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Abstract. In normed vector spaces, two vectors x,y are parallel (resp., triangle equality attaining

(TEA)) if there is a scalar ξ with |ξ| = 1 (resp., ξ = 1) such that ∥x + ξy∥ = ∥x∥ + ∥y∥. This

paper characterizes linear maps preserving these pairs in L1(µ) and L∞(µ) spaces, where non-strict

convexity enables rich geometric structures absent in Lp spaces, with p ∈ (0, 1) ∪ (1,∞) (for which

all linear maps trivially preserve such pairs).

We first resolve finite-dimensional cases: ℓ1-norm TEA pair preservers are matrices with at most

one nonzero entry per row. For ℓ∞, TEA pair preservers are scalar multiples of isometries, except

in R2. These results extend to infinite dimensional spaces ℓ1(Λ), c0(Λ), and ℓ∞(Λ), where TEA

pair preservers are generalized permutation operators (for ℓ1) or scalar multiples of isometries (for

c0 and ℓ∞). In all cases, parallel pair preservers are either TEA pair preservers or rank one maps.

Crucially, we generalize to measure-theoretic settings. For L1(µ), TEA pair preservers are au-

tomatic bounded and preserves disjointness; in many interesting cases, they are weighted composi-

tions. Parallel pair preservers combine these with rank-one maps. For L∞(µ), bijective preservers

are scalar isometries, establishing a dichotomy: L1 preservers reflect sparsity, while L∞ preservers

align with isometric symmetries. These results unify finite-dimensional, sequence-space, and general

Lp settings, advancing the classification of structure-preserving operators in Banach spaces.

1. Introduction

The study of linear operators preserving geometric structures, such as orthogonality, parallelism,

or extremal norms, provides insights into Banach space geometry and operator theory. Of particular

interest are vector pairs that satisfy norm equality conditions. Specifically, two vectors x,y form a

triangle equality attaining (TEA) pair if

∥x+ y∥ = ∥x∥+ ∥y∥,

and a parallel pair if

∥x+ ξy∥ = ∥x∥+ ∥y∥

for some unimodular scalar ξ. Such pairs encode fundamental geometric relationships, and their

preservers (linear maps maintaining these properties) are pivotal in classifying operator behavior.

See, e.g., [1, 2, 5, 9–12,14–16].

We study linear maps T that preserve TEA pairs, i.e.,

Tx, Ty is a TEA pair whenever x,y is a TEA pair, (1.1)
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and those preserving parallel pairs, defined analogously as

Tx, Ty is a parallel pair whenever x,y is a parallel pair. (1.2)

Let (X,µ) be a measure space. Let Lp(µ) be the Banach space of p-integrable functions f with

norm ∥f∥p =
[∫

X |f(x)|p dµ(x)
]1/p

. When 1 < p < ∞, the strict convexity of the p-norm forces

TEA pairs as well as parallel pairs in Lp(µ) to be scalar multiples. In fact, the same conclusions

hold when 0 < p < 1, although Lp(µ) is no longer a normed space. Consequently, any linear map

of Lp(µ) preserves parallel pairs and TEA pairs when p ∈ (0, 1) ∪ (1,∞).

Non-strictly convex norms like L1-norm and L∞-norm exhibit richer geometric structures, ren-

dering preserver classification nontrivial. This complexity is further compounded in infinite dimen-

sional settings by functional-analytic and measure-theoretic challenges. In this paper, we char-

acterize TEA and parallel pair preservers in these spaces, unifying finite and infinite-dimensional

settings.

We develop the characterization of such preservers in three steps. In all situations, we find that

• parallel pair preservers are either TEA pair preservers or rank one operators.

In Section 2, for Fn (F = R or C), we show that

• ℓ1–norm TEA pair preservers are sparse matrices with at most one nonzero entry per row;

• ℓ∞–norm TEA pair preservers are scalar multiples of isometries, except in R2, where an

exceptional non-isometric form exists.

In Section 3, we extend these results to the infinite-dimensional spaces ℓ1(Λ), c0(Λ), and ℓ∞(Λ)

of summable, essentially null and bounded families, respectively, indexed by a (maybe uncountable)

infinite set Λ. TEA pair preservers of ℓ1(Λ) are identified as generalized permutation operators.

Bijective TEA preservers of c0(Λ) and ℓ∞(Λ) are scalar multiples of isometries, provided that their

inverses also preserve TEA pairs.

In Section 4, we extend the characterizations further to such linear preservers between general

infinite dimensional L1(µ) as well as L∞(µ) spaces. We find that a linear TEA pair preserver T :

L1(µ) → L1(ν) is automatic bounded, and preserves disjointness, i.e., TfTg = 0 whenever fg = 0.

In many interesting cases, such T carries a weighted composition operator form Tf = h · f ◦ ψ,
where h ∈ L1(ν) and ψ : Y → X is a measurable transformation from Y into X. Finally, a bijective

linear map T : L∞(µ) → L∞(ν) is a scalar multiple of a surjective linear isometry if and only if

both T and its inverse T−1 preserve TEA pairs, or parallel pairs.

These results reveal intrinsic geometric contrasts between L1 and L∞ spaces: rooted in their

additive versus sup-norm structures. For L1, preservers decompose into measure-algebraic com-

ponents; for L∞, preservers align with isometric symmetries. Our findings provide new tools and

insights that may be useful in the study of preservers in Banach spaces and operator algebras; see,

e.g., [9, 10].
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2. The finite dimensional case

In the following, let {e1, . . . , en} denote the standard basis for Fn, and Mn be the algebra of

n × n matrices with entries from F. We identify linear maps from Fn to Fn with matrices in Mn.

For u ∈ Fn and A ∈ Mn, we let ut and At denote their transposes. A matrix in Mn is a monomial

matrix if each row and each column of it has exactly one nonzero entry, and a monomial matrix is

a generalized permutation matrix if all its nonzero entries have modulus one.

We begin with the following observation.

Lemma 2.1. Let x = (x1, . . . , xn)
t,y = (y1, . . . , yn)

t ∈ Fn.

(a) x,y are parallel (resp. TEA) with respect to the ℓ1–norm if and only if there is a unimodular

scalar ξ (resp. ξ = 1) such that ξxkyk ≥ 0 for all k = 1, . . . , n.

(b) x,y are parallel (resp. TEA) with respect to the ℓ∞–norm if and only if ∥x∥∞ = |xk| and
∥y∥∞ = |yk| (resp. such that xkyk ≥ 0) for some k between 1 and n.

As direct consequences of Lemma 2.1, a linear map T of Fn preserves ℓ1–norm (resp. ℓ∞–norm)

TEA pairs if, and only if, PTQ does for any monomial matrices (resp. generalized permutation

matrices) P,Q.

Theorem 2.2. Let T : (Fn, ∥ · ∥1) → (Fn, ∥ · ∥1) be a linear map.

(a) T preserves TEA pairs if and only if each row of T has at most one nonzero entry.

(b) T preserves parallel pairs if and only if each row of T has at most one nonzero entry, or

T = vut for some column vectors u,v ∈ Fn.

Proof. (a) Suppose each row of the n × n matrix T has at most one nonzero entries. Then there

are monomial matrices P,Q such that PTQ =
[
T1 T2 · · · Tn

]
in which the column vectors

T1,T2, . . . ,Tk are nonzero and satisfying that

T1 = e1 + · · ·+ en1 , T2 = en1+1 + · · ·+ en2 , . . . , Tk = enk−1+1 + · · ·+ enk
,

and

Tk+1 = · · · = Tn = 0,

where k ≤ n and 1 ≤ n1 < n2 < · · · < nk ≤ n. Note that T preserves ℓ1–norm TEA pairs

exactly when PTQ does. We may replace T by PTQ, and assume that T =
[
T1 T2 · · · Tn

]
.

Let x = (x1, . . . , xn)
t and y = (y1, . . . , yn)

t ∈ Fn form a TEA pair; or equivalently, x̄jyj ≥ 0 for

j = 1, . . . , n. Then

Tx = x1T1 + · · ·+ xkTk = (x1, . . . , x1︸ ︷︷ ︸
n1

, x2, . . . , x2︸ ︷︷ ︸
n2−n1

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk−nk−1

, 0, . . . , 0)t,

Ty = y1T1 + · · ·+ ykTk = (y1, . . . , y1︸ ︷︷ ︸
n1

, y2, . . . , y2︸ ︷︷ ︸
n2−n1

, . . . , yk, . . . , yk︸ ︷︷ ︸
nk−nk−1

, 0, . . . , 0)t

clearly form a TEA pair.
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Conversely, suppose T preserves TEA pairs. Assume the contrary that T has a row with more

than one nonzero entries. We may replace T by PTQ for suitable monomial matrices P and Q and

assume that T has the (1, 1)th and the (1, 2)th entries equal to 1. Since x = (2,−1, 0, . . . , 0)t and

y = (1,−2, 0, . . . , 0)t form a TEA pair, so do Tx and Ty. But the first entries of Tx and Ty are 1

and −1, respectively. So, Tx and Ty do not form a TEA pair, a desired contradiction.

