
Numerical Range, Dilation, and Maximal Operator Systems

Chi-Kwong Li and Yiu-Tung Poon

Abstract

An operator system is a unital self-adjoint subspace of bounded linear operators. It is
maximal if every positive linear map from it to another operator system is completely positive.
In this paper, characterizations of maximal operator systems in terms of the joint numerical
range are presented. New families of maximal operator systems are identified. These results
admit formulations in terms of numerical range inclusion and dilation of operators that unify
and extend earlier results on the topic.
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1 Introduction

Let B(H) be the set of bounded linear operators acting on a Hilbert space H with inner product

〈x,y〉. If H has dimension n, we identify B(H) with Mn and H = Cn with the usual inner product

〈x,y〉 = y∗x. The numerical range of A ∈ B(H) is defined and denoted by

W (A) = {〈Ax,x〉 : x ∈ H, 〈x,x〉 = 1}.

The numerical range is a useful tool for studying operators and matrices; e.g., see [11]. In

particular, researchers have used numerical range inclusion relation of two operators to determine

whether one is a dilation of the other. Recall that an operator B ∈ B(H) admits a dilation

A ∈ B(K) if there is a partial isometry X : H → K such that X∗X = IH and X∗AX = B. For

simplicity, we will say that B admits a dilation of the form A ⊗ I if there is a Hilbert space L
such that B admits a dilation of the form A⊗ IL.

It is easy to show that if B admits a dilation of the form A⊗ I, then W (B) ⊆W (A). But the

converse may not hold. Mirman [15] (see also [16]) showed that if A ∈ M3 is normal, then the

following condition holds:

Every operator B ∈ B(H) satisfying W (B) ⊆W (A) admits a dilation of the form A⊗ I. (1.1)

Ando [1] and Arveson [3] proved that condition (1.1) holds for A =

(
0 1
0 0

)
. These results were

further extended by Choi and Li [7, 8]. It was shown that condition (1.1) holds if A ∈ M2, or

A ∈M3 unitarily similar to [a0]⊕A1 with A1 ∈M2. However, let

A1 =

0 1 0
0 0 1
0 0 0

 or A2 = diag (1, i,−1,−i).
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If B = 1√
2

(
0 2
0 0

)
, then W (B) = {µ ∈ C : |µ| ≤ 1/

√
2} = W (A1) ⊆ W (A2) = conv {1, i,−1, i}.

But B does not admit a dilation of the form A1 ⊗ I or A2 ⊗ I as

‖B‖ =
√

2 > 1 = ‖A1‖ = ‖A2‖.

So, (1.1) may not hold for a general matrix A ∈Mn for n ≥ 3 or a general normal matrix A ∈Mm

with m ≥ 4. The classification of A ∈Mn satisfying (1.1) is an open problem for n ≥ 3.

In Section 3, we show that if A ∈Mn and there are a, b, c ∈ C such that aI + bA+ cA∗ is rank

one, then (1.1) holds. As a consequence, if A ∈M3 is such that the boundary of W (A) contains a

non-trivial line segment, then condition (1.1) holds. Also, we characterize those matrices A which

are direct sums of matrices in M1 and M2 satisfying condition (1.1). As a result, if A ∈ Mn is a

normal matrix such that W (A) has four or more vertices, then A does not satisfy (1.1). These

cover and extend the results by previous authors.

In addition to the study of a single operator A, we extend the study to m-tuple of matrices

and identify A = (A1, . . . , Am) ∈ B(H)m such that:

Any m-tuple of operators B = (B1, . . . , Bm) ∈ B(K)m satisfying the joint numerical range

inclusion W (B) ⊆ convW (A) will have a joint dilation of the form (A1 ⊗ I, . . . , Am ⊗ I), i.e.,

there is a partial isometry X such that Bj = X∗(Aj ⊗ I)X for j = 1, . . . ,m.

It turns out that the study can be reformulated in terms of maximal operator systems. Recall

that an operator system S of B(H) is a self-adjoint subspace of B(H) which contains IH. A linear

map Φ : S → B(K) is unital if Φ (IH) = IK, Φ is positive if Φ(A) is positive semi-definite for every

positive semi-definite A ∈ S, and Φ is completely positive if Ik ⊗ Φ : Mk(S)→Mk(B(K)) defined

by (Sij) 7→ (Φ(Sij)) is positive for every k ≥ 1; e.g., see [6] and [18] for some general background.

Suppose A ∈ Mn and B ∈ B(H). Let S = span {In, A,A∗}. Define a unital linear map

Φ : S → B(H) by Φ(aIn + bA + cA∗) = aIH + bB + cB∗ for a, b, c ∈ C. By [8, Lemma 4.1], Φ is

positive if and only if W (B) ⊆W (A). On the other hand, Φ is completely positive if and only if

B = Φ(A) has a dilation of the form I ⊗ A; see Proposition 2.2 in the next section. Therefore,

the results of Choi and Li can be restated as follows.

Theorem 1.1 Suppose A = A0 or [a] ⊕ A0 with A0 ∈ M2. Then for every Hilbert space H, a

unital linear map Φ : span {I, A,A∗} → B(H) is positive if and only if Φ is completely positive.

