.2 and 3.3 can be used to determine the structure of
Pi,..., P.. We are now ready to state and prove the following.

Theorem 3.4. Let || - || be a uei norm on M, that is not ui. Then {Py,...,P.} is a family of generalized
circular projections if and only if Py, ..., P. are the eigenprojections of a map of the form A — Ti(A +
AN /2 + To(A — A*) /2, corresponding to distinct eigenvalues A1, ..., Ay, where Ty, Ty are described in (M1),
(M2) at the beginning of this section.

(a) There is a family of r-circular projections corresponding to an isometry of the form A — UAU" for a
unitary U € M, if and only if r € [2,n(n+1)/2].

(b) There is a family of r-circular projections corresponding to an isometry of the form A — UA'U" for a
unitary U € My, if and only if r € [2,n%)\ Jo, where Jy = {3,7,11} and J,, = {3,7} for all other n > 2.

(¢) There is a family of r-circular projections corresponding to an isometry of the form A — U(A +
ANU /2 + V(A — AYVE)2 for some unitary U,V € M, if and only if r € [2,n?%].

Proof. The first statement is clear. We turn to the proof of statements (a) (c).

(a) From Lemma 3.1, an isometry of the form A — UAU? has at most n(n + 1)/2 eigenvalues (namely
S = {pp; 1 < i < j < n}, where pq, ..., 1, are the eigenvalues of U), proving the necessity. For the
sufficiency, Theorem 3.2 shows that for any r € [2,n(n + 1)/2] there exists a unitary U with |S| = r, so the
result holds.

(b) The eigenvalues of a map T of the form T(A) = UA'U" are characterized by Lemma 2.1(b), with
V = Ut. Note that the eigenvalues of 1" depend only on the eigenvalues of UV' = U2, so the restriction
V = U* poses no additional constraints. Thus we may apply Theorem 2.3(b) to obtain the desired conclusion.

(¢) If r € [2,n(n + 1)/2] we can, by part (a), find a unitary U such that the map A — UAU? has r
distinct eigenvalues; the result follows by taking V = U. For larger r, we may write r = 1 + ro, with
r1 € [2,n(n+1)/2] and rs € [2,n(n — 1)/2]. By Theorem 3.2 there exists a unitary U such that the map
Ti: Sp — Sy, defined by Ty (X) = UXU?, has rq distinet eigenvalues; by Theorem 3.3 there exists a unitary
V such that the map Ty: K,, — K, defined by T5(Y) = VY V?*, has ro distinct eigenvalues. By replacing
V with €V for an appropriate choice of 8 we may assume the eigenvalues of T} and T are disjoint. Then
the map 11 ¢ 15: M, — M, has r distinct eigenvalues and the result follows. 0O
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4. Unitary similarity invariant norms

A norm || - || on M, is unitary similarity invariant if [|[UAU*|| = || A for all unitary U € M,,. This is a

broad family of norms which includes the unitarily invariant norms, but also other important norms like the
numerical radius, as well as hybrids like the sum of the spectral radius with the operator norm. For unitary
similarity invariant (usi) norms which are not unitarily invariant (ui), let G be the group of maps on M, of
the form A — UAU*, where U is unitary. There are two irreducible subspaces of the group action: the set
of scalar matrices C1,,, and the set of trace-zero matrices M’,? = {A c M, trA= O}. We can also regard G
as a group of real orthogonal operators acting on H,, the real linear space of Hermitian matrices. By [12,
Theorem 6.2] (see also [16, Theorem 2.7]), we have the following.

o If| - is a usi norm on H,, that is not induced by an inner product, then its isometries have the form
A= £(tr A)I/n+To(A— (tr A)I/n),
where Tj is an orthogonal operator on {A € H,, : tr A = 0}, or Ty has one of the forms
A= UAU" or A UAU™.
o If| - is a usi norm on M, that is not ui, then its isometries have the form
A= altr A) /n+ 8T5(A — (tr A)I /n),

where «, 5 are complex units, and one of the following holds for 1.
(1) Ty is a unitary operator on MY = {A € M, : tr A = 0}.
(2) Tp has the form

A— UAU~ or A UAU™.

