Undecidable problems in Quantum Theory

Timeline

Timeline

Where is the border between provable & unprovable ?

Where is the border between provable & unprovable ?

Decision problems in QT

- Is a given state entangled?
- Does a given channel have quantum capacity?
- Is a given set of controls sufficient to reach a certain target?
- Is a given Hamiltonian gapped?

When expressed in formal language these contain quantification over infinite sets

Undecidable

Algorithmic

Undecidable = uncomputable by any Turing machine

Requires infinite set of instances

Axiomatic

Undecidable = independent of the axioms of a formal system

Single instances may be concerned, but are hard to identify

for consistent effectively presented axiomatic systems

I. Finite domain

- I. Finite domain
- II. Tarski-Seidenberg quantifier elimination

- I. Finite domain
- II. Tarski-Seidenberg quantifier elimination
 - $\exists x \in \mathbb{R} : a_1 x^2 > a_2$
 - $\Leftrightarrow a_2 < 0 \lor a_1 > 0$

Is decidable within a computable ordered field (e.g. for algebraic numbers)

- I. Finite domain
- II. Tarski-Seidenberg quantifier elimination

 $\phi(x, a)$ Boolean combination of polynomial (in-)equalities with integer coefficients and variables $(x, a) \in \mathbb{R}^n \times \mathbb{R}^m_{alg}$ $\psi(a) := \left(Q_1 x_1 \dots Q_n x_n : \phi(x, a)\right), \ Q_i \in \{\forall, \exists\}$

There exists a quantifier-free formula $\theta(a)$ that is

- i. Boolean combination of polynomial inequalities,
- ii. effectively computable,
- iii. equivalent in the sense that

 $\forall a: (\psi(a) \Leftrightarrow \theta(a))$

- I. Finite domain
- II. Tarski-Seidenberg quantifier elimination

 $\phi(x, a)$ Boolean combination of polynomial (in-)equalities with integer coefficients and variables $(x, a) \in \mathbb{R}^n \times \mathbb{R}^m_{alg}$ $\psi(a) := \left(Q_1 x_1 \dots Q_n x_n : \phi(x, a)\right), \ Q_i \in \{\forall, \exists\}$

There exists a quantifier-free formula $\theta(a)$ that is

- i. Boolean combination of polynomial inequalities,
- ii. effectively computable,
- iii. equivalent in the sense that

$$\forall a: \ \left(\psi(a) \ \Leftrightarrow \ \theta(a)\right)$$

Examples: Is a given state entangled? Is x in numerical range of A?

Proving undecidability

Halting Problem:

Does a universal TM halt upon a given input?

A given problem is undecidable if the Halting Problem can be reduced to it.

Proving undecidability

Halting Problem:

Does a universal TM halt upon a given input?

A given problem is undecidable if the Halting Problem can be reduced to it.

In formal language this involved quantification over \mathbb{N} (instead of \mathbb{R}), which makes quantifier elimination impossible. Expressions like $\exists n \in \mathbb{N}$ or $\lim_{\mathbb{N} \ni n \to \infty}$ appear as:

- $\,\circ\,$ Large block size limit
- Number of steps/rounds in a protocol
- o Thermodynamic limit

Quantum control problems

Given a set of quantum channels $\mathcal{T} = \{T_i : \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}\}_{i=1}^k$ Is there a finite sequence $T := T_{i_n} \cdots T_{i_1}$ with $T_{i_l} \in \mathcal{T}$ s.t. ...

- 1) ... for given initial state ρ , target state ψ and fidelity threshold $\lambda \in (0, 1)$ $\langle \psi | T(\rho) | \psi \rangle > \lambda$?
- 2) ... for given target unitary U and fidelity threshold $\lambda \in (0,1)$ $\int \langle \phi | U^*T(|\phi\rangle\langle\phi|)U|\phi\rangle d\phi > \lambda ?$

Quantum control problems

Given a set of quantum channels $\mathcal{T} = \{T_i : \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}\}_{i=1}^k$ Is there a finite sequence $T := T_{i_n} \cdots T_{i_1}$ with $T_{i_l} \in \mathcal{T}$ s.t. ...

