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Introduction



Joint Numerical Ranges

let F,..., Fx € My denote hermitian d-by-d matrices, the state
space (mixed states) of a *-subalgebra A c My is

M(A) = {pe Al p=0,tr(p) =1},
the joint algebraic numerical range of F = (Fq,...,Fk) is
LF = {(tr(pF1)’ s atr(ka)) ‘pE M(Md)} c Rk’

the joint numerical range (JNR) of F is
We = {((GIF19) . (0] Fi)) 1) € €, (wl) = 13

with (@lt)) = Preps + - + Patba




Convexity of Numerical Ranges

there is no easy rule to decide convexity of Wg, _f, if k>4
Li and Poon, SIAM J. Matrix Anal. Appl. 21 (2000), 668




Boundary Generating Curve (k =2)

consider the hypersurface

VF17F2 = {(UO FUp: U2) € P% | det(Uo]l +uiFy+ U2F2) = O}
with d-by-d identity matrix 1

and its dual curve
2
V:_ 1F © Pe”
closure of the set of tangent lines at smooth points of V

the boundary generating curve of Fq, F» is
V;':th(R) = {(X1’X2) € Rz | (1 FXq :XZ) € V;17F2} c RZ




d =2, the numerical range Wk, f, is an ellipse (possibly
degenerate)

d = 3, Kippenhahn (1951) derived a classification of W, f, from
the boundary generating curve V£ ¢ (R),
see also Keeler et al. LAA 252 (1997), 115

d =4, Chien and Nakazato derived a classification of Wk, r,
from V,;’FQ (R), Electronic J. Lin. Alg. 23 (2012), 755

Definition. 3-by-3 matrices F, ..., Fx are unitarily reducible
(otherwise unitarily irreducible) if there is a unitary matrix U
such that U*F U,..., U F,U are of direct sum form

* % 0
)
00 *



Drawings: boundary generating curves Vg  (R) (blue)

1) VE g, (R) consists of three points
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2) VE1,F2(R) is the union of an ellipse and a point
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Drawings: boundaries of the numerical ranges Wk, r, (red)
1) WE, F, is a triangle
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2) WE, r, is the convex hull of an ellipse and a point
X2
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Drawings: boundary generating curves Vg  (R) (blue)

1) VE g, (R) is the union of an ellipse and a point inside
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2) Vg f,(R) is a quartic curve

X
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eg. F = 101,F:(01o)
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3) V£ F,(R) is a sextic curve
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Drawings: boundaries of the numerical ranges Wk, r, (red)
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2) W, F, is the convex hull of a quartic curve

1) WE, £, is an ellipse
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e.g.F1:(1 0—;),F2: i 0
1

ISENES

11 i
272 272

3) WFE, F, is the convex hull of a sextic curve
X2

ea F (033 F-(489)



Problems with Three-Dimensional
Joint Numerical Ranges



consider the hypersurface
V;:17;:27;:3 = {U € ]P’% : det(Uoll + Uy F1 +eet U3F3) = 0}

and its dual variety
* 3 *
VF1,F2,F3 < Pe
closure of the set of tangent planes at smooth points of V

the boundary generating surface of Fq, F», F3 is
Ve hr(B) = {XeR3|[(1:x1:X0:x5) € VE p g} cR?

Observation (Chien and Nakazato, LAA 432 (2010), 173)
VE, £,.r,(R) can contain lines, hence VE(R) c W is
impossible and conv(VE(R)) = Wk fails.




boundary generating surface

*
VF1,F2,F3 (R)
_ 3 242 _ 43232 L Ax3 _ Ayt 2 4 _
= {x e R’ | -4x7x5 - 4x5X5 + 4x5 — 4x3 + 4X1X5X3 — X; = 0}

Depicted surface:
Intersection of Vg, f, ¢, (R) with the

boundary of Wk, , F,




boundary generating surface

*
VF1,F2,F3 (R)
_ 3 242 _ 43232 L Ax3 _ Ayt 2 4 _
= {x e R’ | -4x7x5 - 4x5X5 + 4x5 — 4x3 + 4X1X5X3 — X; = 0}

H H H *
the xq-axis lies in VF1,F2,F3 (R)
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boundary generating surface

VE £ (R) = {x e R® | -x2xZ + xy x5 —x{x5 - x5 = 0}

: X2

2 0 1

Depicted surface:
Intersection of V¢, f, £, (R)

with the boundary of WE, f, r,
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boundary generating surface