(3) n =4 and T) € A, the group of operators acting on M§ = {A € My : tr A = 0} that is isomorphic
to U(6) acting on K¢ through the action A — UAU" via the following identification (e.g., see [22]).

Let
0 1 0 —i 10
oo=I2 or={y o) 2={; o) =={o -1)

Let 0% = 0; @ oj for 0 < 4,7 < 3, and consider the orthonormal basis
C={o7=0;00;:0<i,j<3}\{c"}

of the real linear space HY = {A € Hy : tr A = 0}. Denote hy Ajj = By — Ej; € Kg, and define a
linear map L from HY to Kg by sending

(0_01’0_02’0_03’0_1070_1170_12’0_1370_2070_21‘0_2270_23‘0_30‘0_31‘0_32‘0_33)

to  (Aoa, Ase, Aog, Ais, Ase, Ao, Aas, A13, Ass, Aos, Asa, Ass, As1, A1, A1a).

Then L is a real orthogonal map preserving the Lie product, ie., L(AB — BA) = L(A)L(B) —
L(B)L(A). Moreover, a linear map of the form A + UAU* on HY corresponds to a linear map
INJL(A)Urt on the real linear span of {Aij 1 <i<j < 6} C Ks. As a result, a linear map of the
form A — UAU* on MY corresponds to a linear map ﬁL{A)ﬁt on Kg, and is an element in A. Of
course, A contains many other elements.
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Once we know the isometry group of a given usi norm || - || on M, we can generate all the r-circular
projections by studying the eigenvalues and eigenprojections of its isometries as before. Given a family of
projections {Pi, ..., Pr} we can use their matrix representations P1, ..., Py to check whether it is a family
of r-circular projections. The trickiest case is to check whether {P, ..., P.} is associated with an isometry
T € A. In such a case, we have to embed the projections as maps on Kg and then determine whether it
corresponds to a map A — UAU® for a unitary U € Mg with r distinet eigenvalues.

In the following, we investigate the structure of r-circular projections for usi norms, and determine all
values r such that r-circular projections exist for a given usi norm. We start with a simple ohservation.

Lemma 4.1. Let U € M,, be unitary.

(a) Define T: My, — My, by T(A) = UAU*. Suppose U has orthonormal eigenvectors uy, . .., u, with corre-
sponding eigenvalues jiy, . .., jin. ThenI" has orthonormal eigenvectors u; @, = uuj with corresponding
eigenvalues JifL for1l<i,j<n.

(b) Define T: M, — M, by T(A) = UA'U*. Suppose UU has orthonormal eigenvectors xi, ...,z with
corresponding eigenvalues £2,... &2, Then T has orthonormal eigenvectors

(with corresponding eigenvalues 5? ) and

1 * * .
jik:ﬁ(gkij@U vy, U ), L<j<k<n

(with corresponding eigenvalues £&;&x ).

v

Proof. Apply Lemma 2.1 with V' = U* and write §; for | /fz; in part (h). O

Theorem 4.2. Suppose || - || is a usi norm on M, that is not induced by an inner product. Then {Py,..., P.}
is a family of generalized circular projections if and only if they are the eigenprojections of a map of the
form

A= altr A)I /n+ pTo(A — (tr A)I /n),

where v, 3 are complex units and Ty is either a unitary map on M) ={A € M, :tr A=0}, Ty € A, or Tp
is a map of the form

A= UAU™ or A UAU*.

(a) There is a family of r-circular projections corresponding to an isometry of the form A w— UAU™* if and
only if r € [2,n2 —n +1].

