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Significance of Numerical and C-Numerical Ranges
Generalising Expectation Values

Expectation values of observables B = B† ∈ B(H):

pure quantum states |ψ(t)〉 = U(t)|ψ0〉 ∈ H:

〈B〉t := 〈ψ(t)B|ψ(t)〉 ∈ W (B) := {〈φB|φ〉,
∣∣‖φ‖ = 1}

mixed states ρ(t) ∈ Uρ0U†:

tr
(
B†ρ(t)

)
∈ W (B, ρ0) = {tr

(
B† Uρ0U−1) |U ∈ U(H)}

C numerical range:
generalisation to non-Hermitian operators A,C

W (C,A) := {tr(C† UAU−1)|U ∈ U(H)}
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Significance of Numerical and C-Numerical Ranges
Generalising Expectation Values

Generalise from B = B† to non-Hermitian operator C:

pure quantum states |ψ(t)〉 = U(t)|ψ0〉 ∈ H:
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Significance of C-Numerical Radius
Geometric Optimisation Problems

Find points on unitary orbit of initial state A with

minimal Euclidean distance to target C

min
U
||C − UAU−1||22 ⇔ max

U
Re tr{C† UAU−1}

⇔ find max. real part of C num. range

minimal angle to target C

max
U

cos2
A,C (U) = max

U

| tr{C†UAU−1}|2

‖A‖22 · ‖C‖
2
2

⇔ find: C num. radius rC(A) = max
U
| tr{C† UAU−1}|

pro memoria: ||C − UAU−1||22 = ||A||22 + ||C||22 − 2 Re tr{C† UAU−1}
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Examples of Quantum Control
Maximising Spectroscopic Sensitivity

find rC(A) by gradient flow on unitary group

A,C ∈ Mat 3(C ) A,C ∈ Mat 8(C )

Glaser, T.S.H., Sieveking, Schedletzky, Nielsen, Sørensen, Griesinger,
Science 280 (1998), 421
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Early Connections
Trip from ETH to ILAS 1996
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Generalisation: Sums of Orbits
Least-Squares Approx. with Li & Poon, Math. Comput. 80, 1601 (2011)

Generalised task:
approximate A0 by elements on the sum of orbits

unitary similarity: min
Uj∈SU(n)

∣∣∣∣ N∑
j=1

UjAjU
†
j − A0

∣∣∣∣2
2

unitary equivalence: min
Uj ,Vj∈SU(n)

∣∣∣∣ N∑
j=1

UjAjVj − A0
∣∣∣∣2

2

unitary t-congruence: min
Uj∈SU(n)

∣∣∣∣ N∑
j=1

UjAjU t
j − A0

∣∣∣∣2
2

†-congruence: min
Sj∈SL(n)

∣∣∣∣ N∑
j=1

SjAjS
†
j − A0

∣∣∣∣2
2
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Systems Theory: Controllability/Simulability

Consider
1 linear control system: ẋ(t) = Ax(t) + Bv
2 bilinear control system: Ẋ (t) = (A +

∑
j ujBj)X (t)

Conditions for Full Controllability⇔ Universality

1 in linear systems: rank [B,AB,A2B, . . . ,AN−1B] = N

2 in bilinear systems: 〈A,Bj | j = 1,2, ...,m〉Lie = su(N)

key: system algebra k := 〈A,Bj | j = 1,2, ...,m〉Lie

reachable set Reach(ρ0) = {Kρ0K † |K ∈ exp k}
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Systems Theory: Controllability/Simulability

Consider
1 linear control system: ẋ(t) = Ax(t) + Bv
2 bilinear control system: Ẋ (t) = (A +

∑
j ujBj)X (t)

Conditions for Full Controllability⇔ Universality

1 in linear systems: rank [B,AB,A2B, . . . ,AN−1B] = N

2 in bilinear systems: 〈A,Bj | j = 1,2, ...,m〉Lie = su(N)

key: system algebra k := 〈A,Bj | j = 1,2, ...,m〉Lie

reachable set Reach(ρ0) = {Kρ0K † |K ∈ exp k}

symmetries ad′k := {S ∈ gl(N2) | [S, adA] = [S, adBj ] = 0, ∀j}
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Bilinear Control Systems
Markovian Settings PRA 84, 022305 (2011)

Ẋ (t) = −
(
A + Σjuj(t)Bj

)
X (t) as operator lift of

ẋ(t) = −
(
A + Σjuj(t)Bj

)
x(t)

