A matrix equation and the Jordan canonical form*

Chi-Kwong Li
Department of Mathematics, College of William & Mary,
Williamsburg, VA 23187, USA.
ckli@math.wm.edu

Abstract

For a given p x ¢ complex matrix C, a necessary and sufficient condition is obtained for the
existence of a matrix X satisfying J,X — XJ; = C, here J, denotes the r x r Jordan block of
0. An easy construction of the solution X is given if it exists. These results lead to a proof of
the fact that a nilpotent matrix is similar to a direct sum of Jordan blocks.
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1 Introduction

Let M, be the set of m x n complex matrices, and M, = M, ,. Denote by £;; the standard
matrix unit with the (7, j) entry equal to 1 and the other entries equal to 0. The size of E;; should
be clear in the context.

For A € C and a positive integer r, the matrix

A1
r—1 . .
JT()\) =\, + Z Ej,j+1 — .. .. e M,
p Al
A

is called the Jordan block of A of size r. We have the following Jordan canonical form theorem;
e.g., see [Il, Chapter 12] for a proof and some historical notes.

Theorem 1.1. Every matriz A € M, is similar to a direct sum of Jordan blocks.

The result has many interesting consequences, and has applications to other topics; for example,
see [I, Chapter 13]. The theorem can be proved by establishing the following two assertions.

Assertion 1 A matric A € M,, with distinct eigenvalues A1, ..., A, i similar to a direct sum of
square matrices Aq, ..., Ay, denoted by Ay @ --- ® Ay, such that A; has \; as the only (distinct)
etgenvalue for 5 =1,...,k.

Assertion 2 If B € M, has only one distinct eigenvalue X\, then B is similar to a direct sum of
Jordan blocks of A.
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By these assertions, there are invertible matrices R, Ry, ..., Ry such that R™'AR = A;®---® Ay,
and Rj_lAjRj is a direct sum of Jordan blocks of A;. Then S~LAS is a direct sum of Jordan blocks
if S=R(R1®--- D Rg).

One approach to prove Assertion 1 is to use the Sylvester equation theorem, which asserts that
the matrix equation F'X — XG = C always has a unique solution X € M, , for given F' € M, G €
M, and C € My, such that F' and G have no common eigenvalues; see [2], [I, Theorem 11.4.1],
and Lemma in the next section. We will show that Assertion 2 can be proved by using a
solution of the matrix equation J,(0)X — X J,(0) = C for a given matrix C' € M, ,. In Theorem
a necessary and sufficient condition is obtained for the existence of a solution X € M, , of the
equation. An easy construction of a solution X is given if it exists. The result will then be used
to give a proof of Assertion 2. For completeness, we will also give a proof of Assertion 1 and some
related remarks.

2 Auxiliary results and proofs

For positive integers r and s, we let Js = J4(0), and note that J. = 0 if and only if r > s.

Theorem 2.1. Let p,q be positive integers with p > q > 1, let C = (¢;j) € My 4, and let
_ (5 C
(1 %)

There is X € M, 4 such that J,X — XJ, = C.

The following conditions are equivalent.

b) The matriz T' is similar to J, ® Jg.

(a)

(b)

(c) TP =
(d) (epay---sepq)+(0,¢p—11,- s Cp_1g-1) + -+ (0,...,0,¢p—g+1,1) = (0,...,0).
Moreover, if (d) holds, and if X = (x;5) € Mp 4, in which (z11,...,214) = (0,...,0), and

(e1,- s Teg) = (=115 Co—1,9) + (0, Tp—115 -, Tp—1,9-1), £=2,...,D,

(0 DG D)

By Theorem one can use the simple condition (d) to determine whether condition (a), (b),
r (c) holds. Moreover, if condition (d) holds, one can construct X satisfying (a). The matrix X
will also satisfy (I)), and hence condition (b) holds.
Proof of Theorem . Suppose (a) holds. Then the matrix X will satisfy so that T is
similar to J, & J,;. Thus, condition (b) holds.
Suppose (b) holds. Then there is an invertible matrix S such that T'= S~1(J, ® J,)S so that
TP = S~ (J) @ J)S = Optq as J5 =0, and JJ = 0,. Thus, condition (c) holds.

