A matrix equation and the Jordan canonical form*

Chi-Kwong Li
Department of Mathematics, College of William \& Mary,
Williamsburg, VA 23187, USA.
ckli@math.wm.edu

Abstract

For a given $p \times q$ complex matrix C, a necessary and sufficient condition is obtained for the existence of a matrix X satisfying $J_{p} X-X J_{q}=C$, here J_{r} denotes the $r \times r$ Jordan block of 0 . An easy construction of the solution X is given if it exists. These results lead to a proof of the fact that a nilpotent matrix is similar to a direct sum of Jordan blocks.

AMS Classification. 15A20, 15A24.
Keywords. Jordan canonical form, nilpotent matrix, matrix equation.

1 Introduction

Let $M_{m, n}$ be the set of $m \times n$ complex matrices, and $M_{n}=M_{n, n}$. Denote by $E_{i j}$ the standard matrix unit with the (i, j) entry equal to 1 and the other entries equal to 0 . The size of $E_{i j}$ should be clear in the context.

For $\lambda \in \mathbb{C}$ and a positive integer r, the matrix

$$
J_{r}(\lambda)=\lambda I_{r}+\sum_{j=1}^{r-1} E_{j, j+1}=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right) \in M_{r}
$$

is called the Jordan block of λ of size r. We have the following Jordan canonical form theorem; e.g., see [1, Chapter 12] for a proof and some historical notes.

Theorem 1.1. Every matrix $A \in M_{n}$ is similar to a direct sum of Jordan blocks.
The result has many interesting consequences, and has applications to other topics; for example, see [1, Chapter 13]. The theorem can be proved by establishing the following two assertions.
Assertion $1 A$ matrix $A \in M_{n}$ with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, is similar to a direct sum of square matrices A_{1}, \ldots, A_{k}, denoted by $A_{1} \oplus \cdots \oplus A_{k}$, such that A_{j} has λ_{j} as the only (distinct) eigenvalue for $j=1, \ldots, k$.
Assertion 2 If $B \in M_{n}$ has only one distinct eigenvalue λ, then B is similar to a direct sum of Jordan blocks of λ.

[^0]By these assertions, there are invertible matrices R, R_{1}, \ldots, R_{k} such that $R^{-1} A R=A_{1} \oplus \cdots \oplus A_{k}$, and $R_{j}^{-1} A_{j} R_{j}$ is a direct sum of Jordan blocks of λ_{j}. Then $S^{-1} A S$ is a direct sum of Jordan blocks if $S=R\left(R_{1} \oplus \cdots \oplus R_{k}\right)$.

One approach to prove Assertion 1 is to use the Sylvester equation theorem, which asserts that the matrix equation $F X-X G=C$ always has a unique solution $X \in M_{p, q}$ for given $F \in M_{p}, G \in$ M_{q} and $C \in M_{p, q}$ such that F and G have no common eigenvalues; see [2], [1, Theorem 11.4.1], and Lemma 2.3 in the next section. We will show that Assertion 2 can be proved by using a solution of the matrix equation $J_{p}(0) X-X J_{q}(0)=C$ for a given matrix $C \in M_{p, q}$. In Theorem 2.1, a necessary and sufficient condition is obtained for the existence of a solution $X \in M_{p, q}$ of the equation. An easy construction of a solution X is given if it exists. The result will then be used to give a proof of Assertion 2. For completeness, we will also give a proof of Assertion 1 and some related remarks.

2 Auxiliary results and proofs

For positive integers r and s, we let $J_{s}=J_{s}(0)$, and note that $J_{s}^{r}=0$ if and only if $r \geq s$.
Theorem 2.1. Let p, q be positive integers with $p \geq q \geq 1$, let $C=\left(c_{i j}\right) \in M_{p, q}$, and let

$$
T=\left(\begin{array}{cc}
J_{p} & C \\
0 & J_{q}
\end{array}\right) .
$$

The following conditions are equivalent.
(a) There is $X \in M_{p, q}$ such that $J_{p} X-X J_{q}=C$.
(b) The matrix T is similar to $J_{p} \oplus J_{q}$.
(c) $T^{p}=0$.
(d) $\left(c_{p, 1}, \ldots, c_{p, q}\right)+\left(0, c_{p-1,1}, \ldots, c_{p-1, q-1}\right)+\cdots+\left(0, \ldots, 0, c_{p-q+1,1}\right)=(0, \ldots, 0)$.