X(t) or x(t): ‘state’; A: drift; Bj : control Hamiltonians; uj : control amplitudes

Setting and Task ‘State’ Drift Controls
X(t) A Bj

closed systems:
pure-state transfer X(t) = |ψ(t)〉 iH0 iHj
gate synthesis (fixed global phase) X(t) = U(t) iH0 iHj
state transfer X(t) = |ρ(t)〉 iĤ0 iĤj
gate synthesis (free global phase) X(t) = Û(t) iĤ0 iĤj

open systems:
state transfer I X(t) = |ρ(t)〉 iĤ0 + Γ̂ iĤj
quantum-map synthesis I X(t) = F (t) iĤ0 + Γ̂ iĤj
state transfer II X(t) = |ρ(t)〉 iĤ0 iĤj , Γ̂j
map synthesis II X(t) = F (t) iĤ0 iĤj , Γ̂j

Ĥ is Hamiltonian commutator superoperator generating Û := U(·)U†.
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Symmetry vs. Controllability I
Necessary Conditions J. Math. Phys. 52, 113510 (2011)

Control system Σ with algebra k = 〈iHν | ν = d ; 1,2, . . . ,m〉Lie.

Theorem (Simplicity)

The above system algebra k is an irreducible simple
subalgebra of su(N), if both

1 the commutant is trivial, i.e. k′ = span{1l},
2 the coupling graph to Hd is connected.

XY XYXY
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Irreducible Simple Subalgebras to su(N)
up to N = 215 J. Math. Phys. 52, 113510 (2011)

su(2)
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Symmetry vs. Controllability II
Single Symmetry Condition JMP 52 113510 (2011), OSID 24 1740019 (2017)

Theorem (Trivial Second-Order Symmetries)

Let {Hν | ν = d ; 1,2, . . . ,m} be drift and control
Hamiltonians of control system Σ with system algebra k.

Define ΦΘ := {
(
1l⊗ iHν + Θ(iHν ⊗ 1l)

)
| ν = d ,1, . . . ,m}.

Then Σ is fully controllable, i.e. k = su(2n), iff
joint commutant to ΦΘ is two-dimensional, i.e.
Φ′Θ = span{1l⊗2,Θ(SWAP)}.
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Symmetry vs. Controllability II
Single Symmetry Condition J. Math. Phys. 52, 113510 (2011)

Theorem

Let {Hν | ν = d ; 1,2, . . . ,m} be drift and control
Hamiltonians of control system Σ with system algebra k.

Define ΦAB := {(1lB ⊗ iHν + iHν ⊗ 1lA) | ν = d ,1, . . . ,m}.

Then Σ is fully controllable, i.e. k = su(2n), iff
joint commutant to ΦAB is two-dimensional
i.e. Φ′AB = span{1l, SWAPAB}.
[ΦAB] = [symmetric]′bosonic′⊕[anti-symmetric]′fermionic′
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Quantum Simulability
Algebraic Decision

Corollary (J. Math. Phys. 52, 113510 (2011))

Let ΣA,ΣB be control systems with system algebras
kA, kB over a given Hilbert space H.
Then

ΣA can simulate ΣB ⇔ kB is a subalgebra of kA .
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Quantum Simulation by Spin Systems
Overview J. Math. Phys. 52, 113510 (2011)

system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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Quantum Simulation by Spin Systems
Overview J. Math. Phys. 52, 113510 (2011)

system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

A B

XX XX n + 1 quadratic (i.e. 2) – so(2n + 2)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

A B

XX XX n + 1 quadratic (i.e. 2) – so(2n + 2)

A

XX XX

for n mod 4 ∈ {0, 1} n up to n – so(2n)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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Quantum Simulation by Spin Systems
Overview J. Math. Phys. 52, 113510 (2011)

system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

A B

XX XX n + 1 quadratic (i.e. 2) – so(2n + 2)

A

XX XX

for n mod 4 ∈ {0, 1} n up to n – so(2n)

for n mod 4 ∈ {2, 3} n – up to n sp(2n−1)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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Overview J. Math. Phys. 52, 113510 (2011)

system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

A B

XX XX n + 1 quadratic (i.e. 2) – so(2n + 2)

A

XX XX

for n mod 4 ∈ {0, 1} n up to n – so(2n)

for n mod 4 ∈ {2, 3} n – up to n sp(2n−1)

