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Abstract

It is shown that for any positive integer n ≥ 3, there is a stable irreducible n× n matrix A

with 2n+1−bn3 c nonzero entries exhibiting Turing instability. Moreover, when n = 3, the result

is best possible, i.e., every 3× 3 stable matrix with five or fewer nonzero entries will not exhibit

Turing instability. Furthermore, we determine all possible 3×3 irreducible sign pattern matrices

with 6 nonzero entries which can be realized by a matrix A that exhibits Turing instability.

1 Introduction

Reaction-diffusion partial differential equation models have been used to describe the formation of

spatiotemporal patterns in biology, chemistry and physics. Alan Turing [16] proposed that different

diffusion coefficients of a pair of chemicals in a biochemical system are responsible for the generation

of spatially inhomogeneous patterns, and this diffusion-induced instability (Turing instability) has

been credited as one of the most important driving mechanisms of pattern formations [9].

The Turing instability is caused by the destabilization of a constant equilibrium solution U = U0

of a spatially homogeneous reaction-diffusion system Ut = P∆U + g(U) with n (≥ 2) variables and

coupled with proper boundary conditions, where U = U(x, t) with t > 0, x belongs to a spatial

domain, P is a diagonal n × n matrix with non-negative diagonal entries (diffusion coefficients),

and g is a smooth nonlinear vector function satisfying g(U0) = 0. Through the techniques of

linearization, the stability of the equilibrium U = U0 is reduced to a linear system of diffusion

equations Vt = P∆V +AV , where A = g′(U0) is a real-valued n×n Jacobian matrix. The constant

equilibrium U0 is asymptotically stable if each solution V of the linearized diffusion system converges

to zero uniformly as t → ∞. From the theory of linear differential equations, this is equivalent

to the condition that each eigenvalue of the matrix A − µjP has negative real part, where µj
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(j = 0, 1, 2, · · · ) are the eigenvalues of the Laplace operator with compatible boundary conditions,

and µj satisfy 0 = µ0 < µ1 ≤ µ2 ≤ · · · and lim
j→∞

µj =∞ [13, 16].

Because of the wide applicability of Turing instability, there has been considerable interest

in the study of stable matrices and stable matrices exhibiting Turing instability [11, 15]. Many

realistic biological reaction mechanisms involve a large number of chemical reactants and a complex

biological regulatory network. It is important to identify the key components of the biological

network that is capable of generating desired patterns, and it is also important to classify minimal

biological network for pattern formation [17].

To capture the behavior of the model relating to or describing the network connection of the

different components, we need the following definitions. Let Mn be the set of all n × n matrices

with real-valued entries. A matrix A ∈ Mn is said to be stable if for each of its eigenvalues λj

(j = 0, 1, 2, · · · , n), Re(λi) < 0. We define the sign pattern of a matrix A = [ajk] to be an n × n
matrix S(A) = [sjk] such that, for j, k ∈ {1, · · · , n}, sjk = 0 when ajk = 0, sjk = − when ajk < 0,

and sjk = + when ajk > 0. We also define the non-zero pattern of A to be an n × n matrix

N(A) = [njk] such that, for j, k ∈ {1, · · · , n}, njk = 0 when ajk = 0, and njk = ∗ when ajk 6= 0.

A non-zero pattern of A can be assigned ± signs so it becomes a sign pattern. If some matrix

A ∈ Mn is found to be stable, then the sign pattern S(A) is said to be potentially stable. For a

stable n × n matrix A, if there is a nonnegative n × n diagonal matrix P such that the matrix

A − tP is unstable for some positive t > 0, then A is said to exhibit Turing Instability. We are

interested in the minimum number of nonzero entries of a stable matrix in Mn, which will exhibit

Turing instability.

If the system is modeled by A ∈ Mn which is reducible, i.e., there is a permutation matrix Q

such that

QAQT =

A11 0

A12 A22

 , A11 ∈Mk, A22 ∈Mn−k

with 1 < k < n, then the eigenvalues of A are the eigenvalues of A11 and A22. Furthermore, for

any diagonal matrix P , if QPQT = P1 ⊕ P2 (the direct sum of diagonal matrices P1 ∈ Mk and

P2 ∈ Mn−k), then the eigenvalues of Q(A − tP )QT are those of A11 − tP1 and A22 − tP2. Thus,

the stability and Turing stability behavior of A are determined by A11 and A22. In view of these,

we will focus on irreducible matrices, i.e., matrices that are not reducible. We will consider the

minimal number Sn of nonzero entries that an n × n irreducible matrix A must have in order for

it to exhibit Turing instability.

An n × n sign pattern S(A) with only Sn nonzero entries can be considered as a minimal

network topology generating Turing instability. Turing’s original work on the subject [16] implies

that S2 = 4. Indeed it is well-known that up to a permutation or transpose, the only 2 × 2 sign

pattern that can possibly generate Turing instability is

− +

− +

 .
In this paper we prove the following result:

Theorem 1. Let Sn be the minimal number of nonzero entries that an n× n irreducible matrix A

must have in order for it to exhibit Turing instability. If n ≥ 3, then

Sn ≤ 2n+ 1− bn
3
c.
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In particular the equality holds when n = 3 and S3 = 6.