Moreover, if (d) holds, and if $X=\left(x_{i j}\right) \in M_{p, q}$, in which $\left(x_{11}, \ldots, x_{1 q}\right)=(0, \ldots, 0)$, and

$$
\left(x_{\ell, 1}, \ldots, x_{\ell, q}\right)=\left(c_{\ell-1,1}, \ldots, c_{\ell-1, q}\right)+\left(0, x_{\ell-1,1}, \ldots, x_{\ell-1, q-1}\right), \quad \ell=2, \ldots, p
$$

then $J_{p} X-X J_{q}=C$ and

$$
\left(\begin{array}{cc}
I_{p} & -X \tag{1}\\
0 & I_{q}
\end{array}\right)\left(\begin{array}{cc}
J_{p} & C \\
0 & J_{q}
\end{array}\right)\left(\begin{array}{cc}
I_{p} & X \\
0 & I_{q}
\end{array}\right)=\left(\begin{array}{cc}
J_{p} & 0 \\
0 & J_{q}
\end{array}\right) .
$$

By Theorem 2.1, one can use the simple condition (d) to determine whether condition (a), (b), or (c) holds. Moreover, if condition (d) holds, one can construct X satisfying (a). The matrix X will also satisfy (1), and hence condition (b) holds.

Proof of Theorem 2.1. Suppose (a) holds. Then the matrix X will satisfy (1) so that T is similar to $J_{p} \oplus J_{q}$. Thus, condition (b) holds.

Suppose (b) holds. Then there is an invertible matrix S such that $T=S^{-1}\left(J_{p} \oplus J_{q}\right) S$ so that $T^{p}=S^{-1}\left(J_{p}^{p} \oplus J_{q}^{p}\right) S=0_{p+q}$ as $J_{p}^{p}=0_{p}$ and $J_{q}^{p}=0_{q}$. Thus, condition (c) holds.

Suppose (c) holds. By an easy induction argument, one can show that

$$
T^{\ell}=\left(\begin{array}{cc}
J_{p}^{\ell} & Q_{\ell} \\
0 & J_{q}^{\ell}
\end{array}\right) \text { with } Q_{\ell}=J_{p}^{\ell-1} C+J_{p}^{\ell-2} C J_{q}+\cdots+J_{p} C J_{q}^{\ell-2}+C J_{q}^{\ell-1}, \quad \ell=2,3, \ldots
$$

If $C=\left(c_{i j}\right) \in M_{p, q}$ has rows C_{1}, \ldots, C_{p}, then $T^{p}=\left(\begin{array}{cc}0_{p} & Q_{p} \\ 0 & 0_{q}\end{array}\right)$ with

$$
Q_{p}=\left(\begin{array}{c}
C_{p} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
C_{p-1} \\
C_{p} \\
0 \\
\vdots \\
0
\end{array}\right) J_{q}+\cdots+\left(\begin{array}{c}
C_{1} \\
C_{2} \\
C_{3} \\
\vdots \\
C_{p}
\end{array}\right) J_{q}^{p-1}
$$

Let Q_{p} have rows $Y_{1}, Y_{2}, \ldots, Y_{q}$. Then

$$
Y_{1}=C_{p}+C_{p-1} J_{q}+\cdots+C_{1} J_{q}^{p-1}=\left(c_{p, 1}, c_{p, 2}+c_{p-1,1}, \ldots, c_{p, q}+\cdots+c_{p-q+1, q}\right),
$$

and for $\ell>1$,

$$
Y_{\ell}=C_{p} J_{q}^{\ell-1}+\cdots+C_{\ell} J_{q}^{p-1}=\left(C_{p}+\cdots+C_{1} J_{q}^{p-1}\right) J_{1}^{\ell-1}=Y_{1} J_{q}^{\ell-1},
$$

here we use the fact that $J_{p}^{j}=0$ for $j \geq p$ to get the second equality. Thus, $T^{p}=0$ if and only if

$$
0=Y_{1}=C_{p}+C_{p-1} J_{q}+\cdots+C_{1} J_{q}^{p-1}
$$

which is the vector on the left hand side in (d).
Finally, suppose (d) holds. Let X be defined as in the last assertion of the theorem. If $Z=$ $\left(z_{i j}\right)=J_{p} X-X J_{q}$, then