A B

XX XX n up to n up to n su(2n)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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Quantum Simulation by Spin Systems
Overview J. Math. Phys. 52, 113510 (2011)

system type ’fermionic’ ’bosonic’ system alg.

n-spins- 1
2 no. of levels ———– order of coupling ———–

A

XX XX n quadratic (i.e. 2) – so(2n + 1)

A B

XX XX n + 1 quadratic (i.e. 2) – so(2n + 2)

A

XX XX

for n mod 4 ∈ {0, 1} n up to n – so(2n)

for n mod 4 ∈ {2, 3} n – up to n sp(2n−1)

A B

XX XX n up to n up to n su(2n)

NB: no. of spins maps into no. of levels (as in Jordan-Wigner transformation).
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Numerical Range and C-Numerical Range

Classical features of W (A) and W (C,A):

•W (A) and W (C,A) are compact and connected.
GOLDBERG & STRAUSS 1977

•W (A) is convex. HAUSDORFF 1919, TOEPLITZ 1918

•W (C,A) is star-shaped. CHEUNG & TSING ’96

•W (C,A) is convex if C or A Hermitian. WESTWICK ’75

•W (C,A) is a circular disk centered at the origin if
C or A are unitarily similar to block-shift form

LI & TSING ’91
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The Relative C-Numerical Range
Restricted Quantum Control with G. Dirr & U. Helmke

Definition (Lin. Multin. Alg. 56 (2008) 3–26 and 27–51 )

The relative C-numerical range is the set

WK(C,A) := {tr (C†KAK †) | K ∈ K ( SU(N)} ⊆WC(A),

where the unitary orbit is restricted to a subgroup K.
Ex.:local operations K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)
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The Relative C-Numerical Range
Restricted Quantum Control with G. Dirr & U. Helmke

Definition (Lin. Multin. Alg. 56 (2008) 3–26 and 27–51 )

The relative C-numerical range is the set

WK(C,A) := {tr (C†KAK †) | K ∈ K ( SU(N)} ⊆WC(A),

where the unitary orbit is restricted to a subgroup K.
Ex.:local operations K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (I non convex)

A :=

(
1 0
0 −1

)
⊗
(

1 + i 0
0 1− i

)
C := diag (1,0,0,0)
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The Relative C-Numerical Range
Restricted Quantum Control with G. Dirr & U. Helmke

Definition (Lin. Multin. Alg. 56 (2008) 3–26 and 27–51 )

The relative C-numerical range is the set

WK(C,A) := {tr (C†KAK †) | K ∈ K ( SU(N)} ⊆WC(A),

where the unitary orbit is restricted to a subgroup K.
Ex.:local operations K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (II neither star-shaped nor simply connected)

A :=

(
1 0
0 e2iπ/3

)⊗3

C :=

(
1 0
0 0

)⊗3

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
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The Relative C-Numerical Range
Restricted Quantum Control with G. Dirr & U. Helmke

Definition (Lin. Multin. Alg. 56 (2008) 3–26 and 27–51 )

The relative C-numerical range is the set

WK(C,A) := {tr (C†KAK †) | K ∈ K ( SU(N)} ⊆WC(A),

where the unitary orbit is restricted to a subgroup K.
Ex.:local operations K ∈ SU(2)⊗ SU(2)⊗ · · · ⊗ SU(2)

Example (III distinct circ. symmetry)

A := 1√
3

( 0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

)
,

C := diag ( 1 0 0 0 )

−1  −0.5    0   0.5   1   
−1  

−0.5

0   
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Re
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The Relative C-Numerical Range
Restricted Quantum Control

Example (IV K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A= 1√
3

diag(0, e i 2π/3, e i 4π/3, 1)

C=diag(1, 0, 0, 0) C = 1
2

(
0 −1l
1l 0

)
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The Relative C-Numerical Range
Restricted Quantum Control

Example (V K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A= 1√
8

diag(1 + i, 1− i,−1− i,−1 + i)

C=diag(1, 0, 0, 0) C = 1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 C= 1
2

(
0 −1l
1l 0

)
=: 1

2 J
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The Relative C-Numerical Range
Restricted Quantum Control

Example (VI K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A = 1√
3


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

 C = 1
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =: 1
2 K
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The Relative C-Numerical Range
Restricted Quantum Control

Example (VII K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A = 1√
3


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 C = 1
2


0 0 −1 0
1 0 0 0
0 0 0 −1
0 1 0 0

 = 1
2 KJ
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The Relative C-Numerical Range
Restricted Quantum Control