then J,X — XJ, = C and



Suppose (c) holds. By an easy induction argument, one can show that

4
1¢=<% ?@-mwmh:Jﬁ%ﬂ+4ﬁc%+~.+%cﬁ4+{wfﬁ (=2,3,....
q

If C = (cij) € Mpq has rows C1,...,Cp, then TP = (Op %2”> with

0 0
A C
0 Cp Cy
Q=0 f+] O |J+-+[Cs Jr1
0 0 c,

Let @, have rows Y7,Ys,...,Y,. Then
Vi=Cp+Cpadg+---+ Cl‘]g_l = (G, p2F+ 11,5 Cpg 0+ Cpgilg),
and for £ > 1,
Y =Cpdi t o+ P = (Cpt -+ CrIE NI =1
here we use the fact that Jg = 0 for 7 > p to get the second equality. Thus, TP = 0 if and only if
0=Y1=Cp+ Cp1Jg+ -+ Cr1JI7,

which is the vector on the left hand side in (d).

Finally, suppose (d) holds. Let X be defined as in the last assertion of the theorem. If Z =
(Zij) = J,X — X J,, then

To1 X2 crc Xg-1 T2g 0 @ T2 o X1g-1
T31 T32 ' T3q-1 T3gq 0 @2y Too ct Tag-1
Z = : : : : : - : : : :
Ip1 Tp2 - Tpg-1 Tpg 0 Zp_11 Tp-12 - Tp-1g-1
0 o --- 0 0 0 @p1 Tp2 t Tpg-1

By the definition of X, for £ =1,...,p — 1, the th row of Z equals

($f+1,17 ceey $€+1,q) - (07 xf,l? ceey xf,qfl) = (cf,la ceey CE,(])?
and the last row of Z equals
—(0, Tply--- ,.%'p7q_1) = —(0, Cp—1,15--- 7Cp—1,q—1) — (0, 0, Tp—1,15--- ,:L‘p_l,q_z)

= —{0,¢p-1,15-,6p-1,4-1) +(0,0,¢p-21, ... ,¢p-24-2) +(0,0,0,75 21,...,2p 243)}

= = {011 prg) o (0,0, gr11) ) = (G- )

by condition (d). Thus, J,X — XJ, = C, i.e., condition (a) holds.
Now, X satisfies (a). It will also satisfy . So, the last assertion of the theorem holds. O



We can use Theorem [2.1] to give the following.

Proof of Assertion 2. Suppose B € M,, has only one (distinct) eigenvalue \. We only need to
show that for T'= B — \I,, there is R such that R~'TR is a direct sum of Jordan blocks of 0. Then
R~ !'BR is a direct sum of Jordan blocks of \.

Note that 7" = 0. We can find the smallest integer p such that 7P~ # 0 and T? = 0. Then
there is v € C" such that T*"!v # 0 and TPv = 0. We will show that {v,Tv,..., TP v} is a
linearly independent set. Suppose Z?;é a;jT7y = 0 with some ay # 0. Let ¢ be the smallest

nonnegative integer such that oy # 0. Then T = Z?;t}ﬂ(—aj/ag)ij and

p—1
Tty = TP HT) = TP [ YT (—aj/a0) T | =0,
j=t+1

which contradicts the assumption that TP~ 1y # 0.
Let Ry € M, be invertible with TP~lv, TP=2y, ... v as its first p columns. If p = n, then

RflTRl = J, and we are done. Otherwise, RflTRl = (131 ?2
22

By induction assumption, there is an invertible Ry € M,,_, such that R5 TRy = Iy @+ D Iy,
with ng > -+ > ny. Thus, G = (I, ® Ry )Ry 'TR1(I,® Ry) = (Gyj) such that G11 = J,, Gj; = Jy,
for j =2,...,k, and Gji; = Oy, »; whenever i # j and i # 1.

For j =2,...,k,let F; = <'{)p lej). Then Fjp is a principal submatrix of GP = 0. So, Fjp =0.
n;

By Theorem for each j =2,...,k, there is X; € M, such that

Ty G\ (L X\ (L, X;\(Jy O
0 Jo,)\o 1,) " \o 1,)\0 7,/

> such that Th; = J, and T%, = 0.