Following the discussion in [19, Theorem 3.22], we say that an operator system S is maximal if

every unital positive map Φ : S → B(H) is completely positive for every Hilbert space H. In such

a case, we will say that S is an OMAX. In particular, it was shown in [19] that S is an OMAX if

and only if for every positive integer n, a positive semi-definite operator operator (bij) ∈ Mn(S)

is the limit of a finite sum of operators of the form T ⊗B, where T ∈ S and B ∈Mn are positive

semi-definite operators. Despite this nice characterization, it is not easy to check or construct

OMAX.

2



Suppose an operator system S ⊆ B(H) has a basis {I, A1, . . . , Am}. It turns out that one can

use the joint numerical range of (A1, . . . , Am) ∈ B(H)m defined by

W (A1, . . . , Am) = {(〈A1x, x〉, . . . , 〈Amx, x〉) : x ∈ H, 〈x, x〉 = 1} ⊆ Cm

to determine whether S is maximal. Here, Cm denotes the set of row or column vectors with m

complex entries. Again, a key concept involved is dilation. We say that (B1, . . . , Bm) ∈ B(K)m

has a joint dilation (A1, . . . , Am) ∈ B(H)m if there is a partial isometry V : K → H such that

V ∗AjV = Bj for all j = 1, . . . ,m. If there is a Hilbert space L such that (B1, . . . , Bm) has a joint

dilation (A1 ⊗ IL, . . . , Am ⊗ IL) ∈ B(H ⊗ L), we will simply say that (B1, . . . , Bm) has a joint

dilation (A1 ⊗ I, . . . , Am ⊗ I).

We will obtain characterizations of maximal operator systems in terms of the inclusion relations

of joint numerical ranges. Using these characterizations, we extend earlier results on the topic,

and identify new families of maximal operator systems. For instance, we have the following result,

which is a consequence Proposition 2.2 in the next section.

Theorem 1.2 Let S ⊆Mn be an operator system with a basis {I, A1, . . . , Am} consisting of Her-

mitian matrices. Then S is a maximal operator system if and only if every (B1, . . . , Bm) ∈ B(H)m

with W (B1, . . . , Bm) ⊆ convW (A1, . . . , Am) has a joint dilation of the form (A1⊗ I, . . . , Am⊗ I).

By Corollary 3.4, we have the following new example of OMAX.

Example 1.3 Let A = diag (1+i, 1−i)⊕
(

0 2
0 0

)
. Then span {I, A,A∗} is an OMAX. As a result,

if B is a bounded linear operator with W (B) ⊆ W (A) = conv ({1 + i, 1− i} ∪ {µ ∈ C : |µ| ≤ 1}),
then B admits a dilation of the form A⊗ I.

Our paper is organized as follows. We first present some preliminary results concerning numer-

ical range inclusion, dilation, and operator systems in Section 2, and consider maximal operator

systems generated by one operator A in Section 3. Maximal operator systems generated by two

or more operators will be considered in Section 4.

2 Preliminary results

It is easy to show that (B1, . . . , Bm) admits a joint dilation of the form (A1 ⊗ I, . . . , Am ⊗ I) if

and only if (B1, . . . , Bm) admits a dilation of the form (I ⊗ A1, . . . , I ⊗ Am). We will use these

two equivalent conditions in our discussion.

We first summarize some basic results on the joint numerical range W (A1, . . . , Am); e.g.,

see [13] and its references. Since Aj = Hj + iGj with (Hj , Gj) = (H∗j , G
∗
j ) for j = 1, . . . ,m,

W (A1, . . . , Am) ⊆ Cm can be identified with W (H1, G1, . . . ,Hm, Gm) ⊆ R2m. We can focus on

the joint numerical range of self-adjoint operators. Below are some basic properties of the joint

numerical range; see [13] and its references.
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Proposition 2.1 Let T1, . . . , Tm ∈ B(H) be self-adjoint operators.

(a) The set W (T1, . . . , Tm) is bounded.

(b) The set W (T1, . . . , Tm) is closed if dimH <∞. Otherwise, it may not be closed.

(c) When dimH = 2, W (T1, . . . , Tm) is convex if and only if dim span {I, T1, . . . , Tm} ≤ 3.

(d) Suppose dimH ≥ 3, and dim span {I, T1, . . . , Tm} ≤ 4. Then W (T1, . . . , Tm) is convex.

(e) Suppose dimH ≥ 3 and dim span {I, T1, . . . , Tm} ≥ 4. Then there is a rank 2 orthgonal

projection T0 such that W (T0, T1, . . . , Tm) is not convex.

Note that an operator system S ⊆ B(H) always has a basis {I, A1, . . . , Am} consisting of self-

adjoint operators. The following is an extension of [8, Lemma 4.1]. The assertions are probably

well known to researchers in the area (see [9, 12] for related results). We include a proof here for

completeness.

Proposition 2.2 Let S ⊆ B(H) be an operator system with a basis {I, A1, . . . , Am}. Suppose

Φ : S → B(K) is a unital linear map and (B1, . . . , Bm) = (Φ(A1), . . . ,Φ(Am)).

(a) The map Φ is positive if and only if

W (B1, . . . , Bm) ⊆ cl (convW (A1, . . . , Am)),

where cl (S) denotes the closure of S ⊂ Rm.

(b) If (B1 . . . , Bm) admits a dilation of the form (A1 ⊗ I, . . . , Am ⊗ I), then Φ is completely

positive. If Φ is completely positive and dimH < ∞, then (B1, . . . , Bm) admits a dilation

of the form

(A1 ⊗ I, . . . , Am ⊗ I).