In the 2014 paper by Raspopovic et.al. [14], it was claimed that in order for an irreducible

3 × 3 matrix to exhibit Turing instability, it must have at least 6 nonzero entries. But the claim

was not proved in the paper. Theorem 1 provides the justification for that claim. We also classify

all distinct irreducible 3 × 3 non-zero patterns with 6 non-zero entries (up to a permutation or

transpose) so that Turing instability can possibly occur (see Table 2). Note that a list of 19 3× 3

sign patterns with 6 non-zero entries for Turing instability were identified in [14], and our list has 4

non-zero patterns corresponding to these sign patterns. In [14], the diagonal matrix P is assumed

to be diag(p1, p2, 0) while our results hold for any nonnegative (including positive) diagonal matrix

P . The 3×3 Turing instability was also studied in [1, 19], and graph-theoretical methods to analyze

network topologies for Turing instability were also used in [10, 12].

A related index is the minimum number of nonzero entries required for an n × n irreducible

sign pattern to be potentially stable, and it is denoted by mn. Note that, trivially, mn ≤ Sn for

any n since A is assumed to be stable. The following has been proved in [4] (for n ≤ 6 and n ≥ 9),

[5] (for n = 7) and [3] (for n = 8).

mn = 2n− 1, n = 2, 3,

mn = 2n− 2, n = 4, 5,

mn = 2n− 3, n = 6, 7,

mn = 2n− 4, n = 8,

mn ≤ 2n− 1− bn3 c, n ≥ 9.

(1.1)

Note that m2 = 3 < 4 = S2, and by our result m3 = 5 < 6 = S3. It is interesting to obtain the

exact value of Sn for n ≥ 4 and mn for n ≥ 9. We conjecture that mn < Sn for any n ∈ N.

In Section 2, we give some preliminary results, and obtain an auxiliary result for extending a

stable matrix exhibiting Turing instability to matrices of larger sizes. The proof of Theorem 1 will

be done in Section 3. In particular, we prove all 3 × 3 potentially stable sign pattern with only 5

nonzero entries cannot exhibit Turing instability. In Section 4, we find all 3× 3 potentially stable

sign pattern matrices with 6 nonzero entries which can be realized by a matrix exhibiting Turing

instability.

2 Preliminaries and an auxiliary result

Given an n× n matrix A = [ajk], we define the digraph of A to be the directed graph with vertex

set {1, . . . , n} and having an edge from vertex j to vertex k if and only if ajk 6= 0. For a digraph,

we define a path as an ordered set of edges, where the terminal vertex of the mth edge is the initial

vertex of the (m + 1)th edge. We define the length of a path as the number of edges in the path.

In particular, if the entries aj0,j1 , aj1,j2 , · · · aj`−2,j`−1
, aj`−1,j` of A are all nonzero, then the digraph

of A contains a path of length ` from vertex j0 to vertex j`, where the mth edge is (jm−1, jm). We

say that a digraph is strongly connected if for each pair of distinct vertices p and q in its vertex

set, there exists a path which begins at p and ends at q. It is the case that for any A ∈ Mn, A is

3



irreducible if and only if the digraph of A is strongly connected [2]. We define a cycle to be a path

which begins and ends at the same point, and which only intersects itself at this point. We refer

to a cycle of length 1 as a loop.

To study the stability of matrix A, we use the standard way to obtain the characteristic poly-

nomial of A:

p(A) = det(λI −A) = λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−2λ
2 + cn−1λ+ cn, (2.1)

where ck ∈ R such that ck = (−1)kCk is the sum of the k × k principal minors of the matrix

A. By Vieta’s formula, Ck is the k-th elementary symmetric polynomial Ek(λ1, · · · , λn) where λj

(1 ≤ j ≤ n) are the eigenvalues of A, or the roots of p(A) = 0. The stability of A can be determined

using the well-known Routh-Hurwitz stability criterion for polynomial:

Lemma 2. Suppose that f is a degree-n polynomial in form f(z) =

n∑
k=0

ckz
n−k where ck ∈ R and

c0 = 1. Then all the zeros of f(z) have negative real parts if and only if the leading k× k principal

minors ∆k is positive for the following n× n matrix:

Hn =



c1 c3 c5 · · · · · ·

1 c2 c4 · · · · · ·

c1 c3 c5 · · ·

1 c2 c4 · · ·
. . .

. . .
. . .


. (2.2)

As pointed out by a referee, one may use the Liénard-Chipart criterion [8], which requires less

computation, to determine the stability of a matrix. In any event, for n = 3, Lemma 2 implies the

following conditions for stability of A:

H3 =


c1 c3 0

1 c2 0

0 c1 c3

 ,
∆1 = c1 > 0,

∆2 = c1c2 − c3 > 0,

∆3 = c3(c1c2 − c3) > 0.

(2.3)

That is, c1, c2, c3 > 0 and c1c2 > c3. Note that for 3× 3 matrix A = (aij), we have

c1 =− E1(A) = −Tr(A) = a11 + a22 + a33,

c2 =E2(A) = a11a22 + a22a33 + a11a33 − a12a21 − a13a31 − a23a32,

c3 =− E3(A) = −det(A) = −a11a22a33 − a12a23a31 − a13a32a21
+ a12a21a33 + a23a32a11 + a13a31a22.

(2.4)

The following examples are useful for our subsequent discussion. In particular, they show that

one can extend a matrix B ∈M2 which exhibits Turing stability to a larger matrix

A =

 B A12

A21 A22


which also exhibits Turning stability by a suitable choice of A12, A21, A22. This idea will be used

in the poofs presented in the next section.
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Example 3. Suppose P = diag(2, 0), P1 = diag(2, 0, 0), P2 = diag(2, 0, 0, 0),

B =

−2 1

−3 1

 , A =


−2 1 0

−3 1 1

0 −0.1 0

 A1 =


−2 1 0

−3 1 1

−0.1 0 0

 , A2 =


−2 1 0 0

−3 1 1 0

−0.1 0 0 1

0 −0.01 0 0

 .