(b) If each row of T has at most one nonzero entry, then T will preserve TEA pairs. Hence, T will

also preserve parallel pairs. On the other hand, if T = vut for some u,v ∈ Fn, then Tx = (utx)v

and Ty = (uty)v are both scalar multiples of v, and thus always parallel, for any x,y ∈ Fn.

Conversely, let T be a linear parallel pair preserver with rank larger than 1. We will show that

every row of T has at most one nonzero entry. Suppose on contrary that T has a row with more

than one nonzero entry. We may replace T by PTQ for some suitable monomial matrices P and

Q and assume that the first row of T has the maximum number of nonzero entries among all the

rows. Moreover, we may also assume that all these nonzero entries in the first row are 1 and lie in

the (1, 1)th, (1, 2)th, . . . , (1, k)th positions.

Since T has rank at least two, there is a row, say, the second row, which is not equal to a multiple

of the first row. We consider two cases.

Case 1. The first k entries of the second row are not all equal. We may replace T by TQ for a

permutation matrix of the form Q = Q1 ⊕ In−k such that the (2, 1) entry is nonzero and different

from the (2, 2) entry. Further replace T by PT for an invertible diagonal matrix P and assume

that the leading 2× 2 matrix of T equals

(
1 1
1 a

)
for some a ̸= 1.

Let x = (m, ā, 0, . . . , 0)t and y = (1,mā, 0, . . . , 0)t with m > 0. Then x and y are parallel, and

so are the vectors Tx and Ty. The first two entries of Tx are m + ā and m + |a|2, and the first

two entries of Ty are 1 +mā and 1+m|a|2. The second entries of Tx and Ty are always positive.

It forces (m+ ā)(1 +mā) = m(1 + |a|2) + a+m2ā ≥ 0 for all m > 0. Consequently, a ≥ 0.

Furthermore, if m > 0, then x = (m,−1, 0, . . . , 0)t and y = (1,−m, 0, . . . , 0)t are parallel, and so

are Tx and Ty. The first two entries of Tx are m−1 and m−a, and the first two entries of Ty are

1−m and 1− am. It follows that (m− a)(1− am) ≤ 0 for all m > 0 with m ̸= 1. Since a ̸= 1 and

a ≥ 0, we see thatm = (1+a)/2 ̸= 1 and (m−a)(1−am) = 1
4(1−a)(2−a−a

2) = 1
4(1−a)

2(2+a) > 0,

which is a contradiction.

Case 2. The first k entries of the (nonzero) second row of T are the same scalar γ. If γ ̸= 0

then all other entries of the second row of T are zeros due to the assumption that the first row

of T has maximal number of nonzero entries among all rows of T . But then the second row is γ

times the first row, a contradiction. Hence, γ = 0. Suppose the (2, j)th entry of T equals a ̸= 0 for

some j > k. We may replace T by TQ for a suitable permutation matrix Q and assume that the

leading 2 × 3 matrix of T is

(
1 1 0
0 0 a

)
. Let x = (2,−1, 1, 0, . . . , 0)t and y = (1,−2, 1, 0, . . . , 0)t.

Then x and y are parallel and so are Tx and Ty. Now, Tx has the first two entries equal to 1 and
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a, whereas Ty has the first two entries equal to −1 and a. Thus, Tx and Ty cannot be parallel,

which is a contradiction.

We now discuss the case of ℓ∞-norm parallel/TEA pair preservers.

Lemma 2.3. If V is a subspace of Fn such that any two elements in V are parallel with respect to

∥ · ∥∞, then dimV ≤ 1.

Proof. We are going to show that any nonzero u,v ∈ V are linearly dependent. To this end,

we may replace (u,v) by (αu, βv) for some nonzero scalars α, β, and assume that u,v are unit

vectors with ∥u + v∥∞ = 2. Since ∥u + v∥∞ = 2, we may further replace u,v by Qu, Qv for

a suitable generalized permutation matrix Q and assume that u = (1, . . . , 1, uk+1, . . . , un)
t and

v = (1, . . . , 1, vk+1, . . . , vn)
t with |vj | < 1 for j = k + 1, . . . , n, and k ≥ 1.

By assumption, u + v and u − v are parallel with respect to the ℓ∞–norm. There exists a

unimodular scalar α such that

2 + ∥u− v∥∞ = ∥u+ v∥∞ + ∥u− v∥∞ = ∥(u+ v) + α(u− v)∥∞ = |(ui + vi) + α(ui − vi)|

for some i. If k + 1 ≤ i ≤ n, then |(ui + vi) + α(ui − vi)| < 2 + ∥u − v∥∞, a contradiction.

Consequently, 1 ≤ i ≤ k. Then |(ui + vi) + α(ui − vi)| = 2, and thus u = v.

Lemma 2.4. Let T : (Fn, ∥ · ∥∞) → (Fn, ∥ · ∥∞) be a nonzero linear map. Then T is invertible if

one of the following holds.

(a) Fn ̸= R2 and T preserves TEA pairs,

(b) T preserves parallel pairs with range space of dimension larger than one.

Proof. Recall that ej denotes the coordinate vector with the jth coordinate 1 and all others 0

for j = 1, . . . , n, and let e =
∑n

j=1 ej be the constant one vector in Fn. If J is a subset of

N = {1, . . . , n}, let eJ =
∑

j∈J ej . In particular, e = eN .

(a) Suppose Tv = 0 for some unit vector v =
∑n

j=1 vjej ∈ Fn. We claim that T is a zero map.

Replacing T by TR for a suitable general permutation matrix R, we can assume that v1 = 1 ≥
v2 ≥ · · · ≥ vn ≥ 0.

Suppose first that v1 = · · · = vk = 1 > vk+1 ≥ · · · ≥ vn ≥ 0 for some k < n. Since ξv + en and

ξv− en form a TEA pair for large ξ > 0, so do T (ξv+ en) = T (en) and T (ξv− en) = −T (en). It
follows 0 = ∥T (en) + T (−en)∥∞ = ∥T (en)∥∞ + ∥T (−en)∥∞, and thus T (en) = 0. With en taking

the role of v, we see that Tej = 0 for all j = 1, . . . , n− 1, and thus T = 0.

Suppose next that v = e and n ≥ 3. For any subset J,K of N such that J ∪K ̸= N , we have

e − eJ and e − eK form a TEA pair, and so do T (e − eJ) = −T (eJ) and T (e − eK) = −T (eK).

Hence,

∥T (eJ) + T (eK)∥∞ = ∥T (eJ)∥∞ + ∥T (eK)∥∞.
An inductive argument with the fact T (e) = 0 gives

∥T (e1)∥∞ = ∥T (e2) + · · ·+ T (en−1)∥∞ = ∥T (e2)∥∞ + · · ·+ ∥T (en−1)∥∞.



LINEAR PRESERVERS OF PARALLEL/TEA VECTORS IN Lp(µ) SPACES 6

We also have similar equalities for all other ∥T (ej)∥∞. Summing up these n ≥ 3 equalities, we have

n∑
j=1

∥T (ej)∥∞ = (n− 1)

n∑
j=1

∥T (ej)∥∞,

and thus all ∥T (ej)∥∞ = 0. This also forces T = 0.

Finally, suppose n = 2, F = C and v = e = e1 + e2. Since the vectors e − 1+
√
3i

2 e1 and

e− 1−
√
3i

2 e1 attain the triangle equality, so do T (e− 1+
√
3i

2 e1) = −1+
√
3i

2 T (e1) and T (e− 1−
√
3i

2 e1) =

−1−
√
3i

2 T (e1), which implies T (e1) = 0. Consequently, T (e2) = 0, and thus T = 0 again.

In conclusion, a nonzero linear map T preserving TEA pairs is invertible unless Fn = R2.

(b) If n = 2 and the range space of T has dimension larger than one, then T is invertible. Suppose

n > 2 and T is not invertible. Let v be a nonzero vector such that Tv = 0. We may replace T

by the map x 7→ T (αQx) for some α > 0 and generalized permutation matrix Q, and assume that

v = (v1, . . . , vn)
t with v1 = · · · = vk = 1 > vk+1 ≥ · · · ≥ vn ≥ 0 where 1 ≤ k ≤ n. We are verifying

that the range space of T has dimension at most one.