Proof. (a) Note that (a1, . . . , am) ∈ cl (convW (A)) if and only if for any real vector (u0, u1, . . . , um),

u0 + u1a1 + · · ·+ umam ≤ maxσ(u0I + u1A1 + · · ·+ umAm).

Here σ(H) denotes the spectrum of H ∈ B(H). Thus, W (B1, . . . , Bm) ⊆ cl (convW (A1, . . . , Am))

if and only if u0I + u1B1 + · · · + umBm ≥ 0 whenever the real vector (u0, . . . , um) satisfies

u0I + u1A1 + · · ·+ umAm ≥ 0. The assertion follows.

(b) Suppose (B1, . . . , Bm) admits a dilation of the form (A1⊗IL, . . . , Am⊗IL) for some Hilbert

space L, then there exists V : K → H ⊗ L, such that V ∗V = IK and Bi = V ∗(Ai ⊗ IL)V for

i = 1, . . . ,m. Therefore, Φ is completely positive.

Now, suppose A1, . . . , Am ∈Mn and Φ : S → B(K) is completely positive. Then by Arveson’s

Theorem [2], Φ can be extended to Φ : Mn → B(K). By a result of Choi (see [6] and [18, Theorem
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3.14]), if {E11, E12, . . . , Enn} is the standard basis for Mn, then C = (Φ(Eij)) ∈ Mn(B(K)) is

a positive operator. Let C1/2 = [C1 . . . Cn] so that Cj : K → Cn ⊗ K. Because Φ is unital, if

V ∗ = [C∗1 · · ·C∗n], then

IK =
n∑

j=1

Φ(Ejj) =
n∑

j=1

C∗jCj = V ∗V.

Suppose IL = In ⊗ IK. Then for ` ∈ {1, . . . ,m},

V ∗(A` ⊗ IL)V =
∑
i,j

(A`)ij(C
∗
i Cj) =

∑
i,j

(A`)ijΦ(Eij) = Φ(A`) = B`.

Thus, (B1, . . . , Bm) admits a joint dilation of the form (A1 ⊗ IL, . . . , Am ⊗ IL).

Remark 2.3 Note that the second statement in (b) may not hold if H is infinite dimensional. For

example, if A = diag (1, 1/2, . . . ) and B = diag (0, 1), then aI+bA 7→ aI+bB is a unital completely

positive map, but B has no dilation of the form A⊗ I because 0 ∈W (B) and 0 /∈W (A⊗ I). This

example shows a subtle difference between the condition that (B1, . . . , Bm) has a dilation of the

form (A1 ⊗ I, . . . , Am ⊗ I) and the condition that the unital positive map φ sending Aj to Bj for

j = 1, . . . ,m is completely positive.

Recall that f : Rm → Rm is an affine map if it has the form x 7→ xR + x0 for a real matrix

R ∈Mm and x0 ∈ Rm, here Rm denotes the set of 1×m real vectors. The affine map is invertible

if R is invertible, and the inverse of f has the form y 7→ yR−1 − x0R
−1. One can extend the

definition of affine map to an m-tuple of self-adjoint operators in B(H) by

(A1, . . . , Am) 7→ (A1, . . . , Am)(rijIH) + (x1IH, . . . , xmIH)

for a real matrix R = (rij) ∈ Mm and (x1, . . . , xm) ∈ Rm. It turns out that real affine maps on

Rm and B(H)m behave nicely in connection to positive maps, completely positive maps, and the

joint numerical range. We have the following result which can be easily verified.

Proposition 2.4 Let S ⊆ B(H) be an operator system with a basis {I, A1, . . . , Am}, and Φ :

S → B(K) a unital linear map such that Bj = Φ(Aj) ∈ B(K) for j = 1, . . . ,m, where A1, . . . , Am,

B1, . . . , Bm are self-adjoint. Suppose f is an invertible affine map such that f(A1, . . . , Am) =

(Ã1, . . . , Ãm) and f(B1, . . . , Bm) = (B̃1, . . . , B̃m).

(a) Then Φ is positive (respectively, completely positive) if and only if the unital map Φ̃ defined

by Φ̃(Ãj) = B̃j for j = 1, . . . ,m, is positive (respectively, completely positive).

(b) The m-tuple of operators (B1, . . . , Bm) has a joint dilation of the form (I⊗A1, . . . , I ⊗Am)

if and only if (B̃1, . . . , B̃m) has a joint dilation of the form (I ⊗ Ã1, . . . , I ⊗ Ãm).
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(c) For any real (unit) vector (u1, . . . , um)

W (u1B1 + · · ·+ umBm) ⊆W (u1A1 + · · ·+ umAm)

if and only if for any real (unit) vector (v1, . . . , vm)

W (v1B̃1 + · · ·+ vmB̃m) ⊆W (v1Ã1 + · · ·+ vmÃm).

3 Operator systems generated by a single operator

In this section, we consider operator system of the form span {I, A,A∗} for a single matrix A.

Alternatively, we can write A = A1 + iA2 for two Hermitian matrices A1 and A2 and consider

S = span {I, A1, A2}. Clearly, if S has dimension 1, i.e., A1 and A2 are scalar operators, then S
is an OMAX. We will consider the cases when S has dimension 2 and 3 in the following.