1) ... for given initial state ρ , target state ψ and fidelity threshold $\lambda \in (0, 1)$ $\langle \psi | T(\rho) | \psi \rangle > \lambda$?

For (k, d) > (3, 3) this is undecidable by reduction from the Halting Problem via PCP

[Wolf, Cubitt, Perez-Garcia, 2011] [Buchinger, Wolf, 2015]

Quantum control problems

Given a set of quantum channels $\mathcal{T} = \{T_i : \mathbb{C}^{d \times d} \to \mathbb{C}^{d \times d}\}_{i=1}^k$ Is there a finite sequence $T := T_{i_n} \cdots T_{i_1}$ with $T_{i_l} \in \mathcal{T}$ s.t. ...

2) ... for given target unitary U and fidelity threshold $\lambda \in (0, 1)$ $\int \langle \phi | U^*T(|\phi\rangle \langle \phi |) U | \phi \rangle d\phi > \lambda ?$

Is decidable by realizing that $\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_0$ with $\mathcal{T}_1 := \{T_i \in \mathcal{T} | \det(T_i) = 1\}$ generates algebraic group, enabling quantifier elimination $\mathcal{T}_0 := \{T_i \in \mathcal{T} | |\det(T_i)| < 1\}$ leads to upper bound of used elements

[Buchinger, Wolf, 2015]

for quantum spin lattices closely related to

- o quantum phase transitions
- \circ criticality
- \circ decay of correlations

for quantum spin lattices closely related to

- \circ quantum phase transitions
- \circ criticality
- $\circ~$ decay of correlations

Seminal results

- Lieb-Schultz-Mattis
- Affleck-Kennedy-Lieb-Tasaki
- \circ Hastings

Notorious open problems

- Haldane conjecture
- \circ 2D AKLT
- Yang-Mills existence and mass gap

Haldane

Yang & Mills

 $H_L :=$ transl. inv. Hamiltonian on $L \times L$ lattice with nearest neighbour interactions h_{col}, h_{row} and on-site term h_1

 $H_L :=$ transl. inv. Hamiltonian on $L \times L$ lattice with nearest neighbour interactions h_{col}, h_{row} and on-site term h_1

- **Gapped**: unique ground state and uniformly bounded gap for sufficiently large L
- **Gapless**: asymptotically continuous spectrum above the ground state

Undecidability of spectral gap

Thm. [Cubitt, Perez-Garcia, Wolf, Nature '15]:

There is a $d \in \mathbb{N}$ so that the spectral gap problem for algebraic transl.-inv. nearest-neighbour Hamiltonians on the 2D square lattice is undecidable. This holds even under the promise that

- i. the system is gapped or gapless in the strong sense
- ii. in the gapped case

 $\gamma \ge \max\{||h_{row}||, ||h_{col}||, ||h_1||\}$

 $\varrho(H):=\operatorname{ground}$ state energy density of H

 $\varrho(H):=\operatorname{ground}$ state energy density of H

Given

- i. Hamiltonians H_u for which it is undecidable whether $\varrho(H_u) \nearrow 0$ or $\varrho(H_u) > 0$,
- ii. a gapples Hamiltonian H_d with $\lambda_0(H_d) = 0$,

we can construct a Hamiltonian ${\boldsymbol{H}}$ with

spec $H = \{0\} \cup \{\text{spec } H_u + \text{spec } H_d\} \cup S$

where $S \ge 1$.

 $\varrho(H):=\operatorname{ground}$ state energy density of H

Given

- i. Hamiltonians H_u for which it is undecidable whether $\varrho(H_u)\nearrow 0$ or $\ \varrho(H_u)>0$,
- ii. a gapples Hamiltonian H_d with $\lambda_0(H_d) = 0$,

we can construct a Hamiltonian ${\boldsymbol{H}}$ with

spec $H = \{0\} \cup \{\text{spec } H_u + \text{spec } H_d\} \cup S$

where $S \ge 1$.

or

 λ_0

0

 $|0\rangle$

 $\mathbf{1}\Delta = 1$

 $|0\rangle$

zero energy

product state

Feynman, Kitaev, ..., Gottesmann, Irani: "computational history state" $\frac{1}{\sqrt{\tau}} \sum_{t=1}^{\tau} |t\rangle |\psi_t\rangle$ as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D.