$$
Z=\left(\begin{array}{ccccc}
x_{2,1} & x_{2,2} & \cdots & x_{2, q-1} & x_{2, q} \\
x_{3,1} & x_{3,2} & \cdots & x_{3, q-1} & x_{3, q} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{p, 1} & x_{p, 2} & \cdots & x_{p, q-1} & x_{p, q} \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)-\left(\begin{array}{ccccc}
0 & x_{1,1} & x_{1,2} & \cdots & x_{1, q-1} \\
0 & x_{2,1} & x_{2,2} & \cdots & x_{2, q-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & x_{p-1,1} & x_{p-1,2} & \cdots & x_{p-1, q-1} \\
0 & x_{p, 1} & x_{p, 2} & \cdots & x_{p, q-1}
\end{array}\right) .
$$

By the definition of X, for $\ell=1, \ldots, p-1$, the ℓ th row of Z equals

$$
\left(x_{\ell+1,1}, \ldots, x_{\ell+1, q}\right)-\left(0, x_{\ell, 1}, \ldots, x_{\ell, q-1}\right)=\left(c_{\ell, 1}, \ldots, c_{\ell, q}\right),
$$

and the last row of Z equals

$$
\begin{aligned}
& -\left(0, x_{p, 1}, \ldots, x_{p, q-1}\right)=-\left(0, c_{p-1,1}, \ldots, c_{p-1, q-1}\right)-\left(0,0, x_{p-1,1}, \ldots, x_{p-1, q-2}\right) \\
= & -\left\{\left(0, c_{p-1,1}, \ldots, c_{p-1, q-1}\right)+\left(0,0, c_{p-2,1}, \ldots, c_{p-2, q-2}\right)+\left(0,0,0, x_{p-2,1}, \ldots, x_{p-2, q-3}\right)\right\} \\
= & \cdots=-\left\{\left(0, c_{p-1,1}, \ldots, c_{p-1, q-1}\right)+\cdots+\left(0, \ldots, 0, c_{p-q+1,1}\right)\right\}=\left(c_{p, 1}, \ldots, c_{p, q}\right)
\end{aligned}
$$

by condition (d). Thus, $J_{p} X-X J_{q}=C$, i.e., condition (a) holds.
Now, X satisfies (a). It will also satisfy (1). So, the last assertion of the theorem holds.

We can use Theorem 2.1 to give the following.
Proof of Assertion 2. Suppose $B \in M_{n}$ has only one (distinct) eigenvalue λ. We only need to show that for $T=B-\lambda I_{n}$ there is R such that $R^{-1} T R$ is a direct sum of Jordan blocks of 0 . Then $R^{-1} B R$ is a direct sum of Jordan blocks of λ.

Note that $T^{n}=0$. We can find the smallest integer p such that $T^{p-1} \neq 0$ and $T^{p}=0$. Then there is $v \in \mathbb{C}^{n}$ such that $T^{k-1} v \neq 0$ and $T^{p} v=0$. We will show that $\left\{v, T v, \ldots, T^{p-1} v\right\}$ is a linearly independent set. Suppose $\sum_{j=0}^{p-1} \alpha_{j} T^{j} v=0$ with some $\alpha_{\ell} \neq 0$. Let ℓ be the smallest nonnegative integer such that $\alpha_{\ell} \neq 0$. Then $T^{\ell} v=\sum_{j=\ell+1}^{p-1}\left(-\alpha_{j} / \alpha_{\ell}\right) T^{j} v$ and

$$
T^{p-1} v=T^{p-1-\ell}\left(T^{\ell} v\right)=T^{p-1-\ell}\left(\sum_{j=\ell+1}^{p-1}\left(-\alpha_{j} / \alpha_{\ell}\right) T^{j} v\right)=0
$$