Proposition 3.1 Suppose S ⊆ B(H) has a basis {I, A}, with A = A∗. Then S is an OMAX.

Furthermore, if W (A) is closed, then a bounded linear operator B ∈ B(K) has a dilation of the

form A⊗ I whenever W (B) ⊆W (A).

Proof. We may replace A by µI+A and assume that 0 ∈W (A) and A has an operator matrix

with the (1, 1) entry equal to zero. Suppose Φ : S → B(K) is a unital positive map and B = Φ(A).

Then W (B) ⊆ clW (A) by Proposition 2.2 (a).

We will show that Φ is completely positive. Suppose k ≥ 1 and C0, C1 ∈ Mk is such that

IH⊗C0+A⊗C1 is positive semidefinite. Since the (1, 1) entry of the operator matrix A is assumed

to be 0, we see that the corresponding (1, 1) block of IH ⊗ C0 + A ⊗ C2 equal to C0 is positive

semi-definite. We may focus on the case when C0 is positive definite, and obtain the conclusion

by continuity argument. Replacing Cj by U∗C
−1/2
0 CjC

1/2
0 U by a suitable unitary U ∈ Mk for

j = 0, 1, we may assume that C0 = Ik and C1 = diag (c1, . . . , ck) is a real diagonal matrix. Then

for all 1 ≤ i ≤ k, we have 1 + ciA ≥ 0 implying 1 + ciB ≥ 0. Therefore, IH ⊗ Ik + A ⊗ C1 ≥ 0.

Since this is true for all k ∈ N, Φ is completely positive.

Suppose W (A) is closed. Then W (A) = [α, β] such that α, β are eigenvalues of A. So,

A = A0 ⊕ A1 such that A0 = diag (α, β). Hence, if W (B) ⊆ W (A) = W (A0), then B has a

dilation of the form A0 ⊗ I, and thus has a dilation of the form A⊗ I.

Theorem 3.2 Suppose S = span {I, A,A∗} ⊆ Mn contains a rank one normal matrix. Then S
is an OMAX.

Proof. If dimS = 2, then the result follows from Proposition 3.1. Assume dimS = 3. We

may assume that S has a basis {I, A1, A2} with A1 = E11 and A2 =

(
0 v∗

v G

)
. If v = 0, then

W (A) = conv ({1} ∪ W (iG)) which is a line segment or a triangle depending on W (iG) is a

singleton or a linear segment. The result follows from [15].
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Suppose v 6= 0. We can then replace A2 by ([1] ⊕ U∗)A2([1] ⊕ U) and assume that v =

(γ, 0, . . . , 0)t with γ > 0. We may replace A2 by A2/γ and assume that γ = 1. Furthermore, by

replacing A2 with A2 − aIn − bA1, we may assume that G =

(
0 G12

G∗12 G22

)
, where G22 ∈Mn−2.

Let Φ : S → B(H) be a unital positive map and Bi = Φ(Ai) for i = 1, 2. Since A1 ≥ 0, we

have B1 ≥ 0. Suppose we have Hermitian matrices C0, C1, C2 ∈Mk such that

In ⊗ C0 +A1 ⊗ C1 +A2 ⊗ C2 =

C0 + C1 C2 0
C2 C0 G12 ⊗ C2

0 G∗12 ⊗ C2 In−2 ⊗ C0 +G22 ⊗ C2

 ≥ 0 .

Therefore, C0 is positive semidefinite. Without loss of generality, we may assume that C0 = Ik.

We have

In ⊗ Ik +A1 ⊗ C1 +A2 ⊗ C2 ≥ 0

if and only if

Q = In−1 ⊗ Ik +G⊗ C2 ≥ 0 and Ik + C1 ≥ (C2 0 · · · 0)Q†(C2 0 · · · 0)∗,

where X† denotes the Moore-Penrose inverse of X. For simplicity, we assume that the block

matrix Q is invertible and C2 = diag (c1, . . . , ck). Then we see that

C1 ≥ D = f(C2),

where D ∈Mk is the diagonal matrix obtained by applying the rational function

f(x) = x2 det(In−2 + xG22) det(In−1 + xG)−1 − 1 .

Let D = diag (d1, . . . , dk) and C1 = D + P for some positive semidefinite P ∈Mk. We have

In + diA1 + ciA2 ≥ 0 for all 1 ≤ i ≤ k .

Since Φ is positive, we have

IH + diB1 + ciB2 ≥ 0 for all 1 ≤ i ≤ k .

Therefore,

IH ⊗ Ik +B1 ⊗ C1 +B2 ⊗ C2 = IH ⊗ Ik +B1 ⊗ (D + P ) +B2 ⊗ C2

≥ IH ⊗ Ik +B1 ⊗D +B2 ⊗ C2

≥ 0 .

Corollary 3.3 If A ∈M2 or if A ∈M3 is such that the boundary of W (A) contains a non-trival

line segment, then span {I, A,A∗} is an OMAX.
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Proof. If A ∈M2, then there is A+A∗ − aI is a rank one normal matrix for some a ∈ R. By

Theorem 3.2, we get the conclusion.