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Feynman, Kitaev, ..., Gottesmann, Irani: "computational history state" $\frac{1}{\sqrt{\tau}} \sum_{t=1}^{\tau} |t\rangle |\psi_t\rangle$ as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D.

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Problem I: where is the input?

Feynman, Kitaev, ..., Gottesmann, Irani: "computational history state" $\frac{1}{\sqrt{\tau}} \sum_{t=1}^{\tau} |t\rangle |\psi_t\rangle$ as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D.

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Problem I: where is the input?

Problem II: in the thermodynamic limit the energy will always be zero

Feynman, Kitaev, ..., Gottesmann, Irani: "computational history state" $\frac{1}{\sqrt{\tau}} \sum_{t=1}^{\tau} |t\rangle |\psi_t\rangle$ as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D.

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Problem I: where is the input?

Problem II: in the thermodynamic limit the energy will always be zero

Solution I: quantum phase estimation

Feynman, Kitaev, ..., Gottesmann, Irani: "computational history state" $\frac{1}{\sqrt{\tau}} \sum_{t=1}^{\tau} |t\rangle |\psi_t\rangle$ as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D.

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Problem I: where is the input? **Problem II:** in the thermodynamic limit the energy will always be zero

Solution I: quantum phase estimation **Solution II:** run Turing machines on edges of aperiodic tilings

Quasi-periodic tilings

Robinson tiles ['71]:

Quasi-periodic tilings

Extensions

Replacing H_d with other Hamiltonians, one obtains undecidability of essentially all properties defined in the thermodynamic limit that differ from the low energy behaviour of a gapped system with product ground state. E.g.:

- o critical correlations
- \circ area law violation
- specific excitations
- \circ topological order

Discussion

- There cannot be a generally valid algorithm/criterion
- There are unprovable instances, but we cannot pinpoint them
- Thermodynamic limit & extrapolations have to be treated with care
- $\circ~$ Result also shows extreme form of instability
- Decidability for small *d* or 1D is open
- New physical phenomena? "Size-driven phase transitions"

[Bausch, Lucia, Cubitt, Perez-Garcia, Wolf, PNAS 2018]

Lower bounds on threshold system size after which a size-driven quantum phase transition from classical to topological ground state occurs (d =local Hilbert space dimension):

d	5	6	7	8	9	10
L	15	84	420	2310	3 10 ⁷	10 ³⁶⁵³⁴

[Bausch, Lucia, Cubitt, Perez-Garcia, Wolf, PNAS 2018]

Lower bounds on threshold system size after which a size-driven quantum phase transition from classical to topological ground state occurs (d = local Hilbert space dimension):

[Bausch, Lucia, Cubitt, Perez-Garcia, Wolf, PNAS 2018]

Lower bounds on threshold system size after which a size-driven quantum phase transition from classical to topological ground state occurs (d =local Hilbert space dimension):

Working in information theory, many-body physics or control theory we may be surrounded by undecidable problems related to the respective large-N limits.

Working in information theory, many-body physics or control theory we may be surrounded by undecidable problems related to the respective large-N limits.

Information theoretic problems, however, are so far too 'parallel' to exploit the 'sequential' tools we have.

Working in information theory, many-body physics or control theory we may be surrounded by undecidable problems related to the respective large-N limits.

Information theoretic problems, however, are so far too 'parallel' to exploit the 'sequential' tools we have.

What can we learn from undecidability?

- \circ Stop looking for a general algorithm
- \circ Be careful with limits and extrapolations
- \circ Hint at new phenomena?
- Proof tool (purification limitations for FCS, single letter formulas, etc.)

Working in information theory, many-body physics or control theory we may be surrounded by undecidable problems related to the respective large-N limits.

Information theoretic problems, however, are so far too 'parallel' to exploit the 'sequential' tools we have.

What can we learn from undecidability?

- \circ Stop looking for a general algorithm
- $\circ~$ Be careful with limits and extrapolations
- Hint at new phenomena?
- Proof tool (purification limitations for FCS, single letter formulas, etc.)

Thanks