VE £ (R) = {x e R® | -x2xZ + xy x5 —x{x5 - x5 = 0}

: X2

2 0 1

the xq- and x>-axes

liein V£ £ £ (R)
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boundary generating surface = Roman surface

VE £ (R) = {x e R® | x1xpxg - XFx5 - xEx5 - xGx5 = 0}

Depicted surface:
%3 Intersection of V£ £ £ (R)

with the boundary of Wk, r,
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F. :1(100),F :1(000),F :1(001)

"7 2\000) 2 2\700) 3 2\070
boundary generating surface = Roman surface

VE £ (R) = {x e R® | x1xpxg - XFx5 - xEx5 - xGx5 = 0}

all three coordinate axes

liein V£ £ £ (R)




Kippenhahn’s assertion does not generalize from k =2 to k = 3,
an algebraic geometry approach seems unavailable !

very little is known about Wr = WE,  Fr,, k > 3, except for

» corner points (conical points) imply F unitarily reducible
Binding and Li, LAA 151 (1991), 157

» ovals and reconstruction of F from Wg
Krupnik and Spitkovsky, LAA 419 (2006), 569

* a maximum of 4 ellipses on the boundary of Wgif k=d =3
Chien and Nakazato, LAA 430 (2009), 204

Our Approach: Study configurations of exposed faces on
the boundary of WE.



Solution: Graph Embedding



an exposed face of a convex set C c R" is the set of
maximizers of a linear functional,

Fe(u) = argmax{(x,u): x € C}, ueR",
or the empty set; let F(u) = uyFy + - + uxFx, u € R¥, and
E: M(Ma) » W, p= (tr(pF1),... . tr(pFy));
then
E" (Fw, (1)) = Faqmy) (F())
and
Fpimg) (F (1)) = M(pPMqp)

where p is the spectral projection of F(u) corresponding to the
maximal eigenvalue



Large Faces

we assume k = d = 3 and call large face an exposed face of Wg
which is neither @, nor a singleton, nor equal to all of Wg




Graph Embedding

2) and 3) of the lemma show that a complete graph K, embeds
into the union of large faces with one vertex on each large face

the boundary of Wr is homeomorphic to the sphere S? so n< 4




Finding Examples



3D printouts of exemplary joint numerical ranges of three
3-by-3 hermitian matrices from random density matrices: s denotes
the number of segments, e the number of ellipses in the boundary



searching for candidates belonging to each class, we used

« random matrices
* guessing

and found some new examples (red)

Question: How to determine the class of an example? J
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! 001 27 2\000 872\700

the exposed faces with normal vectors u = (-1,0,0), (1,+2,0)
are large faces as the maximal eigenvalues are degenerate:
F(-1,0,0) = (8§ 81) F(1,42,0) = (& 3 g)

1 X2
2 0 1
. 1

how can we be sure there are
no further large faces?

.0 X3

by finding all degenerate eigen-
values in the hermitian pencil
spanned by Fq, Fo, F3




Discriminant as a Sum of Squares
the discriminant of the polynomial p(\) = -A3 + ay\% + ap\ + a3 is

~(2783 + 18ayapas - 4a3a; + 485 - &4 a3)
(M = 22)2 (A1 = A3)2 (M2 — Ag)?
where \q, \2, A3 are the roots of p

Discy(p)

the discriminant of A € My is Disc(A) = Discy(det(A- 1))
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if the exposed face . (u) is a large face then
u3 = 0 because

6
u8
us#0 = [Disc(F(U))|>IM1.1),1.3) 220 F ‘—>0

if the exposed face Fyy,. (uy, Uz,0) is a large face
then us = 0 or U, = +2u4 since

B45 4Ry

[Disc(F(u))] > [My(1,1,(1,2), 3.3 = 64

Result: Example 2 has exactly three large faces, the
segment Fy,.(-1,0,0) and the two ellipses Fy.(1,+2,0).




All Large Faces of Example 2

Fw.(-1,0,0
o X3 w:(-1,0,0)

]FWF('l,:t270)




Conclusion



Summary:

We have a classification of joint numerical ranges in the sim-
plest three-dimensional case of k = d = 3.

Questions:

» Can we find classifications of Lg for k >3, d = 3?
probably yes, but graph embedding into S¥' is no constraint any more

» Can we find a classification of W for k=3, d =47
unclear, even determining large faces is very hard, as Disc(F(u)) is a sum

of (%) = 1820 squares

Reference:

Konrad Szymanski, SW, Karol Zyczkowski, Classification of joint numeri-
cal ranges of three hermitian matrices of size three, LAA 545 (2018), 148



Thank you