If A ∈M3 and the boundary of W (A) has a flat portion. Then we may replace A by eit(A−µI)

and assume that W (A) ⊆ {x+ iy : x ≥ 0, y ∈ R} and W (A) contains a line segment joining 0 to

ai for some a > 0. Let A = A1 + iA2 be the Hermitian decomposition of A By assumption, 0 is

an eigenvalue of A1 with multiplicity ≥ 2. Therefore A1 has rank ≤ 1. By Theorem 3.2, we get

the conclusion.

Note that the above corollary covers all the previous results on the topic, and identify some

new matrices in M3 such that span {I, A,A∗} is an OMAX. For example, if A = E11 + iG ∈ M3

for any Hermitian G, then span {I, A,A∗} is an OMAX.

In fact, if A ∈ Mn with n ≥ 4 and span {I, A,A∗} contains a rank one normal matrix, then

there is a, b, c ∈ C such that aA + bA∗ + cI = E11. Thus, we may assume that A = E11 + iG

for a Hermitian matrix G with (1, 1) entry equal to 0. Let Ĝ be obtained from G by deleting its

first row and first column. If Ĝ is a scalar matrix gIn−1, then A is unitarily similar A0 ⊕ gIn−2
with A0 =

(
1 g12i
ḡ12i g i

)
and W (A) = W (A0). If Ĝ is not a scalar matrix, then the boundary of

W (A) contains a line segment conv {(0, y) : y ∈ σ(Ĝ)}. However, even if the boundary of W (A)

has a line segment, there does not seem to be an easy way to decide whether span {I, A,A∗}
contains a rank one normal matrix in terms of W (A) if A ∈ Mn with n ≥ 4. Nonetheless, when

n = 4, we can use the above analysis to determine whether span {I, A,A∗} contains a rank one

normal matrix in terms of the structure of W (A), and identify another new family of A such the

span {I, A,A∗} is an OMAX.

Corollary 3.4 Let A ∈M4. Suppose W (A) is the convex hull of an elliptical disk E and two points

α, β ∈ C \ E such that the line L passing through α and β is tangent to E. Then span {I, A,A∗}
is an OMAX.

Proof. Suppose A ∈M4 satisfies the hypothesis. We may replace A by eit(A−µI) and assume

that L is the imaginary axis {iy : y ∈ R}, E ⊆ {x + iy : x ≥ 0, y ∈ R} and L is tangent to E
at 0. Let α = ai, β = bi for some a, b ∈ R. Then A is unitarily similar to diag (ai, bi) ⊕ A0,

where A0 ∈ M2 with W (A0) ⊆ {x+ iy : x ≥ 0, y ∈ R} and 0 ∈ W (A0). Let A0 = H + iG be the

Hermitian decomposition of A0. Then 0 is an eigenvalue of H. It follows that A + A∗ is a rank

one matrix. By Theorem 3.2, the result follows.

Remark 3.5 Note that Corollary 3.4 also holds if we allow the elliptical disk E to degenerate to a

line segment and L intersects E at an endpoint. The proof also works with α = β. Therefore, the

corollary also covers Theorem 1.1. Furthermore, Corollary 3.4 provides new examples of OMAX

such as Example 1.3 mentioned in the introduction.

Next, we consider the case when A is a direct sum of matrices in M1 and M2 and characterize

those A’s for which span {I, A,A∗} is an OMAX.
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Theorem 3.6 Let A ∈Mn be a direct sum of matrices in M1 and M2. The following conditions

are equivalent.

(a) span {I, A,A∗} is a maximal operator system.

(b) Every B ∈ B(H) with W (B) ⊆W (A) admits a dilation of the form A⊗ I.

(c) Every B ∈M2 with W (B) ⊆W (A) admits a dilation of the form A⊗ I.

(d) A is unitarily similar to Â1⊕Â2 with W (Â2) ⊆W (Â1), and Â1 satisfies one of the following:

(d.1) Â1 ∈M2,

(d.2) Â1 = [a1]⊕A0 ∈M3,

(d.3) Â1 = diag (a1, a2)⊕A0 ∈M4 such that conv {a1, a2} ∩W (A0) = {a0} /∈ {a1, a2},

i.e., the line segment joining a1 and a2 touches a boundary point of W (A0) at a0 /∈ {a1, a2}.

If we allow a0 = a2 or a0 = a1 = a2 in (d.3), then (d.3) will cover the cases (d.2) and (d.1),

respectively.

Proof. The implication (d) ⇒ (a) follows from Theorem 1.1 and Corollary 3.4 that if Â1

satisfies (d.1)–(d.3), then an operator B satisfies W (B) ⊆W (A) = W (Â1) will have a dilation of

the form Â⊗ I, and hence a dilation of the form A⊗ I.

The implications (a) ⇒ (b) ⇒ (c) follows from definition. We are going to prove (c) ⇒ (d).

Suppose A = ⊕m
i=1Ai ∈ Mn satisfies (c), where each Ai is in M1 or M2 and irreducible.

Furthermore, we can assume that W (Ai) 6= W (Aj) for i 6= j.

