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Decision problems in QT 

•  Is	a	given	state	entangled?	
•  Does	a	given	channel	have	quantum	capacity?	

•  Is	a	given	set	of	controls	sufficient	to	reach	a	certain	target?	
•  Is	a	given	Hamiltonian	gapped?	

	
	
When	expressed	in	formal	language	these	contain	quan9fica9on	over	infinite	sets	



Undecidable 
Algorithmic	
Undecidable	=	uncomputable	by	any	Turing	
machine	
	

Requires	infinite	set	of	instances	

	
	

Axioma.c	
Undecidable	=	independent	of	the	axioms	of	a	
formal	system	
	

Single	instances	may	be	concerned,	but	are	hard	
to	iden9fy	

for	consistent	effec9vely	presented		
axioma9c	systems	

Gödel	Turing	
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Is	decidable	within	a	computable	ordered	field	(e.g.	for	algebraic	numbers)	
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There	exists	a	quan9fier-free	formula										that	is	
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Boolean	combina9on	of	polynomial	(in-)equali9es	with	integer	coefficients	and	variables		

There	exists	a	quan9fier-free	formula										that	is	
i.  Boolean	combina9on	of	polynomial	inequali9es,	
ii.  effec9vely	computable,	
iii.  equivalent	in	the	sense	that		

Examples:	Is	a	given	state	entangled?	
			 			Is	x	in	numerical	range	of	A?	



Proving undecidability 
Hal9ng	Problem:	
Does	a	universal	TM	halt	upon	a	given	input?	

	

A	given	problem	is	undecidable	if	the	Hal9ng	Problem	can	be	reduced	to	it.	



Proving undecidability 
Hal9ng	Problem:	
Does	a	universal	TM	halt	upon	a	given	input?	

	

A	given	problem	is	undecidable	if	the	Hal9ng	Problem	can	be	reduced	to	it.	

In	formal	language	this	involved	quan9fica9on	over							(instead	of						),	which	makes	quan9fier	elimina9on	
impossible.	Expressions	like																	or																appear	as:	
	

o  Large	block	size	limit	

o  Number	of	steps/rounds	in	a	protocol	

o  Thermodynamic	limit	



Quantum control problems 
	

Given	a	set	of	quantum	channels																																																											

Is	there	a	finite	sequence																															with																	s.t.	…	
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		For																												this	is	undecidable	by	reduc9on	from	the	Hal9ng	Problem	via	PCP	
[Wolf,	Cubie,	Perez-Garcia,	2011]	
[Buchinger,	Wolf,	2015]	



Quantum control problems 
	

Given	a	set	of	quantum	channels																																																											

Is	there	a	finite	sequence																															with																	s.t.	…	

	

2)  …	for	given	target	unitary							and	fidelity	threshold		

Is	decidable	by	realizing	that																											with	

generates	algebraic	group,	enabling	quan9fier	elimina9on	

leads	to	upper	bound	of	used	elements	

[Buchinger,	Wolf,	2015]	
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Spectral gap  
for	quantum	spin	laices	closely	related	to	
		

o  quantum	phase	transi9ons	
o  cri9cality	
o  decay	of	correla9ons	

Seminal	results	
		

o  Lieb-Schultz-Mais	
o  Affleck-Kennedy-Lieb-Tasaki	
o  Has9ngs	

Notorious	open	problems	
		

o  Haldane	conjecture	
o  2D	AKLT	
o  Yang-Mills	existence	and	mass	gap		

Lieb	

Haldane	

Yang	&	Mills	
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Spectral gap  

transl.	inv.	Hamiltonian	on												laice	with	
nearest	neighbour	interac9ons																			
and	on-site	term	

Gapped:			unique	ground	state	and	uniformly	bounded	
	gap	for	sufficiently	large		

Gapless:		asympto9cally	con9nuous	spectrum	above		
	the	ground	state	

gapped																										gapless																		



Undecidability of spectral gap  
Thm.	[Cubie,	Perez-Garcia,	Wolf,	Nature	‘15]:	

There	is	a														so	that	the	spectral	gap	problem	
for	algebraic	transl.-inv.	nearest-neighbour	Hamiltonians	
on	the	2D	square	laice	is	undecidable.	This	holds	even	
under	the	promise	that		
i.  the	system	is	gapped	or	gapless	in	the	strong	sense	
ii.  in	the	gapped	case	
	

gapped																										gapless																		
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i.  Hamiltonians									for	which	it	is	undecidable	
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zero	energy	
product	state	
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Feynman,	Kitaev,	…,	Goeesmann,	Irani:	“computa9onal	history	state”		
as	ground	state	of	trans.-inv.	nearest-neighbour	Hamiltonian	in	1D.	
	
Idea:	encode	the	evolu9on	of	a	universal	Turing	machine	and	penalize	the	hal9ng	state	
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Reduction II 

Feynman,	Kitaev,	…,	Goeesmann,	Irani:	“computa9onal	history	state”		
as	ground	state	of	trans.-inv.	nearest-neighbour	Hamiltonian	in	1D.	
	