(b) There is a family of r-circular projections corresponding to an isometry of the form A — UA'U* if and
only if r is even and r € [2,n% —n + 2].

(¢) There is a family of r-circular projections corresponding to an isometry of the form A — a(tr A)I/n+
To(A— (tr AYI/n) for a complex unit o and a unitary operator Ty on MY if and only if r € [2,n°]. Here,
for the sufficiency, one may choose Ty to be a real orthogonal map leaving HY invariant.

(d) There is a family of r-circular projections corresponding to an isometry of the form A — a(tr A)[/4 +
To(A — (tr A)I/4) on My with Ty € A if and only if v € [2,16], which equals [2,n?] with n = 4.
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We do not say much about the structure of the r-circular projections. In fact, if one sees that the r-
circular projections correspond to a certain type of isometry, it is not difficult to determine the structure
of the r-circular projections with the help of Proposition 1.2 and Lemma 4.1. Our proof will focus on the
possible values of r in (a) (d). To obtain the result in (a), we need the following.

Lemma 4.3. Let r,n be integers satisfying n > 2, r is odd, and 2n—1 < r < n(n—1)+1. There exist distinct
integers 0 = ay < -+ < ay such that {a; —a; : 1 <i,j <n} hasr elements.

Proof. Setting a1 = 0, as = 1 proves the lemma for n = 2.

Suppose the lemma is true for n = k. If 0 = a1 < -+ < a and {az- —aj 1 <i,j< k} has ¢ elements,
then choosing ap11 = 2ap +1 results in {a; —a; : 1 <i,j < k+ 1} having ¢+ 2k elements. By the induction
hypothesis, the lemma holds when n =k +1 and 4k — 1 <7 < (k+ 1)k + 1 with r odd. On the other hand,
one may choose aj =j —1for j=1,...,k and ary1 =k +d, where 0 < d <k — 1. Then

{fai—a; 1 <i,j<k+1}={0.+1,....+(k+d)}

has 2(k + d) + 1 elements, so the lemma holds for n =k + 1 and 2k + 1 < v < 4k — 1 with r odd, and the
result holds by induction. O

Proof of Theorem 4.2. (a) Note that 1 is an eigenvalue of multiplicity at least n for the map A — UAU*,
so r < n? —n + 1. To prove sufficiency, we consider two cases.

i) Suppose 2n—1 <r < n(n—1)+1. If r is odd then, by Lemma 4.3, there exist integers 0 = a1 < -+ < an
such that Q = {a; —a; : 1 <i,j < n} has r elements. Let p; = e /2an  Then {pipj : 1 <i,j <n} hasr
elements. If 7 is even let s = r + 1 and choose integers 0 = a; < --- < a, such that € has s elements. Let
prj = €%/ Then {p;fi; : 1 <i,j < n} has r elements. Let D = diag(j1, ..., ftn). By Lemma 4.1(a) the
map A — DAD* has r distinct eigenvalues.

ii) Suppose 2 <r < 2n — 1. Let My = e2m(=1)/T Then {,uiﬁj 1 <i, g < n} consists of the complete set
of rth roots of unity, and thus has size r. Let D = diag(1, ..., pt). By Lemma 4.1(a) the map A — DAD*

has r distinct eigenvalues.

(b) By Lemma 4.1(b) there exists a family of r-circular projections corresponding to an isometry of the
form A+ UA'U* if and only if there exists a unitary U such that {¢7,...,&2} are the eigenvalues of UU
and

S:{Efaagﬁsi§j£k1§3<k§n}

has exactly r elements.

Since a(UU) = o(UU) = o(UU), the spectrum of UU is symmetric about the real axis; moreover,
det UU = 1. Conversely, any finite set of unimodular complex numbers that is invariant under complex
conjugation and has product equal to 1 can be realized as the spectrum of UU:; for example, take U to be

eit
10
projections exist in this case if and only if there exists a set of unimodular complex numbers {£2,... £2}

a direct sum of [ } for appropriate values of ¢t € [0, 7], and a copy of [1] if n is odd. Thus r-circular

that is invariant under complex conjugation, has product equal to 1, and is such that & has exactly r
elements.