Let Ry = <Ié) Iip) with X = (Xng) Then (Gij)Rg = Rg(Jp SJp, BB Jnk)- Let
R = Ri(I, ® R2)Rs. Then R™ITR is a direct sum of Jordan blocks, and so is R~'BR. O

For completeness, we also present a proof of Assertion 1 and some related remarks. In particular,
one may see how Lemma [2.3 motivates the formulation of Theorem

Lemma 2.2. Suppose A € M,, has eigenvalues A\i,..., . There is an invertible R € M, such
that R™YAR is in upper triangular form with diagonal entries Ay, ..., Ap.

Proof. We prove the result by the induction on n. The result is trivial if n = 1. Assume
n > 1, and the result holds for matrices in M,,_1. Suppose Ax = Az for a nonzero vector .

Let Ry € M, be invertible with its first column equal to z. Then Rl_lARl = <)(\)1 2 > Since
1

det(xl — A) = (x — A1) det(z] — Ay), we see that Ay has eigenvalues Mg, ..., \,. By induction
assumption, there is an invertible Ry € M,_; such that R, ARy is in upper triangular form with
diagonal entries A9, ..., \,. Let R = R;([1] @ R2). Then R~'AR is in upper triangular form with
diagonal entries Aq1,..., A,. ]

The matrices Ry and Rs in the proof can be chosen to be unitary if we use the inner product
structure of C™. One can then conclude that for every A € M, there is a unitary matrix U € M,



such that U*AU is in upper triangular form. This is known as the Schur triangularization lemma;
e.g., see [Il, Theorem 11.1.1].

Lemma 2.3. Suppose F' € M,,G € M, have no common eigenvalues, and C' € Mp,. There is a

unique matric X € M, 4 such that FX+C = XG. As a result, if R = (Iéo f) and A = <§ g),
q

then R'AR=F & G.

Proof. Let R € M, be invertible such that G = R™'GR is in upper triangular form. Suppose
C=CRandY = XR. Then FX + C = XG if and only if FY + C = YG. We will show that the
modified equation C =—FY +YG has a unique solution Y. Then X = YR™! will be the unique
solution of the original equation. One can check that AR = R(F @ G) so that the last assertion of
the lemma follows.

Let C = (c1---¢y) and Y = (y1---y,) with c1,...,¢, 91,94 € CP. If G = (gi;), then
g1, - - -, gqq are the eigenvalues of G. Then g;; is not an eigenvalue of F' so that F'— g;; I, is invertible
for j =1,...,q. As aresult, Fy; + ¢1 = g11y1 has a unique solution y; = —(F — g111,) 'c1, and
for{=2,...,q,

Fye+ co = guye + 35— 915y has a unique solution gy = (F — geelp) (X521 9195 — o).
Thus, we get the unique solution Y = [y - - - y4] such that F'Y + C=YG. O

Note that our proof of Lemma provides an easy computational scheme for solving the
Sylvester equation F X — XG = C. We can now present the following.

Proof of Assertion 1 We prove the result by the induction on k, the number of distinct eigenvalues
A, ..., Apof A e M,. If k=1, the result is trivial. Assume that the result holds for matrices with
fewer than k distinct eigenvalues for k > 1. Let A € M,, have k distinct eigenvalues. By Lemma

there is an invertible matrix Ry € M, such that Rl_lARl = (A(;l jw), where A1 € M,
22

is in upper triangular form with all diagonal entries equal to A;, and Ay € M,_, is in upper
triangular form with diagonal entries in {A2,...,Ax}. By Lemma there is X € M), such

I, X (A0
0 In_p> so that ARy = Rs < 0 Ag

assumption, there is an invertible matrix R3 € M,,_, such that Ry 1A22R3 is a direct sum of diagonal

that A11 X + A9 = X Agy. Let Ry = < > By induction

blocks of matrices As, ..., Aj such that each B; is in triangular form with constant diagonal entry.
Let S = RiR2(I, © R3). Then R~ AR has the desired form. O
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