which contradicts the assumption that $T^{p-1} v \neq 0$.
Let $R_{1} \in M_{n}$ be invertible with $T^{p-1} v, T^{p-2} v, \ldots, v$ as its first p columns. If $p=n$, then $R_{1}^{-1} T R_{1}=J_{n}$ and we are done. Otherwise, $R_{1}^{-1} T R_{1}=\left(\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right)$ such that $T_{11}=J_{p}$ and $T_{22}^{p}=0$. By induction assumption, there is an invertible $R_{2} \in M_{n-p}$ such that $R_{2}^{-1} T_{22} R_{2}=J_{n_{2}} \oplus \cdots \oplus J_{n_{k}}$ with $n_{2} \geq \cdots \geq n_{k}$. Thus, $G=\left(I_{p} \oplus R_{2}^{-1}\right) R_{1}^{-1} T R_{1}\left(I_{p} \oplus R_{2}\right)=\left(G_{i j}\right)$ such that $G_{11}=J_{p}, G_{j j}=J_{n_{j}}$ for $j=2, \ldots, k$, and $G_{i j}=0_{n_{i}, n_{j}}$ whenever $i \neq j$ and $i \neq 1$.

For $j=2, \ldots, k$, let $F_{j}=\left(\begin{array}{cc}J_{p} & G_{1 j} \\ 0 & J_{n_{j}}\end{array}\right)$. Then F_{j}^{p} is a principal submatrix of $G^{p}=0$. So, $F_{j}^{p}=0$. By Theorem 2.1, for each $j=2, \ldots, k$, there is $X_{j} \in M_{p, n_{j}}$ such that

$$
\left(\begin{array}{cc}
J_{p} & G_{1 j} \\
0 & J_{n_{j}}
\end{array}\right)\left(\begin{array}{cc}
I_{p} & X_{j} \\
0 & I_{n_{j}}
\end{array}\right)=\left(\begin{array}{cc}
I_{p} & X_{j} \\
0 & I_{n_{j}}
\end{array}\right)\left(\begin{array}{cc}
J_{p} & 0 \\
0 & J_{n_{j}}
\end{array}\right) .
$$

Let $R_{3}=\left(\begin{array}{cc}I_{p} & X \\ 0 & I_{n-p}\end{array}\right)$ with $X=\left(X_{2} \cdots X_{k}\right)$. Then $\left(G_{i j}\right) R_{3}=R_{3}\left(J_{p} \oplus J_{n_{2}} \oplus \cdots \oplus J_{n_{k}}\right)$. Let $R=R_{1}\left(I_{p} \oplus R_{2}\right) R_{3}$. Then $R^{-1} T R$ is a direct sum of Jordan blocks, and so is $R^{-1} B R$.

For completeness, we also present a proof of Assertion 1 and some related remarks. In particular, one may see how Lemma 2.3 motivates the formulation of Theorem 2.1.

Lemma 2.2. Suppose $A \in M_{n}$ has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. There is an invertible $R \in M_{n}$ such that $R^{-1} A R$ is in upper triangular form with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$.

Proof. We prove the result by the induction on n. The result is trivial if $n=1$. Assume $n>1$, and the result holds for matrices in M_{n-1}. Suppose $A x=\lambda_{1} x$ for a nonzero vector x. Let $R_{1} \in M_{n}$ be invertible with its first column equal to x. Then $R_{1}^{-1} A R_{1}=\left(\begin{array}{cc}\lambda_{1} & \star \\ 0 & A_{1}\end{array}\right)$. Since $\operatorname{det}(x I-A)=\left(x-\lambda_{1}\right) \operatorname{det}\left(x I-A_{1}\right)$, we see that A_{2} has eigenvalues $\lambda_{2}, \ldots, \lambda_{n}$. By induction assumption, there is an invertible $R_{2} \in M_{n-1}$ such that $R_{2}^{-1} A_{1} R_{2}$ is in upper triangular form with diagonal entries $\lambda_{2}, \ldots, \lambda_{n}$. Let $R=R_{1}\left([1] \oplus R_{2}\right)$. Then $R^{-1} A R$ is in upper triangular form with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$.

The matrices R_{1} and R_{2} in the proof can be chosen to be unitary if we use the inner product structure of \mathbb{C}^{n}. One can then conclude that for every $A \in M_{n}$ there is a unitary matrix $U \in M_{n}$
such that $U^{*} A U$ is in upper triangular form. This is known as the Schur triangularization lemma; e.g., see [1, Theorem 11.1.1].

Lemma 2.3. Suppose $F \in M_{p}, G \in M_{q}$ have no common eigenvalues, and $C \in M_{p, q}$. There is a unique matrix $X \in M_{p, q}$ such that $F X+C=X G$. As a result, if $R=\left(\begin{array}{cc}I_{p} & X \\ 0 & I_{q}\end{array}\right)$ and $A=\left(\begin{array}{cc}F & C \\ 0 & G\end{array}\right)$, then $R^{-1} A R=F \oplus G$.