Then the eigenvalues of B and B−P are: −0.5000+0.8660i,−0.5000−0.8660i, and −3.3028, 0.3028.

Thus, B is a stable matrix exhibiting Turing instability. The eigenvalues of A and A− P1 are:

−0.3926 + 0.8816i,−0.3926− 0.8816i,−0.2147,

and − 3.3086, 0.1543 + 0.3116i, 0.1543− 0.3116i;

the eigenvalues of A1 and A1 − P1 are

−0.4445 + 0.8389i,−0.4445− 0.8389i,−0.1109,

and − 3.3111, 0.1556 + 0.0775i, 0.1556− 0.0775i;

the eigenvalues of A2 and A2 − P2 are

−0.4494 + 0.8274i,−0.4494− 0.8274i,−0.0506 + 0.1414i− 0.0506− 0.1414i,

and − 3.3110,−0.1348, 0.2229 + 0.1999i, 0.2229− 0.1999i.

So, all A,A1, A2 have B as the leading principal submatrix, and exhibit Turing instability.

3 Proof of Theorem 1

3.1 Proof of the case when n = 3

First, we prove that for a 3 × 3 matrix A to exhibit Turing instability (there exists a positive

diagonal matrix P , such that A − tP is unstable for some t > 0) it must have at least 6 nonzero

entries. From the fact that m3 = 5, in order for a 3 × 3 irreducible matrix to be stable it must

have at least 5 nonzero entries. So in order to prove the statement regarding Turing instability, we

consider all possible 3 × 3 stable irreducible nonzero patterns (up to permutation similarity and

transposition) containing only 5 nonzero entries and show that any stable matrix realizing such a

pattern cannot exhibit Turing instability.

In order for a 3× 3 matrix to be irreducible, its digraph must be strongly connected, thus the

digraph either contains (a) two connected 2-cycles, or (b) one 3-cycle. Then, in order for such a

matrix to be potentially stable, in both cases a loop is required [6, 18], then in case (a) there is

either a 2-cycle which can intersect the loop or be separate from it, or an additional loop, and in

case (b) you can have the loop either on the end of one of the 2-cycles, or at the intersection of the

two 2-cycles. Thus, we have the list of digraphs in Table 1 to consider. Note that the determinant

of any matrix corresponding to the fifth digraph is always zero, which means the matrix cannot

be stable. Thus, we only need to consider the first 4 graphs. Note also that patterns 1-4 in Table
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1.
1

2

3
=⇒


∗ ∗ 0

0 0 ∗

∗ ∗ 0

 2.
1

2

3
=⇒


∗ ∗ 0

∗ 0 ∗

∗ 0 0



3.
1

2

3
=⇒


∗ ∗ 0

0 ∗ ∗

∗ 0 0

 4. 1

2

3 =⇒


∗ ∗ 0

∗ 0 ∗

0 ∗ 0



5. 1

2

3 =⇒


0 ∗ 0

∗ ∗ ∗

0 ∗ 0


Table 1: List of potential digraphs with 3 vertices and 5 edges.

1 were also identified in [3, Theorem 5.2] as the only minimally potentially stable 3 × 3 nonzero

patterns.

We assume the potentially stable patterns 1-4 in Table 1 to be realized by a stable matrix A,

then we use the stability conditions in the Routh-Hurwitz criterion (Lemma 2) to show that the

matrix A − tP is still stable for t ≥ 0 and non-negative diagonal matrix P = diag(p1, p2, p3). For

that purpose, we recall that the characteristic polynomial of A− tP is given by

p(A− tP ) = λ3 + c1(t)λ
2 + c2(t)λ+ c3(t),

and cj(t) (1 ≤ j ≤ 3) are polynomials of t. Then A is stable implies that cj(0) > 0 (1 ≤ j ≤ 3)

and c1(0)c2(0) − c3(0) > 0, and from the Routh-Hurwitz criterion we shall show that cj(t) > 0

(1 ≤ j ≤ 3) and c1(t)c2(t)− c3(t) > 0 for all t > 0. We show that for patterns 1-4 in Table 1.

Case 1:

A =


a11 a12 0

0 0 a23

a31 a32 0

 , A− tP =


a11 − tp1 a12 0

0 −tp2 a23

a31 a32 −tp3

 .
Then for any t ≥ 0, from c1(0) = −a11 > 0, c2(0) = −a23a32 > 0, c3(0) = a11a23a32−a12a23a31 > 0
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and c1(0)c2(0)− c3(0) = a12a23a31 > 0, we obtain that

c1(t) =(p1 + p2 + p3)t− a11 > 0,

c2(t) =(p1p2 + p1p3 + p2p3)t
2 − a11(p2 + p3)t− a23a32 > 0,

c3(t) =p1p2p3t
3 − a11p2p3t2 − a23a32p1t+ (a11a23a32 − a12a23a31) > 0,

c1(t)c2(t)− c3(t) =(p1 + p2)(p1 + p3)(p2 + p3)t
3 − a11(p2 + p3)(2p1 + p2 + p3)t

2

+ (p2 + p3)(a
2
11 − a23a32)t+ a12a23a31 > 0.

Therefore A− tP is stable for all t ≥ 0.