Idea:	encode	the	evolu9on	of	a	universal	Turing	machine	and	penalize	the	hal9ng	state	
	
Problem	I:		where	is	the	input?	
Problem	II:	in	the	thermodynamic	limit	the	energy	will	always	be	zero	
	
Solu.on	I:		quantum	phase	es9ma9on	
Solu.on	II:	run	Turing	machines	on	edges	of	aperiodic	9lings	



Quasi-periodic tilings 

Robinson	9les	[‘71]:	



Quasi-periodic tilings 

Robinson	9les	[‘71]:	
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Extensions 

Replacing								with	other	Hamiltonians,	one	obtains	undecidability	of	essen9ally	all	proper9es	
defined	in	the	thermodynamic	limit	that	differ	from	the	low	energy	behaviour	of	a	gapped	system		
with	product	ground	state.	E.g.:		
	

o  cri9cal	correla9ons	
o  area	law	viola9on	
o  specific	excita9ons		
o  topological	order	

zero	energy	
product	state	



Discussion 

o  There	cannot	be	a	generally	valid	algorithm/criterion		
o  There	are	unprovable	instances,	but	we	cannot	pinpoint	them	
o  Thermodynamic	limit	&	extrapola9ons	have	to	be	treated	with	care	
o  Result	also	shows	extreme	form	of	instability	
o  Decidability	for	small	d	or	1D	is	open		
o  New	physical	phenomena?	“Size-driven	phase	transi9ons”	
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[Bausch,	Lucia,	Cubie,	Perez-Garcia,	Wolf,	PNAS	2018]	
	
Lower	bounds	on	threshold	system	size	arer	which	a	size-driven	quantum	phase	transi9on		
from	classical	to	topological	ground	state	occurs	(d = local	Hilbert	space	dimension):	
	
d	 5	 6	 7	 8	 9	 10	

L	 15	 84	 420	 2310	 3		107	 1036534	



Size-driven phase transitions 
[Bausch,	Lucia,	Cubie,	Perez-Garcia,	Wolf,	PNAS	2018]	
	
Lower	bounds	on	threshold	system	size	arer	which	a	size-driven	quantum	phase	transi9on		
from	classical	to	topological	ground	state	occurs	(d = local	Hilbert	space	dimension):	
	
d	 5	 6	 7	 8	 9	 10	

L	 15	 84	 420	 2310	 3		107	 1036534	



Size-driven phase transitions 
[Bausch,	Lucia,	Cubie,	Perez-Garcia,	Wolf,	PNAS	2018]	
	
Lower	bounds	on	threshold	system	size	arer	which	a	size-driven	quantum	phase	transi9on		
from	classical	to	topological	ground	state	occurs	(d = local	Hilbert	space	dimension):	
	
d	 5	 6	 7	 8	 9	 10	

L	 15	 84	 420	 2310	 3		107	 1036534	



Conclusion & outlook 
Working	in	informa9on	theory,	many-body	physics	or	control	theory	we	may	be	surrounded	by	undecidable	
problems	related	to	the	respec9ve	large-N	limits.	
	

	



Conclusion & outlook 
Working	in	informa9on	theory,	many-body	physics	or	control	theory	we	may	be	surrounded	by	undecidable	
problems	related	to	the	respec9ve	large-N	limits.	
	

Informa9on	theore9c	problems,	however,	are	so	far	too	‘parallel’	to	exploit	the	‘sequen9al’	tools	we	have.	
	

	



Conclusion & outlook 
Working	in	informa9on	theory,	many-body	physics	or	control	theory	we	may	be	surrounded	by	undecidable	
problems	related	to	the	respec9ve	large-N	limits.	
	

Informa9on	theore9c	problems,	however,	are	so	far	too	‘parallel’	to	exploit	the	‘sequen9al’	tools	we	have.	
	

What	can	we	learn	from	undecidability?	
	

o  Stop	looking	for	a	general	algorithm	

o  Be	careful	with	limits	and	extrapola9ons	

o  Hint	at	new	phenomena?	

o  Proof	tool	(purifica9on	limita9ons	for	FCS,	single	leeer	formulas,	etc.	)	

	



Conclusion & outlook 
Working	in	informa9on	theory,	many-body	physics	or	control	theory	we	may	be	surrounded	by	undecidable	
problems	related	to	the	respec9ve	large-N	limits.	
	

Informa9on	theore9c	problems,	however,	are	so	far	too	‘parallel’	to	exploit	the	‘sequen9al’	tools	we	have.	
	

What	can	we	learn	from	undecidability?	
	

o  Stop	looking	for	a	general	algorithm	

o  Be	careful	with	limits	and	extrapola9ons	

o  Hint	at	new	phenomena?	

o  Proof	tool	(purifica9on	limita9ons	for	FCS,	single	leeer	formulas,	etc.	)	

	

Thanks	