Proof. Let $R \in M_{q}$ be invertible such that $\tilde{G}=R^{-1} G R$ is in upper triangular form. Suppose $\tilde{C}=C R$ and $Y=X R$. Then $F X+C=X G$ if and only if $F Y+\tilde{C}=Y \tilde{G}$. We will show that the modified equation $\tilde{C}=-F Y+Y \tilde{G}$ has a unique solution Y. Then $X=Y R^{-1}$ will be the unique solution of the original equation. One can check that $A R=R(F \oplus G)$ so that the last assertion of the lemma follows.

Let $\tilde{C}=\left(c_{1} \cdots c_{q}\right)$ and $Y=\left(y_{1} \cdots y_{q}\right)$ with $c_{1}, \ldots, c_{q}, y_{1}, \ldots, y_{q} \in \mathbb{C}^{p}$. If $\tilde{G}=\left(g_{i j}\right)$, then $g_{11}, \ldots, g_{q q}$ are the eigenvalues of G. Then $g_{j j}$ is not an eigenvalue of F so that $F-g_{j j} I_{p}$ is invertible for $j=1, \ldots, q$. As a result, $F y_{1}+c_{1}=g_{11} y_{1}$ has a unique solution $y_{1}=-\left(F-g_{11} I_{p}\right)^{-1} c_{1}$, and for $\ell=2, \ldots, q$,
$F y_{\ell}+c_{\ell}=g_{\ell \ell} y_{\ell}+\sum_{j=1}^{\ell-1} g_{1 j} y_{\ell}$ has a unique solution $y_{\ell}=\left(F-g_{\ell \ell} I_{p}\right)^{-1}\left(\sum_{j=1}^{\ell-1} g_{1 j} y_{j}-c_{\ell}\right)$.
Thus, we get the unique solution $Y=\left[y_{1} \cdots y_{q}\right]$ such that $F Y+\tilde{C}=Y \tilde{G}$.
Note that our proof of Lemma 2.3 provides an easy computational scheme for solving the Sylvester equation $F X-X G=C$. We can now present the following.

Proof of Assertion 1 We prove the result by the induction on k, the number of distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of $A \in M_{n}$. If $k=1$, the result is trivial. Assume that the result holds for matrices with fewer than k distinct eigenvalues for $k>1$. Let $A \in M_{n}$ have k distinct eigenvalues. By Lemma 2.2. there is an invertible matrix $R_{1} \in M_{n}$ such that $R_{1}^{-1} A R_{1}=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right)$, where $A_{11} \in M_{p}$ is in upper triangular form with all diagonal entries equal to λ_{1}, and $A_{22} \in M_{n-p}$ is in upper triangular form with diagonal entries in $\left\{\lambda_{2}, \ldots, \lambda_{k}\right\}$. By Lemma 2.3, there is $X \in M_{p, n-p}$ such that $A_{11} X+A_{12}=X A_{22}$. Let $R_{2}=\left(\begin{array}{cc}I_{p} & X \\ 0 & I_{n-p}\end{array}\right)$ so that $A R_{2}=R_{2}\left(\begin{array}{cc}A_{11} & 0 \\ 0 & A_{22}\end{array}\right)$. By induction assumption, there is an invertible matrix $R_{3} \in M_{n-p}$ such that $R_{3}^{-1} A_{22} R_{3}$ is a direct sum of diagonal blocks of matrices A_{2}, \ldots, A_{k} such that each B_{j} is in triangular form with constant diagonal entry. Let $S=R_{1} R_{2}\left(I_{p} \oplus R_{3}\right)$. Then $R^{-1} A R$ has the desired form.

Acknowledgment The author would like to thank the referee for some helpful comments.
Declaration There is no conflict of interest concerning this research.

References

[1] S.R. Garcia and R.A. Horn, Matrix Mathematics: A Second Course in Linear Algebra (Cambridge Mathematical Textbooks) 2nd Edition, Cambridge University Press, 2023.
[2] J. Sylvester, Sur l'equations en matrices $p x=x q$, C. R. Acad. Sci. Paris. 99 (2) (1884), 67-71. 115-116.

[^0]: *Research partially supported by the Simons Foundation Grant 851334