Case 2:

A =


a11 a12 0

a21 0 a23

a31 0 0

 , A− tP =


a11 − tp1 a12 0

a21 −tp2 a23

a31 0 −tp3

 .
Then for any t ≥ 0, from c1(0) = −a11 > 0, c2(0) = −a12a21 > 0, c3(0) = −a12a23a31 > 0 and

c1(0)c2(0)− c3(0) = a12a11a21 + a12a23a31 > 0, we obtain

c1(t) =t(p1 + p2 + p3)− a11 > 0,

c2(t) =(p1p2 + p1p3 + p2p3)t
2 − a11(p2 + p3)t− a12a21 > 0,

c3(t) =p1p2p3t
3 − a11p2p3t2 − a12a21p1t− a12a23a31 > 0,

c1(t)c2(t)− c3(t) =(p1 + p2)(p1 + p3)(p2 + p3)t
3 − a11(p2 + p3)(2p1 + p2 + p3)t

2

+ [(p2 + p3)a
2
11 − (p1 + p2)a12a21]t+ a12a11a21 + a12a23a31 > 0.

Therefore A− tP is stable for all t ≥ 0.

Case 3:

A =


a11 a12 0

0 a22 a23

a31 0 0

 , A− tP =


a11 − tp1 a12 0

0 a22 − tp2 a23

a31 0 −tp3

 .
Then for any t ≥ 0, from c1(0) = −(a11 + a22) > 0, c2(0) = a11a22 > 0, c3(0) = −a12a23a31 > 0

and c1(0)c2(0)− c3(0) = −a11a22(a11 + a22) + a12a23a31 > 0, we obtain

c1(t) =(p1 + p2 + p3)t− (a11 + a22) > 0,

c2(t) =(p1p2 + p1p3 + p2p3)t
2 − (a11p2 + a22p1 + a11p3 + a22p3)t+ a11a22 > 0,

c3(t) =p1p2p3t
3 − (a11p2p3 + a22p1p3)t

2 + a11a22p3t− a12a23a31 > 0,

c1(t)c2(t)− c3(t) =[(p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3]t3

+ [(a11p2 + a22p1)p3 − (p1p2 + p1p3 + p2p3)(a11 + a22)

− (p1 + p2 + p3)(a11p2 + a11p3 + a22p1 + a22p3)]t
2

+ [(a11 + a22)(a11p2 + a11p3 + a22p1 + a22p3)

− a11a22p3 + a11a22(p1 + p2 + p3)]t

− a11a22(a11 + a22) + a12a23a31 > 0.
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Note that here the coefficients of t2 and t terms in c1(t)c2(t)− c3(t) can be reduced to −a11f1(pi)−
a22f2(pi), where f1 and f2 are positive, so we can conclude that the coefficients of t2 and t terms

are positive. Therefore A− tP is stable for all t ≥ 0.

Case 4:

A =


a11 a12 0

a21 0 a23

0 a32 0

 , A− tP =


a11 − tp1 a12 0

a21 −tp2 a23

0 a32 −tp3

 .
Then for any t ≥ 0, from c1(0) = −a11 > 0, c2(0) = −(a12a21 + a23a32) > 0, c3(0) = a11a23a32 > 0

and c1(0)c2(0)− c3(0) = a11a12a21 > 0, we obtain

c1(t) =t(p1 + p2 + p3)− a11 > 0,

c2(t) =(p1p2 + p1p3 + p2p3)t
2 − a11(p2 + p3)t− (a12a21 + a23a32) > 0,

c3(t) =p1p2p3t
3 − a11p2p3t2 − (a12a21p3 + a23a32p1)t+ a11a23a32 > 0,

c1(t)c2(t)− c3(t) =(p1 + p2)(p1 + p3)(p2 + p3)t
3 − a11(p2 + p3)(2p1 + p2 + p3)t

2

+ [a211(p2 + p3)− a12a21(p1 + p2)

− a23a32(p2 + p3)]t+ a11a12a21 > 0.

Therefore A− tP is stable for all t ≥ 0.

From the four cases above, we see that for any matrix A whose nonzero pattern is given by one

of the first four patterns in Table 1, we have A− tP is stable for all t ≥ 0 and nonnegative diagonal

matrix P . Hence, there is no 3× 3 irreducible, stable matrix with only 5 entries which can exhibit

Turing instability.

Next, we show that some irreducible 3×3 matrix A with 6 nonzero entries could exhibit Turing

instability. That is, there exists a positive diagonal matrix P , such that A− tP is unstable for some

t > 0. We identify all 3 × 3 sign patterns with 6 nonzero entries (or equivalently digraphs with 3

vertices and 6 edges) which exhibit Turing instability.

We assume that A is an irreducible 3 × 3 stable matrix with 6 nonzero entries. Similar to the

approach in previous analysis, in order for a 3 × 3 matrix to be irreducible, its digraph must be

strongly connected, so the digraph either contains (a) two connected 2-cycles, or (b) one 3-cycle.

Also since A is stable, the digraph always contains at least one loop. We consider four cases: (i)

the digraph contains one 3-cycle and exactly one 2-cycle, then the digraph must be in form of 1 or

2 in Table 2; (ii) the digraph contains two connected 2-cycles but not one 3-cycle, then the digraph

must be in form of 3 or 4 in Table 2; (iii) the digraph contains both two connected 2-cycles and

one 3-cycle, then the digraph must be in form of 5 or 6 in Table 2; and (iv) the digraph contains

one 3-cycle and no 2-cycle, then the digraph must be in form of 7 in Table 2. Note that here we

only consider topologically distinct zero-nonzero patterns, i.e. ones that cannot be obtained from

another via permutation similarity or transposition.