We may assume that

W (Ak+1 ⊕ · · · ⊕Am) ⊆W (A1 ⊕ · · · ⊕Ak) = W (A) 6= W
(
⊕j−1

i=1Ai ⊕k
i=j+1 Ai

)
(3.1)

for all 1 ≤ j ≤ k. By (3.1), the boundary of W (A), ∂W (A), consists of elliptic arcs and line

segments. Consider the following cases for the boundary ∂W (A) :

Case 1 Suppose ∂W (A) contains two non-degenerate elliptic arcs S1
and S2 coming from two summands, say, A1, A2 ∈M2. For 3 ≤ i ≤ m,
W (Ai) can only contain a finite number of points in S1∪S2. Therefore,
we can choose an exposed extreme point µi of W (Ai) for i = 1, 2 such
that µi 6∈ W (Aj) for j > 2. Consider the line segment joining µ1 and
µ2. We can construct an elliptical disk E with the line segment joining
µ1, µ2 as major axis and minor axis of length d > 0 with sufficiently
small d so that E ⊆ W (A). Then there exists B ∈ M2 such that
W (B) = E . We are going to show that B does not have a dilation to
A⊗ I.

μ2

μ1

W(A)

W(B)

Suppose the contrary that there exist r ≥ 1 and X ∈ M2 rn such that XX∗ = I2 and X(A⊗
Ir)X

∗ = B. Let u1,u2 be unit vectors such that µi = u∗iBui for i = 1, 2. We may further assume

that µi = (Ai)ii for i = 1, 2.
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Let X = [x1x2 · · ·xrn], where xj ∈ C2. Since µ1 (respectively, µ2) is an exposed extreme point

of W (B) and W (A1) (respectively, W (A2)) , we have

u∗1xj = 0 for all r < j ≤ nr and u∗2xj = 0 for all 1 ≤ j ≤ 3r and 4r < j ≤ nr . (3.2)

Since u1 and u2 are linearly independent, we have xj = 0 for all r < j ≤ 3r and 4r < j ≤ nr.

Also,
r∑

j=1

|u∗1xj |2 =
4r∑

j=3r+1

|u∗2xj |2 = 1.

Thus, we have

2 =
r∑

j=1

|u∗1xj |2 +
4r∑

j=3r+1

|u∗2xj |2 ≤
r∑

j=1

‖u1‖2‖xj‖2 +
4r∑

j=3r+1

‖u2‖2‖xj‖2

≤
nr∑
j=1

x∗jxj = tr

 nr∑
j=1

xjx
∗
j

 = tr I2 = 2.

Therefore, there exist αj , βj ∈ C, 1 ≤ j ≤ r such that xj = αju1 and and x3r+j = βju2 for

1 ≤ j ≤ r. Hence, by (3.2), u1 is orthoginal to u2 and B = µ1u1u
∗
1 + µ2u2u

∗
2 is normal, a

contradiction.

From the result in Case 1, ∂W (A) can only contain elliptic arcs from some W (Ai) for at most

one i, with 1 ≤ i ≤ k. If ∂W (A) does not contain any line segment, then condition (d.1) is

satisfied. It remains to consider the cases when ∂W (A) contains some line segments.

Case 2 Suppose ∂(W (A)) has two pairs of consecutive line segments

{L1, L2} and {L3, L4} with L1, L2 meeting at β and L3, L4 meeting at

α such that the open line segment αβ lies in the interior of W (A). We

may assume that A = [α] ⊕ [β] ⊕m
i=3 Ai where α, β 6∈ W (⊕m

i=3Ai). Let

A0 = ⊕m
i=3Ai. For i = 1, 2, let pi be the point on Li ∩W ([α] ⊕ A0)

nearest to β. For i = 3, 4, let pi be the point on Li ∩ W ([β] ⊕ A0)

nearest to α. We may apply an affine transform to R2 and assume that

(β, α) = (−1, 1), and p1, p3,−p2,−p4 have y-components larger than 2.

We will show that there is a circular disk E in W (A) with radius less

than 1 such that the boundary is tangent to at least 3 of the lines Li’s,

say L1, L2, L3 at the points µ1, µ2, µ3 respectively.

µ3µ1

µ2

αβ

L1

L2

L3

L4

p1

p2

p3

p4

Let B1 be the angular bisector at β. Then B1 intersects either L3 or L4 at a point γ. For

every c on the line segment joining β and γ, let

f(c) = min{|z − c| : z ∈ L1} = min{|z − c| : z ∈ L2} and g(c) = min{|z − c| : z ∈ L3 ∪ L4}.

Then f(β) < g(β) and f(γ) > g(γ). Therefore, there exists c on the line segment joining β

and γ such that f(c) = g(c) = R. Let E be the circle with center c and radius R. We may assume

that Li is tangent to E at µi for i = 1, 2, 3.
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Now, suppose B ∈M2 with W (B) = E . We are going to show that B does not have a dilation

to A⊗ I in the following.

Suppose the contrary that B =
∑r

j=1XjAX
∗
j for some Xj ∈M2n satisfying

∑r
j=1XjX

∗
j = I2.

Let

X(j) = [x(j)1x(j)2x(j)3] with x(j)1,x(j)2 ∈ C2 and x(j)3 ∈M2 (n−2).

If u1,u2 ∈ C2 are such that u∗iBui = µi for i = 1, 2, then we must have u∗ix(j)1 = 0 for i = 1, 2

and all 1 ≤ j ≤ r. Since u1 and u2 are linearly independent, we have x(j)1 = 0 for all 1 ≤ j ≤ r.
In this case, µ3 6∈W (B), a contradiction.

From the results in Case 1 and 2, if ∂W (A) only contains line segments, then it has to be

a (possibly degenerate) triangle, which is covered by (d.1) and (d.2). If ∂W (A) contains an

elliptic arc and some line segments. Then the line segments have to lie consecutively on ∂W (A).