Case 1. Suppose k = 1. Then for any x = (0, x2, . . . , xn)
t,y = (0, y2, . . . , yn)

t in the linear span

E of e2, . . . , en, the vectors rv + x, rv + y are parallel for sufficiently large r > 0. Consequently,

T (rv + x) = T (x) and T (rv + y) = T (y) are also parallel. By Lemma 2.3, the space T (E) has

dimension at most one. Since Fn is spanned by v and E and Tv = 0, we conclude that T (Fn) has

dimension at most one.

Case 2. Suppose v = e1+e2. In view of Case 1, we may assume T (e1) = −T (e2) ̸= 0. We claim

that T (e1) and T (u) are linearly dependent for any norm one vector u = (0, 0, u3, . . . , un)
t. Con-

sequently, being the span of T (e1), T (e2), and all such T (u), the range space T (Fn) has dimension

at most one.

Consider x = αe1 + βu and y = γe1 + δu for any scalars α, β, γ and δ. If x,y are parallel, so

are T (x), T (y). If x is not parallel with y then we can assume that x = e1 + βu and y = γe1 + u

with |β|, |γ| < 1. If γ ̸= 0 then x is parallel with sγv + y for s ≥ 1
|γ| − 1. We see that T (x)

is parallel with T (sγv + y) = T (y). In the case when γ = 0, we see that T (x) is parallel with

T (sϵv+ ϵe1+u) = T (ϵe1+u) = ϵT (e1)+T (y) whenever 0 < ϵ < 1 and s ≥ 1
ϵ − 1. In other words,

∥T (x) + ξϵ(ϵT (e1) + T (y))∥∞ = ∥T (x)∥∞ + ∥ϵT (e1) + T (y)∥∞

for some unimodular scalar ξϵ. Choosing a sequence ϵn → 0+ with ξϵn converging to some unimod-

ular ξ, we see that T (x) and T (y) are parallel. Therefore, in any case T (x) is parallel with T (y).

Hence T (e1) and T (u) are linearly dependent by Lemma 2.3, as claimed.

Case 3. Suppose that v = e1 + e2 + a3e3 + · · · + anen with 1 ≥ a3 ≥ a4 ≥ · · · ≥ am ≥ 0. In

view of Case 2, we can assume that a3 > 0.

Consider x = αe1 + βe2 and y = γe1 + δe2. We claim that T (x) and T (y) are parallel. If x,y

are parallel, then it is the case. Otherwise, we can assume that x = e1 + ξe2 and y = νe1 + e2

with |ξ|, |ν| < 1. If |1 − ξ| ≥ |1 + ξ|a3, then x − (1 + ξ)v/2 and y are parallel, and so are
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T (x) = T (x− (1 + ξ)v/2) and T (y). If |1− ν| ≥ |1 + ν|a3, then x and y− (1 + ν)v/2 are parallel,

and so are T (x) and T (y) = T (y − (1 + ν)v/2). If |1 − ξ| < |1 + ξ|a3 and |1 − ν| < |1 + ν|a3
then x − (1 + ξ)v/2 and y − (1 + ν)v/2 are parallel, then so are T (x) = T (x − (1 + ξ)v) and

T (y) = T (y − (1 + ν)v). We see that T (x) and T (y) are parallel in all cases. Hence T (e1) and

T (e2) are linearly dependent by Lemma 2.3. Consequently, there is a nontrivial linear combination

v′ = ξe1 + ηe2 which belongs to the kernel of T . We can then reduce the situation to either Case

1 (if |ξ| > |η|) or Case 2 (if |ξ| = |η|).

We thus conclude that a linear parallel pair preserver is invertible if its range space has dimension

larger than one.

Consider the linear map T : R2 → R2 defined by (x,y)t 7→ (x − y, 0)t. It is easy to see that

T (R2) has dimension one and T preserves parallel/TEA pairs for the ℓ∞–norm. This example says

that Lemma 2.4 does not hold in the missing cases.

Lemma 2.5. Let A = (ars) ∈ Mn. Suppose either ajj > |ajk| whenever j ̸= k, or ajj > |akj |
whenever j ̸= k. The following conditions are equivalent.

(a) For any x = (x1, . . . , xn)
t ∈ Fn with y = Atx = (y1, . . . , yn)

t, we have

∥x∥∞ = |xr| > |xs| whenever s ̸= r =⇒ ∥y∥∞ = |yr| ≥ |ys| whenever s ̸= r. (2.1)

(b) Either n = 2 and A = A∗ with a11 = a22 > |a12|, or A = a11In.

Proof. The implication (b) ⇒ (a) is clear if A = a11In. Suppose n = 2 and A = A∗ with a11 =

a22 > |a12|. Observe that(
y1
y2

)
= At

(
x1
x2

)
=

(
a11 a12
a12 a11

)(
x1
x2

)
=

(
a11x1 + a12x2
a12x1 + a11x2

)
,

and

|y1| ≥ |y2|

⇐⇒ |a11x1 + a12x2| ≥ |a12x1 + a11x2|

⇐⇒ a211|x1|2 + |a12|2|x2|2 + 2a11Re (a12x1x̄2) ≥ |a12|2|x1|2 + a211|x2|2 + 2a11Re (a12x1x̄2)

⇐⇒ (a211 − |a12|2)|x1|2 ≥ (a211 − |a12|2)|x2|2

⇐⇒ |x1| ≥ |x2|.

Consequently, (b) ⇒ (a) also holds in this case.

We are going to prove (a) ⇒ (b). We may replace A by P tAP with a suitable permutation

matrix P and assume the first row v1 of At has the maximal ℓ1–norm. Then further replace A by

DAD∗ with a suitable diagonal D ∈ Mn with D∗D = In and assume that the first row of At has

nonnegative entries.

By the continuity and an induction argument, for x = (x1, . . . , xn)
t, y = Atx = (y1, . . . , yn)

t and

k = 1, . . . ,m, we have

|x1| = · · · = |xk| > |xr| for all r > k =⇒ |y1| = · · · = |yk| ≥ |yr| for all r > k. (2.2)
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Let x = (1, . . . , 1)t and y = Atx. If v1, . . . ,vn are the rows of At, then

∥v1∥1 = a11 + · · ·+ an1 = |y1| = |yj | = |a1j + · · ·+ anj |

≤ |a1j |+ · · ·+ |anj | = ∥vj∥1 ≤ ∥v1∥1 for j ≥ 1.

Since ajj > 0, we see that aij ≥ 0 for all i ̸= j, and all row sums of A are equal, say, to s > 0.

Taking x = (1, 1, 0, . . . , 0)t, with (2.2) we have a11 + a21 = a12 + a22. Similarly, taking x =

(1,−1, 0, . . . , 0)t, we have |a11 − a21| = |a12 − a22|. It follows from either the assumption a11 > a12

and a22 > a21, or the assumption a11 > a21 and a22 > a12 that a11−a21 = a22−a12. Consequently,
a11 = a22 and a12 = a21. The assertion follows when n = 2.

Suppose n ≥ 3. Apply the same argument to other pairs (i, j) with i ̸= j instead of (1, 2), we

see that

a11 = · · · = ann and ajk = akj whenever j ̸= k.

For a fixed j = 1, . . . , n, we take x = (1, . . . , 1, −1︸︷︷︸
jth

, 1, . . . , 1)t and y = Atx. For distinct indices

j, k, l, we have |yl| = s− 2ajl = |yk| = s− 2ajk. It follows ajl = ajk = akj , and thus ajk = a12 are

all equal for j ̸= k. Consider u = (1,−1, . . . ,−1)t and v = Atu = (v1, v2, . . . , vn)
t. Then |v1| = |v2|

implies either

a11 − (n− 1)a12 = a11 + (n− 3)a12 or (n− 1)a12 − a11 = a11 + (n− 3)a12.

Since n ≥ 3, either a12 = 0 or a11 = a12. But a11 > a12. This implies that A = a11In.

We are now ready to present the structure theorem of ℓ∞-norm parallel/TEA pair preservers.

Theorem 2.6. Let T : (Fn, ∥ · ∥∞) → (Fn, ∥ · ∥∞) be a linear map.

(a) T preserves parallel pairs if and only if there is γ ≥ 0 and a generalized permutation matrix

Q such that one of the following forms holds:

(a.1) T has the form x 7→ γQx,

(a.2) n = 2 and T has the form x 7→ γCQx, where C =

(
1 β

β 1

)
for some scalar β with

|β| < 1.

(a.3) T = vut for some nonzero column vectors u,v ∈ Fn.

(b) T preserves TEA pairs if and only if one of the following holds.