Each of the seven non-zero patterns in Table 2 can be realized into a sign pattern to exhibit

the Turing instability. For pattern 2 and 3, the stable matrices A1 and A in Example 3 have the

nonzero patterns exhibiting Turing instability.
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1.
1

2

3
=⇒


∗ ∗ 0

0 ∗ ∗

∗ ∗ 0

 2.
1

2

3
=⇒


∗ ∗ 0

∗ ∗ ∗

∗ 0 0



3. 1

2

3 =⇒


∗ ∗ 0

∗ ∗ ∗

0 ∗ 0

 4. 1

2

3 =⇒


∗ ∗ 0

∗ 0 ∗

0 ∗ ∗



5.
1

2

3
=⇒


∗ ∗ 0

∗ 0 ∗

∗ ∗ 0

 6.
1

2

3
=⇒


0 ∗ 0

∗ ∗ ∗

∗ ∗ 0



7.
1

2

3
=⇒


∗ ∗ 0

0 ∗ ∗

∗ 0 ∗


Table 2: List of potential digraphs with 3 vertices and 6 edges.
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All (except one) remaining patterns (1,4,5 and 6) in Table 2 have appeared in the list given

in Figure 1 and 9 of the Supplementary Materials (SM) of [14]. The 19 digraphs in Figure 1 and

2 of [14]-SM can all be categorized into pattern 1,4,5 and 6 in Table 2. In particular, pattern 1

corresponds to T9, T10 and T11 in Figure 2 of [14]-SM, pattern 4 corresponds to T1 and T2, pattern

5 corresponds to T3, T4, T5, T6 and T7, and pattern 6 corresponds to T8. The pattern 7 in Table 2

seems to be missing from the classification in [14]-SM.

It is not difficult to determine all the sign patters (up to permutation similarity and transpo-

sition) of the matrices in Table 2 that give rise to stable matrices with Turing stability, and we

determine all these sign patterns in Section 4. We also remark that the first four digraphs in Table 1

and all diagraphs in Table 2 satisfy a known necessary condition for Turing instability: the digraph

has an l-subgraph for l = 1, 2, 3, where the l-subgraph is a set of one or more disjoint cycles with

total number of nodes being l [7, 12]. For Turing instability to occur, one of these subgraphs must

be destabilizing.

3.2 Proof of the result when n ≥ 4

Suppose A ∈ M3 has pattern 1, 4, 5, or 6 exhibits Turing instability. Note that all these patterns

correspond to irreducible matrices in upper Hessenberg form, i.e., A = (aij) ∈ M3 is irreducible

with a12a23 6= 0 = a13. One can use the idea of Example 3 and modify the proof of Corollary 3.3.2

and Theorem 2.2.6 in [4] to construct a 3n× 3n irreducible stable matrix Rn with A as the leading

3× 3 submatrix A1 inductively as follows. Let R1 = A1 and P1 be defined as in Example 3 so that

c2(R1 − P1) = −1 is not stable. Let Pn = P1 ⊕ 03n−3 for any n ∈ N. Assume that Rk has been

constructed. Let

Rk+1 =

Rk E

F Y

 (3.1)

such that E has only one nonzero entry equal to 1 at the left bottom corner, F has only one nonzero

entry equal −1 at the left bottom corner, and Y =


0 1 0

0 0 1

0 −(1/3)k 0

. Then Rk+1 will be stable by

Corollary 3.3.2 in [4]. Moreover,

c2(Rk+1 − Pk+1) = c2(Rk − Pk) + (1/3)k = · · · = c2(R1 − P1) = −1 +

k∑
j=1

(1/3)j < 0.

Thus, Rn ∈M3n is stable and Rn − Pn is not stable for all n.

We may use the the construction (3.1) in the preceding case by setting R1 = A2 in Example 3,

Pn = [2]⊕ 03n for any n ∈ N. Then the construction in (3.1) will yield stable matrices Rn ∈M3n+1

such that c2(Rn − Pn) < 0 so that Rn − Pn is not stable.
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Finally, we can let

R1 =



−1 3 0 0 0

−2 1 1 0 0

−0.1 0 0 1 0

0 −0.01 0 0 1

0 0 −0.001 0 0


, Pn = [2]⊕ 03n+1 for n ∈ N.

Then R1 is stable and has eigenvalues

−0.4495 + 0.8274i,−0.4495− 0.8274i,−0.0224 + 0.1397i,−0.0224− 0.1397i,−0.0563.

We have c2(R1 − P1) = −1 < 0 so that R1 − P1 is not stable. Then the construction in (3.1) will

yield stable matrices Rn ∈M3n+2 such that c2(Rn − Pn) < 0 so that Rn − Pn is not stable.

One can readily check that in all the above constructions, the matrix has number of nonzero

entries equal to 2n+ 1− bn3 c. The result follows.

4 Sign patterns of 3× 3 matrices exhibiting Turing instability

In this section, we determine all 3× 3 sign pattern matrices, up to equivalence (diagonal similarity,

transposition and permutation similarity), with exactly 6 nonzero entries that are realizable as

matrices exhibiting Turing instability. Since the eigenvalues of a matrix depend continuously on

its entries, if a matrix have sign patterns containing a subpattern of a matrix that exhibits Turing

instability, then one can choose entries with sufficiently small magnitude for other nonzero entries

so that the resulting matrix will also exhibit Turing instability.