In particular we may assume that {£1, ..., &, } may be divided into pairs of complex conjugates, with an
extra 1 if n is odd. Thus § is invariant under complex conjugation and always contains {—1, 1}, so § always
has an even number of elements.
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If n = 2m we may write {&1,..., & = {A, s A, AL, oo, A S0

Sc NN

DA LG <mPU{EL EXN A EL/(AAL), £A; /A 1 1 <Gk <m,j # k).

The sets on the right-hand side have at most 2m + (2 +4m(m — 1)) = 4m? — 2m + 2 = n? — n + 2 distinet
elements. If N = 2m + 1 we simply adjoin &,+; = 1 to the preceding case; then & gains at most 2n more
distinct elements (from {+¢; : 1 < j < n}), to give a maximum of n*4+n+2 = (n+1)*—(n+1)+2 = N2-N 42
distinct elements. This proves that r is restricted to even values between 2 and n% _—n 12

To show that all such values of r are possible, we divide the proof into two main cases: n even or n odd.
As in the proof of Theorem 2.3, given v = [&1,...,&,] € CY*" we define 8, € M,, to be the matrix with
diagonal entries &2,...,&2 and (j, k)-entry &€k if j < k and —&;& if 7 > k. It will be convenient to write
T = Sz 7, and let |T:| be the number of distinet entries in 7.

We begin by considering the case when n = 2m is even.

Step 1. We show that the result holds for n = 2. If vo = [i] then T, has 2 distinct entries, namely +1. If
vy = [e"] for 0 < ¢ < 7, ¢ # 7/2, then T, has 4 distinct entries.

Step 2. We show that the result holds for n = 4. Let v be one of the following:

vy =[1,1], wyg=[1,i], we=[e™3 23] w5 =[£I/

V1o = [ezﬁr/S, 61’2#/5}’ Vig = [ez"rr/(a" 6’!:7(/3]’ Vg = [eiﬂ/S’eiﬁ/ﬂ.

Then 7, has k distinct entries.

Step 3. Suppose n = 2m with m > 3. Let & = [, ..., u™]. Then the distinct entries of T, are {pu™, p= "} U
{+p7 : —(n—1) < j <n—1}. Let r be an even integer in [2,4n] and let yu = €2™*/7. Then Arg p™ > 7/2, so
T contains all the rth roots of 1 in the first quadrant, as well as the negatives of these roots. Since the set

"

of entries of T, is invariant under conjugation, 7, consists of the complete set of rth roots of unity, hence

[Tz = r.

Step 4. We show that the result holds for n = 6. Let

;s U2 = [

Vag [eivr/‘lS! ¢i27/15, ez‘4ﬂ/15}

in/15 i%w/15 idw/15
[ / 7e / 7e / ]’

[i7/24 giBT/24_yib/24] [97/20 gidm/20 o i5m/20]

V30 ; U3z

Then |T,, | = k. Combine this with Step 3 to see that the result holds for n = 6.

Step 5. Suppose n = 2m and m > 4. We show that there is v such that |7,| = r for any even number r
satisfving 4n — 2 < < 8n — 14.
]
then the entries of T, in the first quadrant are {ps, 2, ... p p24Y: except for p2? the negatives of these
elements are also in 7. Then T, has 4(d+m — 1) + 2 + 2 = 4(d + m) distinct entries. If one chooses j1 so
that (3d +m — 1)a = 7 (in which case p®? = —p~(@t™m=1) then T, has 4(d+m — 1) + 2 = 4(d + m) — 2
distinct entries. Thus we can achieve 4n — 2 < r < 6n — 12, r even.