(b.1) T has the form in (a.1).

(b.2) Fn = R2 and T has the form in (a.2).

(b.3) Fn = R2 and T has the form in (a.3), where u = (u1, u2)
t with |u1| = |u2|.

Proof. (a) It is clear that T preserves parallel pairs if T has the form in (a.1) or (a.3). Suppose

n = 2 and T has the form in (a.2). Then, T preserves parallel pairs in (F2, ∥·∥∞) by the implication

from (b) to (a) in Lemma 2.5; indeed, with a continuity argument the condition (2.1) implies that

∥x∥∞ = |xr| ≥ |xs| whenever s ̸= r =⇒ ∥y∥∞ = |yr| ≥ |ys| whenever s ̸= r.
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Conversely, suppose T preserves parallel pairs. If T is not invertible then it follows from Lemma

2.4 that T is either the zero map or has the form in (a.3). Suppose from now on T is invertible.

If T−1ej = xj , then xi and xj cannot be parallel for any i ̸= j. Otherwise, Txi = ei and Txj = ej

were parallel. Thus, the vectors xi and xj cannot attain the ℓ∞-norm at a same coordinate. So,

there is a permutation σ on {1, . . . , n} such that each xj attains its norm at its σ(j)th coordinate

but no other. Consequently, there is a generalized permutation matrix Q ∈ Mn such that the map

L defined by z 7→ QT−1z will send ej to a vector yj = (aj1, . . . , ajn)
t such that ajj > |aji| for all

i ̸= j. Clearly, L−1 defined by y 7→ T (Q−1y) preserves parallel pairs.

Let A = (aij) ∈ Mn so that L(x) = Atx. If xj = (xj1, . . . , xjn)
t satisfies |xjj | > |xji| for all i ̸= j,

then we claim that L(xj) = Atxj is parallel to yj and thus ej , but not any other yi. Otherwise,

the fact L(xj) is parallel to yi for some i ̸= j would imply that xj is parallel to L
−1(yi) = ei, which

is impossible. Thus, the matrix A = (aij) satisfies the hypothesis (a) of Lemma 2.5. If n ≥ 3, we

see that A = γIn with γ = a11 > 0. If n = 2, we see that A is Hermitian with a11 = a22. So, T has

the form in (a.2).

(b) It is clear that if T assumes the form in (b.1) then it preserves TEA pairs. It is also the case

if T assumes the form in (b.3) by direct verification. Suppose Fn = R2 and T = γCQ as in (a.2).

Clearly, T satisfies (1.1) if and only if C satisfies (1.1). There is S = diag (1,±1) such that SCS

has the form Ĉ =

(
1 β
β 1

)
with 0 ≤ β < 1. The map x 7→ Cx satisfies (1.1) if and only if the map

x 7→ Ĉx does. Now, if the nonzero vectors x,y in R2 satisfy that ∥x+ y∥∞ = ∥x∥∞ + ∥y∥∞, then

we may replace (x,y) by (ξx/∥x∥∞, ξy/∥y∥∞) with ξ ∈ {−1, 1} and assume that x = (1, x2)
t,y =

(1, y2)
t with |x2|, |y2| ≤ 1, or x = (x1, 1)

t,y = (y1, 1)
t with |x1|, |y1| ≤ 1. One can check that

∥Ĉx+ Ĉy∥∞ = ∥Ĉx∥∞ + ∥Ĉy∥∞. Thus, T preserves TEA as well.

Conversely, suppose the map T is nonzero and satisfies (1.1). Then T will preserve parallel pairs.

Thus, it will be of the form (a.1), (a.2), or (a.3). We will show that (a.2) is impossible in the

complex case unless it reduces to the form in (a.1), and there are additional restrictions for u if

(a.3) holds.

Suppose Fn = C2 and T = γCQ has the form in (a.2) in which C =

(
1 β

β 1

)
for some complex

scalar β with |β| < 1. In this case, the map x 7→ Cx also preserves TEA pairs. Consider x =

(1, 0)t, y = (1, 1)t and z = (1, i)t, and their images Cx = (1, β)t, Cy = (1 + β, β + 1)t and

Cz = (1 + iβ, β + i)t. Note that x,y and x, z are both TEA pairs, while Cx,Cy and Cx,Cz form

TEA pairs exactly when the first coordinates of Cy and Cz assume positive values. This forces

β = 0, and thus T = γQ reduces to the form in (a.1).

Suppose T = vut assumes the form in (a.3) for some vectors u = (u1, u2)
t and v in Fn. In this

case, T is not invertible. By Lemma 2.4, Fn = R2. Since y1 = (1, 1)t and y2 = (1,−1)t form a

TEA pair, so are Ty1 = (u1 + u2)v and Ty2 = (u1 − u2)v. This forces u1 + u2 and u1 − u2 have

the same sign. Similarly, y1 and −y2 also form a TEA pair, and thus u1 + u2 and −u1 + u2 also

have the same sign. If u1 + u2 ̸= 0 then u2 = u1. In any case, we have |u1| = |u2| as asserted.
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Corollary 2.7. Let n ≥ 3. The following conditions are equivalent to each other for a nonzero

linear map T : (Fn, ∥ · ∥∞) → (Fn, ∥ · ∥∞).

(a) T preserves TEA pairs.

(b) T preserves parallel pairs and its range space has dimension larger than one.

(c) There is γ > 0 and a generalized permutation matrix Q ∈ Mn such that T has the form

x 7→ γQx.

3. The infinite dimensional discrete case

Let the underlying field F be either R or C, and let Λ be a finite or an infinite index set. When

1 ≤ p < ∞, let ℓp(Λ) be the (real or complex) Banach space of p-summable families x = (xλ)λ∈Λ

(of real or complex numbers) with ℓp–norm

∥x∥p =

(∑
λ∈Λ

|xλ|p
)1/p

< +∞.

Note that the above sum is finite only if there are at most countably many coordinates xλ ̸= 0. Let

ℓ∞(Λ) be the Banach space of uniformly bounded family x = (xλ)λ∈Λ with the ℓ∞–norm

∥x∥∞ = sup
λ∈Λ

|xλ| < +∞.

We are also interested in the Banach subspace c0(Λ) of ℓ∞(Λ) consisting of essentially null families

x = (xλ)λ∈Λ for which for any ϵ > 0 there are at most finitely many coordinates xλ with |xλ| ≥ ϵ.

Note that all ℓ1(Λ), c0(Λ), ℓ∞(Λ) are Banach lattices. We write f = (fλ) ≥ 0 when all coordinates

fλ ≥ 0.

It is plain that the vector spaces satisfy

ℓ1(Λ) ⊆ ℓp(Λ) ⊆ c0(Λ) ⊆ ℓ∞(Λ), whenever 1 < p <∞.

When Λ is a finite set, all above spaces coincide; otherwise, all inclusions are proper. We write ℓp

and c0 for ℓp(N) and c0(N) as usual.

As in the finite dimensional case, the ℓp–norm is strictly convex when 1 < p <∞. Two nonzero

x,y in ℓp(Λ) are parallel (resp. TEA), exactly when there is a scalar t (resp. t > 0) such that x = ty.

Therefore, any linear map of ℓp(Λ) preserves parallel pairs and TEA pairs when 1 < p <∞.

We study the cases when p = 1 and p = ∞, and Λ is an infinite index set below. As in Section

2, we start with the following observations. Note that ℓ∞(Λ) is isometrically isomorphic to the

Banach space C(βΛ) of continuous functions on the Stone-Cech compactification βΛ of Λ, which

consists of all ultrafilters of the discrete space Λ.

Lemma 3.1. (a) x = (xλ)λ∈Λ and y = (yλ)λ∈Λ in ℓ1(Λ) are parallel (resp. TEA) with respect to

the ℓ1–norm if and only if there is a unimodular scalar ξ (resp. ξ = 1) such that ξxλyλ ≥ 0 for

all λ in Λ.
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(b) x = (xλ)λ∈Λ and y = (yλ)λ∈Λ in c0(Λ) are parallel (resp. TEA) with respect to the ℓ∞–norm if

and only if there is a unimodular scalar ξ (resp. ξ = 1) such that ξxλyλ = ∥x∥∞∥y∥∞ for an

index λ in Λ.

(c) x = (xλ)λ∈Λ and y = (yλ)λ∈Λ in ℓ∞(Λ) are parallel (resp. TEA) with respect to the ℓ∞–norm

if and only if there is a unimodular scalar ξ (resp. ξ = 1) such that limU ξxλyλ = ∥x∥∞∥y∥∞
for an ultrafilter U on Λ.