Example (VIII K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A ∈
{(

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
, 1√

2

(
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

)
, 1√

3

(
1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0

)
, 1

2

(
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

)}
C = 1

2 K
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The Relative C-Numerical Range
Restricted Quantum Control

Example (IX K = USp(4/2) vs SO(4) vs SU(2)⊗2 )

A= 1√
3

diag(0, ei∗2π/3, ei∗4π/3, 1) C= 1
2


0 0 −1 0
1 0 0 0
0 0 0 −1
0 1 0 0

 = 1
2 KJ
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Relative C-Numerical Range
Condition for Rotational Symmetry Lin.Multilin.Alg. 56 (2008), 27

Theorem

Let K be a compact connected subgroup of U(N) with
Lie algebra k, and let t be a torus algebra of k. Then the
relative C-numerical range WK(C,A+) of a matrix
A+ ∈ Mat N(C ) is a circular disc centered at the origin of
the complex plane for all C ∈ Mat N(C ) if and only if
there exists a K ∈ K and a ∆ ∈ t such that KA+K † is an
eigenoperator to ad∆ with a non-zero eigenvalue

ad∆(KA+K †) ≡ [∆,KA+K †] = ip (KA+K †) and p 6= 0 .
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Relative C-Numerical Range
Condition for Rotational Symmetry Lin.Multilin.Alg. 56 (2008), 27

Theorem

Let K be a compact connected subgroup of U(N) with
Lie algebra k, and let t be a torus algebra of k. Then the
relative C-numerical range WK(C,A+) of a matrix
A+ ∈ Mat N(C ) is a circular disc centered at the origin of
the complex plane for all C ∈ Mat N(C ) if and only if
there exists a K ∈ K and a ∆ ∈ t such that KA+K † is an
eigenoperator to ad∆ with a non-zero eigenvalue

ad∆(KA+K †) ≡ [∆,KA+K †] = ip (KA+K †) and p 6= 0 .

If KA+K † is an eigenoperator of ad∆ to eigenvalue +ip
and A− := A†+, then KA−K † has eigenvalue −ip.
A+ and A− share the same relative C-numerical range of
circular symmetry, WK(C,A+) = WK(C,A−).
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Gradient Flows on Riemannian Manifolds
Abstract Optimisation Task Rep. Math. Phys. 64, 93 (2009)

↑ f
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Gradient Flows on Riemannian Manifolds
Abstract Optimisation Task Rep. Math. Phys. 64, 93 (2009)

↑ f

� quality function f : M → R ,X 7→ f (X )
drives into (local) maximum by gradient flow
to Ẋ = grad f (X ) on M
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Gradient-Flow on Compact Lie Groups
Construction in a Nutshell

Example: f (U) := Re tr{C†UAU†}
write [·, ·]S as skew-herm. part

calculate Lie derivative
Df (U)(ΩU) = 〈[UAU†,C†]†SU|ΩU〉

identifying Df (U)(ΩU) = 〈grad f (U)|ΩU〉, where
ξ ∈ TUSU(N) reads ξ = ΩU and Ω ∈ su(N);

obtain gradient vector field
grad f (U) = [UAU†,C†]†S U

integrate gradient system U̇ = grad f (U) by

discretisation scheme Uk+1 = e−αk [Uk AU†k ,C
†]S Uk
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Construction in a Nutshell

Example: f (U) := Re tr{C†UAU†}
write [·, ·]S as skew-herm. part

calculate Lie derivative
Df (U)(ΩU) = 〈[UAU†,C†]†SU|ΩU〉

identifying Df (U)(ΩU) = 〈grad f (U)|ΩU〉, where
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Generalisation: Flows on Sums of Orbits
Approx. by Sums of Similarity Orbits Math. Comp. 80, 1601 (2011)

Generalised task:
approximate A0 by elements on the sum of orbits

unitary similarity: min
Uj

∣∣∣∣ N∑
j=1

UjAjU
†
j − A0

∣∣∣∣2
2

N coupled gradient flows:

U(j)
k+1 = exp

{
− α(j)

k [A(j)
k ,A†0jk ]

S

}
U(j)

k

notations:

A(j)
k := U(j)

k Aj U
(j)
k
†
; A0jk := A0 −

N∑
ν=1
ν 6=j

A(ν)
k ; [·, ·]S skew-herm. part
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Generalisation: Sums of Orbits
Approx. by Sums of Similarity Orbits Math. Comp. 80, 1601 (2011)