Now let 2m — 2 < d < 3m — 3 and choose p so that 2ad < /2. As before, the entries of T in the
d+m—1

m—1
?

with g = €', a > 0. Suppose m < d < 2m—3. If we choose p so that 2ad < 7/2
d+m—1

Let @ = [fg,...,p

first quadrant are {p, p2,... ¢ p24}: except for p? and p2? the negatives of these entries are also
in T, so T, has 4(d + m) — 2 distinct entries. If one chooses p so that (3d + m — 1)a = 7 (in which case
(2t = —p~([@m=1) then T, has 4(d +m — 1) distinct entries. Thus we can achieve 6n — 12 < r < 8n — 14,

T evel.
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Step 6. We claim that for all even n > & and even r € [4n — 2,n% — n + 2] there exists v, € C*/? such
that 7T, has r distinct entries, and the entries of v, have distinct arguments in (0, 7/2). Coupled with Step
3 this proves the result for n > 8.

We prove the claim by induction on n. Suppose v = [ei™1 ... ¢™m] with b; € (0,1/2) distinct. Choose
b € (0,1/2) such that b is not in the Q-linear span of {1,b1,...,by}. Let 2 = [v,e!™]. Observe that
|Tz| = |To| + 8m + 2. (Reason: Due to the Q-linear independence of b, the entries of 7, that are different
from those of T, are

{eir(:l:bj:bj)’eiﬁ(li—b:tbj) 1< <m}U {e:tiTrQb}‘

These 8m + 2 entries are all distinet because of the way b is chosen and because +bq, ..., b, are distinct
modulo 1.)

Apply this observation to v = wvog, vog, U39, V32 in Step 4 to see that the claim holds for n = 8 and
52 < r < 58. Coupled with Step 5 the claim holds for n = 8.

Suppose the claim holds when n = 2m. Applying the preceding observation, we conclude the claim holds
whenn =2(m+1)and r € [(4n—2)+ (4n+2),n? —n+2+ (d4n+2)] = B(n+2) —16,(n+2)? — (n+2) + 2]
is even. Coupled with Step 5 the claim holds for n = 2(m +1).

We now consider the case when n = 2m + 1 is odd. It will be convenient to write '7; = Slz.z.1)-

Step L. Note that the entries of ﬁezﬂm} are precisely the rth roots of unity for » = 2,4, 6,8 so the result
holds for n = 3.

Step TI(a). Let o = e2™/7 (with r even), m > 2, and = = [p, ..., ™| (that is, ; = p/). Then the entries
of 7, are

{07 1 —(2m —1) <j < 2m — 1} U {p=2™}.

When 2m(27/r) > /2 this set contains all the rth roots of 1 in the first quadrant, as well as the negatives
of these roots. Since the elements of 7, are invariant under conjugation, 7, has r distinct elements, namely
the rth roots of unity, when n = 2m + 1 and r € [2,8m] = [2,4n — 4] is even.

Step II(b). Let m >3 and = = [, 2, ..., p™~ 1 pd] € C™ with m < d < 3m — 3. Then the entries of T.
are

{Hp? o —(d+m—1)<j<d+m—1}u{pFH).

If p = € with a > 0 sufficiently small (for example, if 2ad < 7/2) then all these entries are distinct,
so [To] = 4(d +m — 1) +4 = 4(d + m). If one chooses pu so that (3d +m — 1)a = 7 (in which case
p2d = —p~@m=1) then T, has 4(d + m) — 2 distinct elements. By varying d we can thus achieve even
r € [8m —2,16m — 12] = [4n — 6,8n — 20] if n = 2m + 1. Note that all entries of x lie in the first quadrant.

Step III(a). Let n = 5. By Step II(a), the result holds for even r € [2,16]. Let

Vg = [eiw/g’eiﬂ'S/QL Vo = [ez'ﬂ'/ll! ez’47r/11L Voo = [ez’ﬂ'/17’€i41r/17}.

Then |7,,| = k so the result holds for n = 5.