For each α ∈ Λ, let eα = (eα,λ)λ∈Λ be the α–coordinate vector with coordinates eα,λ = 1 when

α = λ and 0 elsewhere. We can identify any bounded linear map T of ℓ1(Λ) or c0(Λ) as the infinite

“matrix” (tαβ) with tαβ = etα(Teβ), where etα denotes the linear functional (xλ)λ∈Λ 7→ xα for any

α ∈ Λ. However, there are unbounded linear maps such that their representation “matrices” are

zero. For example, consider any unbounded linear functional f of c0 vanishing on the subspace

of all finite sequences, that is, f(en) = 0 for all n = 1, 2, . . .. Then the unbounded linear map

x 7→ f(x)e1 has zero “matrix”.

On the other hand, the Banach dual space of ℓ1(Λ) is ℓ∞(Λ) when one identify u = (uλ)λ∈Λ ∈
ℓ∞(Λ) with the bounded linear functional ut =

∑
λ∈Λ uλe

t
λ (converging in the weak* topology

σ(ℓ∞(Λ), ℓ1(Λ)). In this case, a nonzero bounded linear operator S of ℓ∞(Λ) can have zero repre-

sentation “matrix”. For example, let g be any nonzero bounded linear functional of ℓ∞ vanishing on

the essential null sequence space c0, and Sx = g(x)e1. However, a σ(ℓ∞(Λ), ℓ1(Λ))–σ(ℓ∞(Λ), ℓ1(Λ))

continuous linear map is determined by its representation “matrix”.

Recall also that ℓ1(Λ) is a Banach lattice with respect to the pointwise ordering. In particular, a

vector f ≥ 0 if all its coordinates fλ = f(λ) ≥ 0. It is well known that any positive linear operator

T between Banach lattices, that is Tf ≥ 0 whenever f ≥ 0, is automatic bounded.

Lemma 3.2. Every linear map T : ℓ1(Λ) → ℓ1(Λ) preserves TEA pairs is automatic bounded.

Proof. For each λ ∈ Λ, consider the linear functional Tλ of ℓ1(Λ) defined by Tλ(f) = Tf(λ).

Suppose Te(λ) = 0 for all positive, and thus arbitrary, e ∈ ℓ1(Λ). It is plain that the linear

functional Tλ = 0. In case when Te(λ) ̸= 0 for some positive vector e ∈ ℓ1(Λ). Replacing T by

TeT (·) (pointwise product), we can assume that Te(λ) > 0. For any positive vector f ∈ ℓ1(Λ),

since e, f form a TEA pair, so do Te, Tf . In particular, Tf(λ) ≥ 0 since Te(λ) > 0. This shows

that the linear functional Tλ is positive, and thus bounded.

Let fn
∥·∥−−→ 0 and Tfn

∥·∥−−→ g. Then Tfn(λ) = Tλ(fn) −→ Tλ(0) = 0 implies g = 0. It then follows

from the closed graph theorem that T is automatic bounded.

Example 3.3. Let e ∈ ℓ1 with all positive coordinates. Let φ be a nonzero (necessarily unbounded)

linear functional of ℓ1 such that φ(en) = 0 for all n = 1, 2, . . ., but φ(e) = 1. The rank one

unbounded linear operator Tx = φ(x)e1 sends parallel pairs to parallel pairs. Note that the

representation ‘matrix’ of T is the zero matrix. However, T does not preserve TEA pairs. In fact,

if T does then φ will be a positive linear functional, and thus bounded, an absurdity.

Problem 3.4. Does every unbounded parallel pair preserver of ℓ1(Λ) have rank one?
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Using the terminology in the finite dimensional case, we call a “matrix” U = (uαβ) a “monomial

matrix” if for each α ∈ Λ there is exactly one β ∈ Λ such that uαβ ̸= 0. A “monomial matrix”

U is a “generalized permutation matrix” if all its nonzero entries |uαβ| = 1, and it is a “diagonal

unitary matrix” if |uαα| = 1 for each α ∈ Λ. We also assume that the linear map U is bounded or

σ(ℓ∞(Λ), ℓ1(Λ))–σ(ℓ∞(Λ), ℓ1(Λ)) continuous, depending on the context, so that the representation

“monomial matrix” (uαβ) determines U . It is clear that a linear map T of ℓ1(Λ) (resp. c0(Λ) or

ℓ∞(Λ)) preserves parallel pairs or TEA pairs if, and only if, γUTV does whenever γ > 0, and U, V

are some invertible “monomial matrices” (resp. “generalized permutation matrices”).

Theorem 3.5. Let T = (tαβ) : ℓ1(Λ) → ℓ1(Λ) be a bounded linear map.

(a) T preserves TEA pairs if and only if for each α ∈ Λ there is at most one β ∈ Λ such that

tαβ ̸= 0.

(b) T preserves parallel pairs if and only if T preserves TEA, or T = vut for some u ∈ ℓ∞(Λ)

and v ∈ ℓ1(Λ).

Proof. (a) Suppose for each α ∈ Λ there is at most one β ∈ Λ such that tαβ ̸= 0. Write such β = α′

in this case. Let x = (xλ)λ∈Λ,y = (yλ)λ∈Λ be a TEA pair in ℓ1(Λ). By Lemma 3.1, xλyλ ≥ 0 for

all λ ∈ Λ. For each λ ∈ Λ, the λ-coordinate of Tx and Ty are tλλ′xλ′ and tλλ′yλ′ , respectively.

Since tλλ′xλ′tλλ′yλ′ = xλ′yλ′ |tλλ′ |2 ≥ 0 for all λ ∈ Λ, we see that Tx, Ty form a TEA pair. The

converse follows from exactly the same arguments for the finite dimensional case given in the proof

of Theorem 2.2(a).

(b) It suffices to verify the necessity for the case when T does not preserve TEA. Suppose T

preserves parallel pairs, and the α1-row (tα1β)β∈Λ of its matrix representation has more than one

nonzero entry. Suppose the range of T has dimension at least two, and thus there is another α2–row

(tα2β)β∈Λ of T linearly independent from the α1-row. We are going to derive a contradiction.

Since the α1–row and the α2–row of T are linearly independent, there are distinct indices β1, β2

such that the 2× 2 matrix (
tα1β1 tα1β2

tα2β1 tα2β2

)
is invertible. If both tα1β1 , tα2β1 , or both tα1β2 , tα2β2 , are nonzero, then by replacing T with PTQ

for some suitable invertible “monomial matrix” P,Q, we can assume that the above matrix assumes

the form (
1 1
1 a

)
for some scalar a ̸= 1. Then the argument in Case 1 of the proof of Theorem 2.2(b) derives a

desired contradiction. If tα1β2 = tα2β1 = 0, say, then we search for an other index β3 with tα1β3 ̸= 0,

and such β3 exists by assumption. If tα2β3 ̸= 0, then it comes back to the first case above, and we

are done. Suppose tα2β3 = 0. By replacing T with P ′TQ′ for some suitable invertible “monomial

matrices” P ′, Q′, we may assume that T has a “submatrix” of the form(
1 1 0
0 0 a

)
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with a ̸= 0 for the indices α1, α2, and β1, β2, β3. Then the argument in Case 2 of the proof of

Theorem 2.2(b) provides us a contradiction, as well.

Lemma 3.6. Let Λ be an infinite index set.

(a) If V is a subspace of ℓ∞(Λ) such that any two elements in V are parallel with respect to ∥ · ∥∞,

then dimV ≤ 1.

(b) Let T : ℓ∞(Λ) → ℓ∞(Λ) or T : c0(Λ) → c0(Λ) be a nonzero linear map. Then T is injective if

one of the following holds.

(i) T preserves TEA pairs.

(ii) T preserves parallel pairs with range space of dimension larger than one.

Proof. (a) It follows from the proof of Lemma 2.3.

(b) We discuss only the case T is a linear map of ℓ∞(Λ), since the other case is similar.

(i) Let T be a linear TEA pair preserver of ℓ∞(Λ) such that T (v) = 0 for some v = (vλ)λ∈Λ with

∥v∥∞ = supλ∈Λ |vλ| = 1. We will show that T = 0.

Suppose Λ′ = {λ ∈ Λ : |vλ| < 1} ̸= ∅. For any λ′ ∈ Λ′, since ξv + eλ′ and ξv − eλ′ form a TEA

pair for large ξ > 0, so do T (ξv + eλ′) = T (eλ′) and T (ξv − eλ′) = −T (eλ′). It forces T (eλ′) = 0.