For a matrix A = [aij ] realizing a pattern in Table 2, we can always apply a diagonal similarity

so that the a12 = a23 = 1. By the Routh-Hurwitz criterion, we need only to look at the functions

c1(t), c2(t), c3(t), h(t) = c2(t)c1(t) − c3(t) and determine the signs of the entries of the matrix to

ensure that c1(0), c2(0), c3(0), h(0) > 0 but that there exists a positive t (usually assumed as t = 1

in the examples below) and nonegative p1, p2, p3 such that at least one of c1(t), c2(t), c3(t), h(t) is

not positive. For brevity, we say that a sign pattern is PETI (for potentially exhibiting Turing

instability) if it has a matrix realization that exhibits Turing instability.

We will prove the following.

Theorem 4. Each of the seven non-zero patterns listed in Table 2 can be realized by one or more

sign patterns and matrices exhibiting Turing instability. All non-equivalent sign patterns are listed

in the following Table 3.

Proof. Suppose A = [aij ]. Let t, p1, p2, p3 ≥ 0 and P = diag(p1, p2, p3). Without loss of generality,

assume a12 = a23 = 1. For each of the seven nonzero patterns in Table 2, we will look at the

polynomials c1(t), c2(t), c3(t) and h(t) arising from p(A− tP ). Assuming that c1(0), c2(0), c3(0) and

h(0) are all positive, t ≥ 0 and P = diag(p1, p2, p3) is nonnegative, we indicate the expressions that

may change signs depending on the signs of the entries of A by placing them in a box. From this,

we eliminate sign patterns for A that make it impossible to exhibit Turing instability. From the
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
− + 0

0 − +

− + 0



− + 0

0 + +

+ − 0




+ + 0

0 − +

− − 0



− + 0

− + +

− 0 0



− + 0

+ − +

0 − 0



− + 0

− + +

0 − 0




+ + 0

− − +

0 + 0


(a) (b) (c) (d) (e) (f) (g)

− + 0

− 0 +

0 + −




+ + 0

− 0 +

0 − −



− + 0

+ 0 +

+ − 0



− + 0

− 0 +

− + 0




0 + 0

− − +

− + 0



− + 0

0 + +

− 0 −


(h) (i) (j) (k) (l) (m)

Table 3: Nonequivalent sign patterns that are PETI (potentially exhibiting Turing Instability)

boxed expressions, we will also be able to construct specific values for the entries of A so that it

exhibits Turing instability.

If A has nonzero pattern 1 in Table 2, then

c1(t) = (p1 + p2 + p3)t− (a11 + a22)

c2(t) = (p1p2 + p1p3 + p2p3)t
2 − (a11 + a22)p3t− (a11p2 + a22p1) t+ a11a22 − a32

c3(t) = p1p2p3t
3 − (a11p2 + a22p1) p3t

2 + a11a22p3 − a32p1 t+ a11a32 − a31
h(t) =

[
(p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3

]
t3

−
[
(a11 + a22)(2p1p2 + 2p1p3 + 2p2p3 + p23) + a11p

2
2 + a22p

2
1

]
t2

+
[
(a11 + a22)

2p3 + a211p2 + a222p1 + 2a11a22(p1 + p2)− a32(p2 + p3)
]
t

−
[
(a11 + a22)(a11a22 − a32) + a11a32 − a31

]
If a11, a22 < 0 and a32 < 0, then c1(t), c2(t), c3(t), h(t) > 0 for any t ≥ 0 and so in this case, A

cannot exhibit Turing instability. Otherwise, we have the following.

• If a11, a22 < 0 but a32 > 0, then a31 > 0 so that c3(0) > 0. and we have the sign pattern in

Table 3(a). This sign pattern is PETI using the matrix A, t = 1 and P in Table 4(a).

• If a11 < 0 < a22, then a32 < 0 so that c2(0) > 0. Note also that h(0) = −a22c2(0)−a211a22+a31.

Hence a31 > 0 so that h(0) > 0. Thus, we have the sign pattern in Table 3(b), which is PETI

using the matrix in Table 4(b).

• If a22 < 0 < a11, then a32 < 0 so that c2(0) > 0 and a31 < 0 so that c3(0) > 0. Thus, we have

the sign pattern shown in Table 3(c). The matrix in Table 4(c) can be used to show that this

sign pattern is PETI.
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A =


−2 1 0

0 −1 1

−3 1 0

 A =


−2 1 0

0 1 1

7 −4 0

 A =


1 1 0

0 −2 1

−5 −4 0


(a) P = diag(1, 0, 0) (b) P = diag(1, 0, 0) (c) P = diag(0, 2, 0)

Table 4

If A has nonzero pattern 2 in Table 2, then

c1(t) = (p1 + p2 + p3)t− (a11 + a22)

c2(t) = (p1p2 + p1p3 + p2p3)t
2 − (a11 + a22)p3t− (a11p2 + a22p1) t+ a11a22 − a21

c3(t) = p1p2p3t
3 − (a11p2 + a22p1) p3t

2 + (a11a22 − a21)p3t− a31
h(t) =

[
(p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3

]
t3

−
[
(a11 + a22)(2p1p2 + 2p1p3 + 2p2p3 + p23) + a11p

2
2 + a22p

2
1

]
t2

+
[
(a11 + a22)

2p3 + (a11 + a22) (a11p2 + a22p1) + (a11a22 − a21)(p1 + p2)
]
t

−
[
(a11 + a22)(a11a22 − a21)− a31

]
If a11, a22 < 0, then c1(t), c2(t), c3(t), h(t) > 0 for any t ≥ 0 and so in this case, A cannot exhibit

Turing instability. On the other hand, if a11a22 < 0 then a21 < 0 so that c2(0) > 0 and a31 < 0 so

that c3(0) > 0. Then up to permutation similarity, transposition and signature similarity, the sign

pattern of the stable matrix is shown in Table 3(d), which is PETI using the following matrices.