Step ITI(b). Let n = 7. By Steps I1(a) and II(b), the result holds for even r € [2,36]. Let

€ e

el‘iT/24’ e

imd/24  _im6/24 i /27 _im3/27 _imw8/27
) ]7 € ;€ L] L

Vg0 = |
[ei'rr/él[): 6i7r4/40:

v3s = |

Vg9 = | e e

BZ‘}T/34’ e

imd/34 i7r10/34] m10/40}
\ .

’ Viq
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Then 7,, has k distinct entries, so the result holds for n = 7.

Step IV. We claim that for all odd n > 7 and r even in [4n — 6,12 — n + 2] there exists v, € C("=1/2
such that 7,, has r distinct entries, and the entries of v, have distinct arguments in (0, 7/2).

We prove the claim by induction on n. By Steps II(b) and III(b) the claim holds when n = 7.

Suppose the claim holds when n = 2m + 1 > 7. For each even r € [4n — 6,n? — n + 2] there exists
v=[eT . e™m] with b; € (0,1/2) distinct such that 70| = 7. Choose b € (0,1/2) such that b is not in
the Q-linear span of {1,by,....by}. Let 2 = [0, ¢™]. Then |T;| = |To| + 4n+ 2 (by the same reasons as for
Step 6 in part (a)). Thus the claim holds when n = 2m+3 and r € [(4n—6)+ (4n+2),n? —n+2+ (4n+2)] =
[8(n +2) — 20, (n+2)% — (n +2) + 2] is even. Coupled with Step II(b) the claim holds for n = 2m + 3.

Step V. By Steps II(a) and V the result holds for all odd n > 7. This concludes the proof of part (b).

(c) Note that for any r € [2,n? — 1], one can always construct a unitary operator Ty on MY with r
distinct eigenvalues. In fact, one can construct a real orthogonal operator acting on the real linear space
HY = H,,n M{ and extend it to a complex linear map by 1o(H +iG) = To(H) +iTy(G) for H,G € HY. If
we choose a complex unit a from the spectrum of Ty, then the map A — a(tr A)I/n + To(A — (tr A)I /n)
will also have r distinct eigenvalues; otherwise, the map will have r + 1 eigenvalues.

(d) By Theorem 3.3(a), the map A — UAU" on Kg can generate r-circular projections for r € [2,15],
and hence so does Th € A. We can add one more distinct eigenvalue by varving « in the map A —
altr A /4+Ty(A— (tr A)I/4). O

5. Concluding remarks and further research

There are other interesting open questions, and some of them can be tackled using our techniques.

1. One may extend our techniques to study r-circular projections for infinite dimensional operators. For
example, if one considers the operator norm on the algebra of bounded linear operators acting on a
Hilbert space H, its isometries have the form (a) A — UAV or (b) A~ UA"V, where U,V are unitary
operators and A* is the transpose of A with respect to an orthonormal basis. In this case, for any integer
r > 2, one can construct r-circular projections corresponding to an isometry of the form (a), and for
any positive integer r ¢ {1,3,7}, one can construct r-circular projections corresponding to an isometry
of the form (b).

2. Given a real Banach space X of finite dimension with isometry group G, we may identify X with R"
and assume that G is a subgroup of the real orthogonal group in M, (R). One can adapt the idea of
r-circular projections to this real setting as follows: in this case, let us say that Pi,..., P, € M, are
r-circular projections if Py @ --- & P, = I and there exists an isometry of the form

> XRX;
j=1
with X; X7 =P for j=1,...,r and R; € M,,, (with n; = rank P;) of the following form:

_ @iln;2  biln; o L a4 b2 —
Iy, I,,, or (bgfan/Q ajInZ/Q with aj 4+ b7 =1,

such that R; and R; have no common eigenvalues in C whenever i # j. One may use our techniques to
study such r-circular projections on real Banach spaces.
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