For any u =
∑

λ ̸=λ′ vλeλ with zero λ′–coordinate, we have ξeλ′ + u and ξeλ′ − u form a TEA pair

for large ξ > 0, and so do T (ξeλ′ + u) = T (u) and T (ξeλ′ − u) = −T (u). It follows T (u) = 0. In

general, for any x = xλ′eλ′ + u such that u = x− xλ′eλ′ has zero λ′–coordinate,

T (x) = xλ′T (eλ′) + T (u) = 0.

Hence T = 0. Therefore, we may assume Λ′ = ∅.

Replacing T with TQ for some suitable “generalized permutation matrix” Q, we may further

assume that v = eΛ, that is all coordinates of v is 1. For any distinct λ1, λ2 ∈ Λ, since eΛ−eλ2 and

eλ1 + eλ2 form a TEA pair, so do T (eΛ − eλ2) = −T (eλ2) and T (eλ1 + eλ2) = −T (eΛ − eλ1 − eλ2),

since T (eΛ) = 0. Therefore,

∥T (eλ1)∥∞ = ∥T (eΛ − eλ1)∥∞ = ∥T (eλ2)∥∞ + ∥T (eΛ − eλ1 − eλ2)∥∞

for any distinct λ1, λ2 ∈ Λ. Exchanging the roles of λ1 and λ2, we see that

T (eΛ − eλ1 − eλ2) = 0.

Replacing v = eΛ with v′ = eΛ − eλ1 − eλ2 ̸= 0 (since Λ has more than two elements), and arguing

as above, we see that Λ′ = {λ1, λ2} ≠ ∅, and then T = 0.

(ii) Suppose T preserves parallel pairs. Assume T is not injective, and v = (vλ)λ∈Λ is a norm

one element such that Tv = 0. Let Λ′ = {λ ∈ Λ : |vλ| < 1}. For any x,y ∈ ℓ∞(Λ) such that their

λ–coordinates etλx = etλy = 0 for all λ outside Λ′, we see that ξv + x and ξv + y are parallel for

large ξ > 0, and so are T (ξv+ x) = T (x) and T (ξv+ y) = T (y). It follows from part (a) that the

space {T (x) : etλx = 0 for all λ outside Λ′} has dimension at most one.
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If Λ = Λ′ then we are done. If Λ′′ = Λ \ Λ′ is nonempty, then by replacing T with TQ for some

“generalized permutation matrix” Q, we may assume that vλ = 1 for all λ ∈ Λ′′. Then the proof

of Lemma 2.4(b) shows that the range of T has dimension at most one.

We note that unlike the finite dimensional case, an injective parallel/TEA pair linear preserver

of c0(Λ) or ℓ∞(Λ) can be non-surjective. For an example, consider the isometric right shift operator

L of ℓ∞ or c0 by sending en to en+1 for n = 1, 2, . . .. However, such preservers are automatical

continuous as shown in the following result.

Theorem 3.7. Let Λ be an infinite index set. Let T : c0(Λ) → c0(Λ) be a nonzero linear map. The

following conditions are equivalent to each other.

(a) T (u), T (v) is a TEA pair if and only if u,v is a TEA pair, for any u,v ∈ c0(Λ).

(b) T (u), T (v) is a parallel pair if and only if u,v is a parallel pair, for any u,v ∈ c0(Λ).

(c) T is a scalar multiple of a (not necessarily surjective) linear isometry.

In this case, there is γ > 0, a subset Λ1 of Λ, a family {ξλ : λ ∈ Λ1} of unimodular scalars, and a

surjective map τ : Λ1 → Λ such that for any x = (xλ)λ∈Λ ∈ c0(Λ), the image y = T (x) = (yλ)λ∈Λ

has coordinates

yβ = γξβxτ(β) for all β ∈ Λ1, (3.1)

and

|yβ′ | ≤ γ when β′ ∈ Λ \ Λ1. (3.2)

Proof. The implications (c) =⇒ (a) =⇒ (b) are plain. We are verifying (b) =⇒ (c). Note that

T is injective. Indeed, if T (x) = 0 for some nonzero x ∈ c0(Λ), then the fact T (x) and T (eλ) are

parallel would imply that x and eλ are parallel for every λ ∈ Λ. But this contradicts to the fact

that Λ is infinite and x is essentially null. In particular, for any nonzero x = (xλ)λ∈Λ ∈ c0(Λ), its

peak set

Pk(x) = {λ ∈ Λ : |xλ| = ∥x∥∞}.

is a nonempty proper subset of Λ.

For any α, β ∈ Λ, we claim that

Pk(T (eα)) ∩ Pk(T (eβ)) = ∅ whenever α ̸= β.

In fact, if λ ∈ Pk(T (eα)) ∩ Pk(T (eβ)) then both T (eα) and T (eβ) attain their norms at the λ-

coordinate, and thus they are parallel. This forces eα and eβ are parallel, a contradiction.

Consider the disjoint union

Λ1 =
⋃
λ∈Λ

Pk(T (eλ)).

We define a surjective map τ : Λ1 → Λ such that

τ(β) = α if and only if β ∈ Pk(T (eα)).
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There is a unimodular scalar ξλ such that the norm attaining λ–coordinate of ξλT (eτ(λ)) is positive

for every λ in Λ1. Replacing T with QT for a suitable “diagonal unitary matrix” Q, we can assume

that all ξλ = 1.

Let α1 = τ(β1), α2 = τ(β2) and α3 = τ(β3) be three distinct indices for β1, β2 and β3 in Λ1.

Consider the linear map L : span (eα1 , eα2 , eα3) → span (eβ1 , eβ2 , eβ3) defined by taking only the

β1–, β2– and β3–coordinates of T (x) when x ∈ span (eα1 , eα2 , eα3). We can identify L with a 3× 3

matrix A satisfying the assumption in Lemma 2.5, from which we have a positive γ such that

L(eαj ) = γeβj
for j = 1, 2, 3.

The above argument shows that for any α in Λ, the β-coordinate of T (eα) is a fixed nonzero

scalar γ whenever τ(β) = α, and all the other β′-coordinates with β′ ∈ Λ1 are zero. In other words,

T (eα) = γ
∑

τ(β)=α

eβ + tα for every α ∈ Λ, (3.3)

where tα ∈ c0(Λ \ Λ1), that is, all λ-coordinate of tα with λ ∈ Λ1 are zero. Since the peak set

Pk(T (eα)) ⊆ Λ1, we have ∥tα∥∞ < γ. Note that the above sum must be finite, as T (eα) is

essentially null. Replacing T by T/γ, we can assume that γ = 1, and thus all ∥T (eα)∥∞ = 1.

We claim that ∥T (x)∥∞ ≤ 1 whenever x = (xλ)λ∈Λ in c0(Λ) has norm one. To see this, we first

assume that xα1 = 1 and xα2 = xα3 = 0 with α1 = τ(β1), α2 = τ(β2), α3 = τ(β3) for distinct indices

α1, α2, α3 ∈ Λ and β1, β2, β3 ∈ Λ1. Since x and eα1 are parallel, so are T (x) and T (eα1) = eβ1 . In

particular, ∥T (x)∥∞ is attained at the β1-coordinate of T (x). On the other hand, x is not parallel

with eα2 , eα3 , and thus T (x) is not parallel with T (eα2) = eβ2 , T (eα3) = eβ3 . With x playing the

role of eα1 , and T (x) playing the role of eβ1 , the above argument shows that the β1-coordinate of

T (x) is ∥T (x)∥∞ = 1. In general, for any norm one x = (xλ)λ∈Λ in c0(Λ), we may choose distinct

indices α1 = τ(β1), α2 = τ(β2), α3 = τ(β3), and assume its α1-coordinate equals 1. Then∣∣∣∥T (x)∥∞ − ∥T (x− xα2eα2 − xα3eα3)∥∞
∣∣∣ ≤ ∥T (xα2eα2 + xα3eα3)∥∞

implies ∣∣∣∣∣∥T (x)∥∞ − 1

∣∣∣∣∣ ≤
∥∥∥∥∥∥xα2

 ∑
τ(β2)=α2

eβ2 + tα2

+ xα3

 ∑
τ(β3)=α3

eβ3 + tα3

∥∥∥∥∥∥
∞

≤ |xα2 |+ |xα3 |.

Since x is essentially null, |xα2 | and |xα3 | can be any small numbers. It follows that ∥T (x)∥∞ = 1,

as claimed. In particular, T is an isometry.

Going back to the original bounded linear map T , the formula (3.3) becomes

T (eα) = γ
∑

τ(β)=α

ξβeβ + tα,
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where tα ∈ c0(Λ \ Λ1) with ∥tα∥∞ < γ for every α ∈ Λ. For any x = (xα)α∈Λ =
∑

α∈Λ xαeα in

c0(Λ), the boundedness of T ensures that

T (x) =
∑
α∈Λ

xαT (eα) =
∑
α∈Λ

xα

γ ∑
τ(β)=α

ξβeβ + tα

 =
∑
α∈Λ

( ∑
τ(β)=α

γξβxτ(β)eβ
)
+ xαtα

 .