Furthermore, there are either two or three line segments. If ∂W (A) contains an elliptic arc and

two line segments, then Â1 satisfies (d.2). So it remains to consider the case when ∂W (A) contains

an ellipic arc and three consecutive line segments.

Case 3 Suppose ∂(W (A)) contains three consecutive line segments L1, L2, L3 and an elliptic arc

E. Suppose L1 and L2 meet at α, L2 and L3 meet at β and E is part of the boundary of W (Ai)

for a summand Ai ∈ M2 . We may assume that A1 = [α], A2 = [β] and i = 3. Therefore,

W (A) = W ([α]⊕ [β]⊕A3). If L2 is tangent to the boundary of W (A3), then, by Corollary 3.4,

the operator system spanned by {I4, [α] ⊕ [β] ⊕ A3, [α] ⊕ [β] ⊕ A∗3} is an OMAX. Consequently,

the operator system spanned by {In, A,A∗} is also OMAX.

Suppose L2 is not tangent to the boundary of W (A3). We
may assume that W (A3) 6⊆ W (Ai) for all i > 3. Hence,
there exists µ3 on E such that µ3 6∈W (Ai) for all i 6= 3. We
can construct B ∈ M2 with W (B) ⊆ W (A) and satisfies
the following conditions:

1. For i = 1, 2, Li is tangent to W (B) at µi;

2. W (B) and W (A3) have a common tangent at the
point µ3 ∈ E.

α

μ2

β

μ1

μ3

E

p1

L1

L2

L3

W(A3)W(B)

1 2 3 4 5

-1

1

2

To see that such a matrix B ∈M2 exists, choose a continuous family of ellipses

{E(µ) : µ on the line segment joining α and p1}

such that L1 is a tangent to E(µ) at µ and µ3 is a boundary point of E(µ) which has a common

tangent line with W (A3) at µ3. We may further assume that E(p1) ⊆W (A3). Since E(p1)∩L2 = ∅
and E(α) ∩ L2 contains more than one points, there exists µ1 on the open line segment joining α

and p1 such that L2 is also tangent to E(µ). Let B ∈M2 with boundary equal to E(µ1). Then B

will satisfy conditions (1) and (2) above.
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We are going to prove that B does not have a dilation to A ⊗ I. Apply an affine map, if

necessary, we can assume that α = b1i, β = b2i and µ2 = ci with b1 > c > b2, andW (A3) lies on the

open right half plane. Applying a unitary similarity to B, we can assume that B = diag (0, b)+ iG

for some b > 0 and Hermitian G. Then µ2 = e∗1Be1, where e1 =

(
1
0

)
.

Suppose the contrary that B =
∑r

j=1XjAX
∗
j for some Xj ∈M2n satisfying

∑r
j=1XjX

∗
j = I2.

Let Xj = [x1(j)x2(j) · · ·xm(j)], where xi(j) ∈ C2. Applying a unitary similarity to A3, we

can further assume that A3 =

(
∗ ∗
∗ µ3

)
. For i = 1, 3, let ui ∈ C2 be a unit vector satisfying

u∗iBui = µi. For all 1 ≤ j ≤ r, we have

u∗1x4(j) = 0, e∗1x3(j) = e∗1x4(j) = 0 and u∗3x3(j) = 0.

Since {u1, e1} and {e1, u3} are linearly independent sets, we have x3(j) = x4(j) = 0 for all

1 ≤ j ≤ r. Then µ3 6∈W (B), a contradiction.

We restate the above result in terms of the geometrical shape of W (A) in the following.

Theorem 3.7 Suppose A ∈ Mn is a direct sum of matrices in M1 and M2. Then the operator

system spanned by {In, A,A∗} is an OMAX if and only if W (A) is a singleton, a line segment, a

triangular region (the convex hull of 3 points that are not collinear), an elliptical disk, the convex

hull of an elliptical disk E with a point µ /∈ E, or the convex hull of L and E, where E is an

elliptical disk L = [z1, z2] is a line segment touching the ellipse E.

Corollary 3.8 Suppose A ∈ Mn is normal, and W (A) has four or more vertices. Then S =

span {I, A,A∗} is not an OMAX.

4 Operator systems generated by two or more operators

Suppose S is an operator system with a basis {I, A1, . . . , Am}. In the following, we will use the

algebraic properties of A1, . . . , Am and the geometric properties of W (A1, . . . , Am) to determine

whether S is maximal.

Recall that a simplex in Rm is a convex polyhedral set with m+ 1 vertices.

Theorem 4.1 Let S ⊆ B(H) be an operator system with a basis {I,H1, . . . ,Hm} consisting of

self-adjoint operators. If convW (H1, . . . ,Hm) is a simplex in Rm, then S is a maximal operator

system. Equivalently, (B1, . . . , Bm) ⊆ B(K)m has a joint dilation of the form (I⊗H1, . . . , I⊗Hm)

whenever W (B1, . . . , Bm) ⊆W (H1, . . . ,Hm).