Example (unitary similarity)
Define in C10×10

Aj := diag (1, 3, 5, . . . , 19) + j−1
10 1l10

A(N)
0 := diag (a1, ..., a10) ,

where a1, . . . , a10 are eigenvalues of
∑N

j=1 U(r)
j Aj U

(r)
j
†

with random unitaries

(distributed by Haar measure). For N = 2 and N = 10 the above flows give:

0 500 1000 1500
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

|| 
Σ j=

1
N

 U
j A

j U
j*   −

  A
(N

)
0

 ||
22

iteration

N = 2 

N = 10
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Conclusion for Reachable Sets
by Group Orbits J. Math. Phys. 52, 113510 (2011)

no vs constant vs switchable noise ΓL

closed coherently controllable (cc) systems:
Reach ρ0 = OK(ρ0) := {Kρ0K † |K ∈ K ⊆ SU(N)},
where K = exp k generated by system algebra k

open systems, cc with constant Markovian noise Γ:
Reach ρ0 = S vec ρ0, where
S ' eA`eA`−1 · · · eA1 with A1,A2, . . . ,A` ∈ w

open systems, cc with switchable Markovian noise:
• unital: Reach ρ0 = {ρ ∈ pos1 | ρ ≺ ρ0}
• non-unital: Reach ρ0 = pos1
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Conclusion for Reachable Sets
by Lie-Semigroup Orbits IEEE TAC 57, 2050 (2012)

no vs constant vs switchable noise ΓL

closed coherently controllable (cc) systems:
Reach ρ0 = OK(ρ0) := {Kρ0K † |K ∈ K ⊆ SU(N)},
where K = exp k generated by system algebra k

open systems, cc with constant Markovian noise Γ:
Reach ρ0 = S vec ρ0, where
S ' eA`eA`−1 · · · eA1 with A1,A2, . . . ,A` ∈ w

open systems, cc with switchable Markovian noise:
• unital: Reach ρ0 = {ρ ∈ pos1 | ρ ≺ ρ0}
• non-unital: Reach ρ0 = pos1
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Conclusion for Reachable Sets
by Unprecedented Noise Control arXiv: 1206.4945 & 1605.06473

no vs constant vs switchable noise ΓL

closed coherently controllable (cc) systems:
Reach ρ0 = OK(ρ0) := {Kρ0K † |K ∈ K ⊆ SU(N)},
where K = exp k generated by system algebra k

open systems, cc with constant Markovian noise Γ:
Reach ρ0 = S vec ρ0, where
S ' eA`eA`−1 · · · eA1 with A1,A2, . . . ,A` ∈ w

open systems, cc with switchable Markovian noise:
• unital: Reach ρ0 = {ρ ∈ pos1 | ρ ≺ ρ0}
• non-unital: Reach ρ0 = pos1
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The Semigroup C-Numerical Range
Full Open Systems Control

Example (Semigroup Orbit SLK (diag (1,0,0,0)) )

C = 1
2 diag(1, i,−i, 1)

A = diag (1, 0, 0, 0)

diag (0.9, 0.1, 0, 0)

diag (0.8, 0.2, 0, 0)

diag (0.7, 0.3, 0, 0)

diag (0.6, 0.4, 0, 0)

diag (0.5, 0.5, 0, 0)

1
3 diag (1, 1, 1, 0)
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diag (0.7, 0.3, 0, 0)
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1
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The Semigroup C-Numerical Range
Full Open Systems Control

Example (Semigroup Orbit SLK (diag (1,0,0,0)) )
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Conclusions & Outlook

1 Relative C-Num. Ranges WK(C,A) := tr{C†KAK†}
• reflect specific quantum dynamics (via K = exp(k))
• come with a geometry not fully explored yet
• can naturally be generalised to projections of
semigroup orbits in the sense WS(C,A) := 〈C|SA〉

2 Gradient Flows on Riem. Manifolds & Lie Groups
• powerful tool for geometric optimisation and control
• determine Kraus-rank, decide error correctability
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• reflect specific quantum dynamics (via K = exp(k))
• come with a geometry not fully explored yet
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semigroup orbits in the sense WS(C,A) := 〈C|SA〉

2 Gradient Flows on Riem. Manifolds & Lie Groups
• powerful tool for geometric optimisation and control
• determine Kraus-rank, decide error correctability
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