A =


−2 1 0

−3 1 1

−0.1 0 0

 , P = diag(1, 0, 0)

If A has nonzero pattern 3 in Table 2, then

c1(t) = (p1 + p2 + p3)t− (a11 + a22)

c2(t) = (p1p2 + p1p3 + p2p3)t
2 − (a11 + a22)p3t− (a11p2 + a22p1) t+ a11a22 − a21 − a32

c3(t) = p1p2p3t
3 − (a11p2 + a22p1) p3t

2 + a11a22p3 − a21p3 − a32p1 t+ a11a32

h(t) =
[
(p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3

]
t3

−
[
(a11 + a22)(2p1p2 + 2p1p3 + 2p2p3 + p23) + a11p

2
2 + a22p

2
1

]
t2

+
[
a211(p2 + p3) + a222(p1 + p3) + 2a11a22(p1 + p2 + p3)− a21(p1 + p2)− a32(p2 + p3)

]
t

−(a11 + a22)(a11a22 − a21 − a32) + a11a32

If a11, a22 < 0 then a32 < 0 (since c3(0) > 0). If we assume further that a21 < 0, then

c1(t), c2(t), c3(t), h(t) > 0 for any t ≥ 0. In this case, A cannot exhibit Turing instability. Mean-

while,

• if a11, a22 < 0 and a21 > 0, then we have the sign pattern shown in Table 3(e), which is PETI

using the example in Table 5(a).
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• If a11 < 0 < a22, then a32 < 0 so that c3(0) > 0 and a21 < 0 since h(0) = −a22c2(0)−a211a22+

a11a21 > 0. Hence, we have the sign pattern shown in Table 3(f). This is PETI using the

example in Table 5(b).

• If a22 < 0 < a11, then a32 > 0 so that c3(0) > 0 and a21 < 0 so that c2(0) > 0. This gives

us the sign pattern shown in Table 3(g). The example Table 5(c) shows this sign pattern is

PETI.

A =


−1 1 0

3 −2 1

0 −2 0

 A =


−2 1 0

−4 1 1

0 −1 0

 A =


1 1 0

−5 −2 1

0 1 0



(a) P = diag(0, 0, 3) (b) P = diag(2, 0, 0) (c) P = diag(2, 0, 0)

Table 5

If A has nonzero pattern 4 in Table 2, then

c1(t) = (p1 + p2 + p3)t− (a11 + a33)

c2(t) = (p1p2 + p1p3 + p2p3)t
2 − (a11 + a33)p2t− (a11p3 + a33p1) t+ a11a33 − a21 − a32

c3(t) = p1p2p3t
3 − (a11p3 + a33p1) p2t

2 + (a11a33p2 − a21p3 − a32p1) t+ a11a32 + a21a33

h(t) = ((p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3)t3

−
[

(a11p
2
3 + a33p

2
1) + (a11 + a33)(2p1p2 + 2p2p3 + 2p1p3 + p22)

]
t2

+
[
a211(p2 + p3) + a33(p1 + p2) + 2a11a33(p1 + p2 + p3)− a21(p1 + p2)− a32(p2 + p3)

]
t

−
[
(a11 + a33)a11a33 − a11a21 − a33a32

]
If a11, a33 < 0, then at least one of a21 or 32 must be negative for c3(0) > 0. If both a21, a32 are

negative, then c1(t), c2(t), c3(t), h(t) > 0 for any t ≥ 0. In this case, the matrices having the said

sign pattern cannot exhibit Turing instability. Otherwise,

• if a11, a33 < 0 and exactly one of a21 or a32 is negative, then up to permutation similarity,

transposition and signature similarity, the sign pattern of the stable matrix is shown in Table

3(h). Using the example in Table 6(a), we illustrate that this sign pattern is PETI.

• If a11a33 < 0, then at least one of a32 or a21 must be negative for c2(0) > 0. If both are

negative, then the sign pattern of the matrix is equivalent to Table 3(i). This sign pattern is

PETI using the example in Table 6(b).

We also consider the case when a11a33 < 0 and a32a21 < 0. Note that in this case, we must have

a11a32 > 0 and a33a21 > 0 for c3(0) > 0. In this case, the sign pattern of the matrix is equivalent
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A =


−1 1 0

−2 0 1

0 1 −1

 A =


1 1 0

−2 0 1

0 −3 −2



(a) P = diag(2, 0, 0) (b) P = diag(0, 0, 2)

Table 6

to the following. 
+ + 0

− 0 +

0 + −


Note however, that this sign pattern is not potentially stable since the equations c2(0) > 0 and

h(0) > 0 will imply the following impossible inequality

0 < a32 < a11a33 − a21 < a32
a33
a11
− a233 < 0.