Proof. Suppose convW (H1, . . . ,Hm) is a simplex. Then by the result in [5], every vertex

(a1, . . . , am) corresponding to a joint eigenvalue of (H1, . . . ,Hm) such that Hjx = ajx for a unit

vector x. Thus, there is a unitary U such that U∗HjU = [aj ] ⊕ H̃j for j = 1, . . . ,m. For

simplicity, we will say that (H1, . . . ,Hm) is untiarily similar to
(

[a1]⊕ H̃1, . . . [am]⊕ H̃m

)
. Then
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W (H̃1, . . . , H̃m) will contain the other vertices of W (H1, . . . ,Hm). We can then repeat the above

argument, and extract another joint eigenvalue (b1, . . . , bm) of H1, . . . ,Hm. Thus, (H1, . . . ,Hm)

is unitarily similar to
(

diag (a1, b1)⊕ Ĥ1, . . .diag (am, bm)⊕ Ĥm

)
. Repeating this argument, we

see that (H1, . . . ,Hm) is unitarily similar (D1 ⊕ C1, . . . , Dm ⊕ Cm) such that Dj ∈ Mm+1 is a

diagonal matrix and W (D1, . . . , Dm) = W (H1, . . . ,Hm) = convW (H1, . . . ,Hm).

Now, we show that (B1, . . . , Bm) admits a joint dilation of the form (D1 ⊗ I, . . . , Dm ⊗ I) for

any self-adjoint operators B1, . . . , Bm ∈ B(K) satisfying W (B1, . . . , Bm) ⊆ W (D1, . . . , Dm). Our

conclusion will follow.

By Proposition 2.2, we can apply an affine transform and assume that W (D1, . . . , Dm) is the

standard simplex with vertices 0, e1, . . . , em ∈ Rm, where ei has 1 at the ith coordinate and 0

elsewhere. Let Dj = Ejj ∈ Mm+1 for i = 1, . . . ,m. Then for every k ≥ 1 and C0, . . . , Cm ∈ Mk,

Im+1⊗C0+
∑m

j=1Dj⊗Cj ≥ 0 if and only if C0 ≥ 0 and C0+Cj ≥ 0 for all 1 ≤ j ≤ m. By continuity

argument, we may assume that C0 is positive definite. Replacing Cj , with C
−1/2
0 CjC

−1/2
0 , we may

assume that C0 = I and Cj ≥ −I for all 1 ≤ j ≤ m. If W (B1, . . . , Bm) ⊆ W (D1, . . . , Dm), then

Bj ≥ 0 for all j and
∑m

j=1Bj ≤ I. Thus,

I ⊗ I +
m∑
j=1

Bj ⊗ Cj ≥ I ⊗ I +
m∑
j=1

Bj ⊗ (−I) ≥ 0.

One may deduce [4, Theorem 1.1] from Theorem 4.1 above. See also [10, 17] for related results.

Theorem 4.2 Suppose S1 = span {IA, A1, . . . , Ar} and S2 = span {IB, B1, . . . , Bs}. Then S =

span ({IA ⊕ 0, 0⊕ IB} ∪ {Ai ⊕ 0 : 1 ≤ i ≤ r} ∪ {0⊕Bj : 1 ≤ j ≤ s}) is maximal if and only if S1
and S2 are maximal.

Proof. Define i1 : S1 → S, i2 : S2 → S , π1 : S → S1 and π2 : S → S2 by i1(A) = A ⊕ 0,

i2(B) = 0⊕B, π1(A⊕B) = A and π2(A⊕B) = B.

Suppose S1 and S2 are maximal. Given Φ : S → B(H) positive, let Φj = Φ ◦ ij for j = 1, 2.

Then Φ1 and Φ2 are positive, hence, completely positive. Therefore, Φ = Φ1 ◦ π1 + Φ2 ◦ π2 is also

completely positive. This proves that S is maximal.

Conversely, suppose S is maximal. Given positive maps Φj : Sj → B(H), let Φ = Φ1 ◦ π1 +

Φ2 ◦ π2. Then Φ is positive, hence, completely positive. Therefore, Φj = Φ ◦ ij , j = 1, 2 are also

completely positive.

By the above result, and the fact that span {E11, E22, E12 + E21} ⊆ M2 is an OMAX, see

[6, 14] and also Theorem 3.2 above, we have the following.

Theorem 4.3 Suppose S is an operator system in Mn. If, up to a unitary similarity tranform,

S has a spanning set which is a subset of {Ejj : 1 ≤ j ≤ n} ∪ {E2j−1,2j +E2j,2j−1 : 1 ≤ j ≤ n/2},
then S is an OMAX.
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Corollary 4.4 Suppose S ⊆M3 has a basis {I, A1, A2, A3}. Then S is an OMAX if any one of

the following equivalent conditions holds.

(a) W (A1, A2, A3) is an ice-cream cone with its interior, i.e., the convex hull of an ellipstical

disk (a degenerated ellipsoid in R3) and a point.

(b) There is a unitary U ∈M3 such that S has a basis

{I, U∗(E11 − E22)U,U
∗(E12 + E21)U,U

∗E33U}.

Proof. By Theorem 4.3, if (b) holds, then S is an OMAX.

To prove (a) ⇐⇒ (b), note that (a) holds if and only if one can apply an affine transform

to A1, A2, A3, and assume that W (A1, A2, A3) is the ice-cream cone equal to the convex hull of

{(x, y, 0) : x2 + y2 = 1} and {(0, 0, 1)} so that up to a unitary similarity transform, the matrices

become A1 = E11 − E22, A2 = E12 + E21, A3 = E33.
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