It follows (3.1).

To verify (3.2), we may assume that there is β′ ∈ Λ \ Λ1 and a norm one x = (xλ)λ∈Λ in c0(Λ)

such that y = T (x) has β′–coordinate with |yβ′ | > γ. Since the β–coordinates of y are bounded

by γ for all β ∈ Λ1 due to (3.1), we see that y = T (x) and T (eα) have disjoint peak sets, and thus

they are not parallel to each other for any α in Λ = τ(Λ1). However, if x attains its norm at the

α1–coordinate, then x is parallel with eα1 , and thus T (x) is parallel with T (eα1), a contradiction.

We thus establish (3.2). It is now clear that T/γ is an into isometry.

Finally, we note that a (scalar multiple of an) into isometry of c0(Λ) assumes the stated forms

(3.1) and (3.2), due to Holsztynski’s Theorem (see, e.g., [3]).

The case for linear parallel/TEA pair preservers of ℓ∞(Λ) seems to be more complicated, as an

element x = (xλ)λ∈Λ in ℓ∞(Λ) might have empty peak set, that is, all its coordinates |xλ| < ∥x∥∞.

This makes the argument in the proof of Theorem 3.7 cannot be transported directly. However,

ℓ∞(Λ) ∼= C(βΛ), and we can apply the following result for abelian C*-algebras.

Theorem 3.8 ([10]). Let X,Y be compact Hausdorff spaces, each of which has at least three

elements. Let T : C(X) → C(Y ) be a bijective linear map such that both T, T−1 preserve parallel

pairs. Then there is a homeomorphism σ : Y → X, a scalar γ > 0, and a unimodulus function

h ∈ C(Y ) such that

Tf(y) = γh(y)f(σ(y)) for any f ∈ C(X) and y ∈ Y .

Below is an infinite dimensional analog of Corollary 2.7.

Corollary 3.9. Let Λ be an infinite index set. Let T : ℓ∞(Λ) → ℓ∞(Λ) be a bijective linear map.

The following conditions are equivalent to each other.

(a) Both T and T−1 send TEA pairs to TEA pairs.

(b) Both T and T−1 send parallel pairs to parallel pairs.

(c) T is a scalar multiple of a surjective linear isometry.

In this case, there is γ > 0, a family {ξλ : λ ∈ Λ} of unimodular scalars, and a bijective map

τ : Λ → Λ such that for any x = (xλ)λ∈Λ ∈ ℓ∞(Λ), the image y = T (x) = (yλ)λ∈Λ has coordinates

yλ = γξλxτ(λ) for all λ ∈ Λ. (3.4)

In other words, T is a scalar multiple of a “generalized permutation matrix”.

Proof. While the implications (c) =⇒ (a) =⇒ (b) are plain, Theorem 3.8 establishes (b) =⇒ (c)

when we identify ℓ∞(Λ) with C(βΛ). We note that Λ consists of all isolated points of βΛ. Thus the
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homeomorphism σ given in Theorem 3.8 induces a bijective map τ from Λ onto itself to implement

(3.4).

Problem 3.10. Can one replace the two direction preserving conditions by that the linear map T

sends parallel/TEA pairs to parallel/TEA pairs in Theorem 3.7 and Corollary 3.9, as in the finite

dimensional case?

4. The infinite dimensional general case

Let (X,µ), (Y, ν) be measure spaces. Two functions f, g ∈ L1(µ) are parallel if there is a unimod-

ular scalar α such that αgf ≥ 0. They form a TEA pair if gf ≥ 0. In this section, all equalities and

inequalities of measurable functions are understood as the ones hold modulo a set of zero measure.

Recall

supp f = {x ∈ X : f(x) ̸= 0} =
⋂
n≥1

{x ∈ X : |f(x)| > 1/n}.

Recall that a linear operator T : Lp(µ) → Lp(ν) is called a Lamperti operator if T is bounded

and sends disjoint functions to disjoint functions, that is, TfTg = 0 whenever fg = 0. Surjective

isometries of Lp spaces are Lamperti operators when p ∈ [1,∞) \ {2}, or when p = 2 and T is also

positive, that is, Tf ≥ 0 whenever f ≥ 0 ([4, 6]). The following result describes the structure of

Lamperti operators.

Recall that a regular set homomorphism ([4, 6]) Ψ from (X,µ) to (Y, ν) is a transformation

between the measure algebras, modulo sets of measure zero, satisfying

• Ψ(X \ E) = Ψ(X) \Ψ(E),

• Ψ(
⋃∞

n=1En) =
⋃∞

n=1Ψ(En) for disjoint En, and

• ν(Ψ(E)) = 0 if µ(E) = 0.

A regular set homomorphism Ψ induces a linear map between the sets of measurable functions

sending 1E to 1Ψ(E).

Theorem 4.1. Let (X,µ), (Y, ν) be σ-finite measure spaces, and 1 ≤ p <∞. Let T : Lp(µ) → Lp(ν)

be a Lamperti operator.

(a) ([4, Theorem 4.1]) There is a regular set homomorphism Ψ sending µ-measurable sets to ν-

measurable sets, and a ν-measurable function h such that

T (1E) = h · 1Ψ(E), for every µ-measurable subset E of X of finite measure.

(b) ([7, Theorem 5.4]) Suppose further that µ is a tight Baire measure on a topological space X,

and (Y, ν) is a complete measure space. Then there is a measurable transformation ψ : Y → X

such that

Tf = h · f ◦ ψ, for all f ∈ Lp(µ).

Theorem 4.2. Let (X,µ), (Y, ν) be measure spaces, and let T : L1(µ) → L1(ν) be a linear map.

Then T sends TEA pairs to TEA pairs if and only if T is a Lamperti operator.
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Proof. Let T be a linear TEA pair preserver. We show that T is a Lamperti operator, that is,

bounded and sends disjoint pairs to disjoint pairs.

Suppose first that ν(Y ) < +∞. Let

η = sup {ν(supp Tk) : k ∈ L1(µ), k ≥ 0}.

If η = 0 then T = 0. Otherwise, let hn ≥ 0 in L1(µ) such that ν(supp Thn) ≥ η − 1/n for

n = 1, 2, . . .. Since hm, hn form a TEA pair, so do Thm, Thn for all m,n ≥ 1. Hence there is a

unimodular function w ∈ L∞(ν) such that all wThn ≥ 0. Replacing T with wT , we can assume

that all Thn ≥ 0. Let g ≥ 0 in L1(µ) and n ≥ 1. Since g, hn form a TEA pair, so do Tg, Thn.

Consequently, Tg ≥ 0 on supp Thn (modulo a set of ν-measure zero). It follows

ν({y ∈ Y : T (g + hn)(y) > 0}) ≥ ν(supp Thn) ≥ η − 1/n for n = 1, 2, . . ..

This implies that {y ∈ Y : Tg(y) ̸≥ 0}, which is disjoint from suppThn, has zero measure, for else

ν(suppT (g + hn)) > η for some big n. This says that Tg ≥ 0 in L1(ν). Being a positive linear

operator, T is automatic bounded. In the original setting, wT is bounded, and thus T = w(wT ) is

bounded.

Next, if ν is σ-finite then we write Y =
⋃

m Ym, a measurable partition of Y , such that all

ν(Ym) < +∞. The above argument shows that the linear TEA preserver Tm : L1(µ) → L1(ν|Ym
)

defined by Tm = T (·)|Ym
is bounded for m = 1, 2, . . .. Let fn → 0X in L1(µ) and Tfn → k in

L1(ν). Then Tmfn → Tm0X = 0Ym in norm, and thus k|Ym
= 0|Ym

for m = 1, 2, . . .. It follows from

the σ-finiteness of ν that k = 0Y . Consequently, the linear map T has closed graph, and thus T is

bounded.

Finally, we consider the case when (Y, ν) is not necessarily σ-finite. Let fn → f in L1(µ). There

is a σ-finite ν-measurable subset Y ′ of Y such that all Tfn, T f vanish outside Y ′. The induced

map T ′ : L1(µ) → L1(ν|Y ′) of T is again a TEA pair preserver, and thus bounded by above.

Consequently,

∥Tf − Tfn∥L1(ν) =

∫
Y
|Tf(y)− Tfn(y)| dν(y) =

∫
Y ′

|Tf(y)− Tfn(y)| dν|Y ′(y)

= ∥T ′f − T ′fn∥L1(ν|Y ′ ) → 0.