If A has nonzero pattern 5 in Table 2, then

c1(t) = (p1 + p2 + p3)t− a11
c2(t) = (p1p2 + p1p3 + p2p3)t

2 − a11(p2 + p3)t− a21 − a32
c3(t) = p1p2p3t

3 − a11p2p3t2 − (a21p3 + a32p1) t− a31 + a11a32

h(t) = (p1 + p2)(p1 + p3)(p2 + p3))t
3 − a11(p2 + p3)(2p1 + p2 + p3)t

2

+
[
a211(p2 + p3)− (a21 + a32)p2 − (a21p1 + a32p3)

]
t+ a31 + a11a21

Note that a11 < 0 and at least one of a21 and a32 is negative for c1(0) and c2(0) to be positive.

If a21 and a32 are both negative, then the matrix cannot exhibit Turing instability.

• Suppose a32 < 0 < a21. Then a31 > 0 for h(0) > 0. Thus, the sign pattern is as shown in

Table 3(j). This sign pattern is PETI using the following example.

A =


−1 1 0

1 0 1

2 −3 0

 , P = diag(0, 0, 1)

• Suppose a21 < 0 < a32. Then a31 < 0 for c3(0) > 0. Thus, the sign pattern is as shown in

Table 3(k). This sign pattern is PETI using the following example.

A =


−1 1 0

−3 0 1

−2 1 0

 , P = diag(0, 0, 1)
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If A has nonzero pattern 6 in Table 2, then

c1(t) = (p1 + p2 + p3)t− a22
c2(t) = (p1p2 + p1p3 + p2p3)t

2 − a22(p1 + p3)t− a21 − a32
c3(t) = p1p2p3t

3 − a22p1p3t2 − (a21p3 + a32p1) t− a31
h(t) = (p1 + p2)(p1 + p3)(p2 + p3))t

3 − a22(p1 + p3)(p1 + 2p2 + p3)t
2

+
[
a222(p1 + p3)− (a21 + a32)p2 − (a21p1 + a32p3)

]
t+ a31 + a21a22

Note that a22, a31 and a21 must all be negative for c1(0), c3(0) and h(0) to be positive. If a32 < 0,

then the matrix cannot exhibit Turing instability. On the other hand, if a32 > 0, then we have the

PETI sign pattern given in Table 3(l). The following matrix below is an example.

A =


0 1 0

−3 −1 1

−1 1 0

 , P = diag(1, 0, 0)

If A has nonzero pattern 7 in Table 2, then

c1(t) = (p1 + p2 + p3)t− (a11 + a22 + a33)

c2(t) = (p1p2 + p1p3 + p2p3)t
2 −

[
a11(p2 + p3) + a22(p1 + p3) + a33(p1 + p2)

]
t

+a11a22 + a11a33 + a22a33

c3(t) = p1p2p3t
3 − (a11p2p3 + a22p1p3 + a33p1p2) t2

+ (a11a22p3 + a11a33p2 + a22a33p1) t− a31 − a11a22a33

h(t) =
[
(p1p2 + p1p3 + p2p3)(p1 + p2 + p3)− p1p2p3

]
t3

−
[
(a11 + a22 + a33)(2p1p2 + 2p2p3 + 2p1p3) + a11(p

2
2 + p23) + a22(p

2
1 + p23) + a33(p

2
1 + p22)

]
t2

+
[
a211(p2 + p3) + a222(p1 + p3) + a233(p1 + p2) + 2(a11a22 + a11a33 + a22a33)(p1 + p2 + p3)

]
t

+a31 − (a11 + a22 + a33)(a11a22 + a11a33 + a22a33) + a11a22a33

Note that at least one of the diagonal entries of A must be negative. If a11, a22, a33 are all negative,

then the matrix cannot exhibit Turing instability.

• Suppose that exactly one of a11, a22 and a33 is negative. Then the matrix has one of the

following sign patterns
− + 0

0 + +

+ 0 +

 ,

− + 0

0 + +

− 0 +

 ,


+ + 0

0 − +

+ 0 +

 ,


+ + 0

0 − +

− 0 +


The first two sign patterns are not potentially stable since c1(0), c2(0) > 0 will imply that

a22 + a33 < −a11 <
a22a33
a22 + a33

=⇒ (a22 + a33)
2 < a22a33 =⇒ a222 + a233 + a22a33 < 0.
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Similarly, the latter two sign patterns are not potentially stable since c1(0), c2(0) > 0 will

imply that

a11 + a33 < −a22 <
a11a33
a11 + a33

=⇒ (a11 + a33)
2 < a11a33 =⇒ a211 + a233 + a11a33 < 0.

• Suppose that exactly two of a11, a22 and a33 are negative. Then a31 < 0 so that c3(0) > 0.

Note that the matrix is equivalent to the sign pattern in Table 3(m), which is PETI using

the following example. 
−3 1 0

0 1 1

−10 0 −3

 P = diag(1, 0, 0)

5 Conclusion and Further Research

In this paper, we show that for any positive integer n ≥ 3, there is a stable irreducible n×n matrix

A with 2n + 1− bn3 c nonzero entries exhibiting Turing instability. When n = 3, the result is best

possible, i.e., every 3 × 3 stable matrix with five or fewer nonzero entries will not exhibit Turing

instability. Furthermore, we determine all possible sign patterns of 3× 3 matrix A with 6 nonzero

entries which exhibit Turning instability. There are many interesting problems worth studying.

1. Can we determine the exact value Sn, the smallest number of nonzero entries for the existence

of a stable matrix A, which will exhibit Turing stability.

2. Determine the sign patterns of matrices A (with smallest number of nonzero entries) which

exhibit Turing instability.

With more involved calculations, some of our techniques may be used to study 4× 4 matrices.

New techniques are needed to study the general problems.
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