It follows the boundedness of T .

To see that T preserves disjointness, let f, g ∈ L1(µ) such that fg = 0. For any nonzero real

scalar α, the pair f +αg and f + 1
αg is TEA, and so is the pair Tf +αTg and Tf + 1

αTg. In other

words, |Tf |2 + |Tg|2 + 1
αTfTg + αTfTg ≥ 0. Letting α → ±∞, we see that TfTg = 0, and thus

TfTg = 0. Therefore, T is a Lamperti operator.

Conversely, assume that T : L1(µ) → L1(ν) is a Lamperti operator. Let f, g ∈ L1(µ) form a

TEA pair, namely, gf ≥ 0. We verify that Tf, Tg form a TEA pair, too.

By restricting µ and ν, respectively, to σ-finite measurable subsets of X and Y , outside which

f, g and Tf, Tg vanish, we can assume that both X,Y are σ-finite. By Theorem 4.1(a), there is a
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regular set homomorphism Ψ sending µ-measurable sets to ν-measurable sets, and a ν-measurable

function h such that T (1E) = h · 1Ψ(E) for all µ-measurable sets E of finite measure.

Modulo a set of measure zero, we can assume f, g, h are pointwise functions (rather than equiv-

alence classes of L1(µ) functions) and gf ≥ 0 everywhere. Let X = X1 ∪ · · · ∪Xn ∪Xn+1 be any

µ-measurable partition of X such that µ(Xi) < +∞ for i = 1, . . . , n, and
∫
Xn+1

|f |+ |g| dµ < ϵ for

some small ϵ > 0. Let xi ∈ Xi be arbitrarily chosen for i = 1, . . . , n. Then

T

(
n∑

i=1

f(xi)1Xi

)
=

n∑
i=1

f(xi)h1Ψ(Xi),

T

(
n∑

i=1

g(xi)1Xi

)
=

n∑
i=1

g(xi)h1Ψ(Xi)

form a TEA pair since the disjointness of Ψ(Xi)’s implies that(
n∑

i=1

g(xi)h1Ψ(Xi)

)(
n∑

i=1

f(xi)h1Ψ(Xi)

)
=

n∑
i=1

g(xi)f(xi)|h|21Ψ(Xi) ≥ 0.

By the continuity of T and the fact that the norm limits of TEA pairs form a TEA pair, we see

that Tf, Tg form a TEA pair as well.

Theorem 4.3. Let (X,µ), (Y, ν) be measure spaces. Let T : L1(µ) → L1(ν) be a bounded linear

map sending parallel pairs to parallel pairs. Then either T is a Lamperti operator, or T has the

form f 7→ φ(f)h for a bounded linear functional φ of L1(µ) and a fixed function h in L1(ν).

Proof. In view of Theorem 4.2, it suffices to show that if T does not preserve disjointness then T

has rank one. Suppose f, g ∈ L1(µ) with fg = 0 but TfTg ̸= 0.

Claim 1. Tf, Tg are linearly dependent.

Observe that for any scalar β, the pair f + βg and g is parallel, and so is Tf + βTg and Tg.

There is a unimodular scalar αβ such that

αβTg(Tf + βTg) ≥ 0.

In particular, α0TgTf ≥ 0. Replacing g with α0g, we can assume

TgTf ≥ 0. (4.1)

In general,

αβTgTf + αββ|Tg|2 ≥ 0, ∀β ∈ F. (4.2)

If the set Y1 on which Tf = 0 but Tg ̸= 0 has positive ν-measure, we see that αββ ≥ 0 by (4.2).

Then α−ϵ = −1 whenever ϵ > 0. Letting β = −ϵ → 0−, we have TgTf = 0, contradicting to

TfTg ̸= 0. This shows that ν(Y1) = 0. Exchanging the roles of f and g, we see that

Tf(y) = 0 if and only if Tg(y) = 0, (4.3)

modulo a set of zero measure.
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It follows from (4.2) that

α−βTgTf

β
− α−β|Tg|2 ≥ 0 whenever β > 0.

Hence, α−β = −1, and thus

TgTf ≤ β|Tg|2 for big enough β > 0. (4.4)

Let

r = inf {β > 0 : TgTf ≤ β|Tg|2} > 0.

For any 0 < s < r, the set As = {y ∈ Y : TgTf > s|Tg|2} has positive measure. To keep (4.2) hold

for β = −s, we need α−s = 1, and thus TgTf ≥ s|Tg|2 on Y . This forces TgTf ≥ r|Tg|2. Hence,

TgTf = r|Tg|2, and thus Tf = rTg by (4.3), as claimed.

Claim 2. If k ∈ L1(µ) such that fk = gk = 0 and TfTk = 0, then Tk = 0.

Claim 1 shows that Tf = rTg for some nonzero scalar r, and thus TgTk = 0 as well. Observe

that mf − g + k and f −mg + k are parallel, and so are mTf − Tg + Tk = (mr − 1)Tg + Tk and

Tf −mTg + Tk = (r −m)Tg + Tk for any scalar m ≥ 0. In other words, there is a unimodular

scalar αm such that αm((mr − 1)Tg + Tk)((r −m)Tg + Tk) ≥ 0, and thus

αm(mr − 1)(r −m)|Tg|2 + αm|Tk|2 ≥ 0 for any m ≥ 0,

since Tg, Tk are disjoint. If Tk ̸= 0 then αm|Tk|2 ≥ 0 implies αm = 1, and thus

(mr − 1)(r −m)|Tg|2 ≥ 0 for all m ≥ 0.

This is impossible. This forces Tk = 0.

Let C,D be the supports of the disjoint functions f, g, respectively, and E = X \(C∪D). For any

u ∈ L1(µ), write u = uC + uD + uE as disjoint sum of functions supported in C,D,E, respectively.

Since fuE = guE = 0, Claims 1 and 2 imply TuE = γETf for some (maybe zero) scalar γE . On

the other hand, fuD = f(g − uD) = 0. If TfT (g − uD) = 0, then TfTuD = TfTg ̸= 0, and Claim

1 implies that TuD, T f are linearly dependent. If TfT (g − uD) ̸= 0, then Claim 1 implies that

Tg − TuD, Tf are linearly dependent. Since Tf, Tg are linearly dependent, TuD, T f are linearly

dependent, too. Thus TuD = γDTf for some scalar γD. Similarly, TuC = γCTf for some scalar

γC . Consequently, Tu = (γC + γD + γE)Tf . This shows that the range of T is spanned by Tf , and

thus T has rank one.

Theorem 4.3 says that bounded linear parallel pair preservers are either TEA pair preservers or

rank one maps. In Example 3.3, we have an unbounded rank one parallel pair preserver of ℓ1, while

every linear TEA pair preserver of L1 spaces is automatic bounded due to Theorem 4.2. The open

problem is whether an unbounded linear parallel pair preserver T can have rank more than one

(see Problem 3.4).

Theorem 4.4. Let L∞(µ1), L∞(µ2) have dimension not 2. Let T : L∞(µ1) → L∞(µ2) be a bijective

linear map. The following conditions are equivalent to each other.
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(a) Both T and T−1 send TEA pairs to TEA pairs.

(b) Both T and T−1 send parallel pairs to parallel pairs.

(c) T is a scalar multiple of a surjective linear isometry.

Proof. Being commutative unital C∗-algebras, L∞(µ1) ∼= C(X) and L∞(µ2) ∼= C(Y ) for some

hyperstonian spaces X,Y . We can assume both X,Y have at least three points. While the impli-

cations (c) =⇒ (a) =⇒ (b) are plain, Theorem 3.8 establishes (b) =⇒ (c).

For ℓ1(Λ), ℓ∞(Λ) and general L1(µ), L∞(µ) spaces, the structure of (surjective) linear isometries

have a concrete description. Therefore, we can connect invertible parallel/TEA pair preservers

with linear isometries. In particular, in the ℓ∞(Λ) and L∞(µ) cases, with dimension not two (see

the part (a.2) in Theorem 2.6 for a counter example), we see that invertible parallel/TEA pair

preservers are exactly positive multiple of isometries.

In the ℓ1(Λ) case, invertible bounded parallel/TEA pair preservers are monomial matrices. In

the general L1(µ) case, invertible bounded parallel/TEA pair preservers are Lamperti operators.

Therefore, the group of positive multiples of surjective isometries of L1 spaces is a proper subgroup

of invertible bounded parallel/TEA pair preservers.

It is interesting to ask

Problem 4.5. For a non-strictly convex normed space, what properties characterize that the group

of invertible bounded parallel/TEA pair preservers consists of positive multiples of surjective isome-

tries?
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