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Decision problems in QT

Is a given state entangled?

Does a given channel have quantum capacity?

Is a given set of controls sufficient to reach a certain target?

Is a given Hamiltonian gapped?

When expressed in formal language these contain quantification over infinite sets



Undecidable

Algorithmic Axiomatic

Undecidable = uncomputable by any Turing Undecidable = independent of the axioms of a

machine formal system

Requires infinite set of instances Single instances may be concerned, but are hard
to identify

—

for consistent effectively presented
axiomatic systems

Turing




Proving algorithmic decidabillity

l. Finite domain



Proving algorithmic decidabillity

l. Finite domain

II.  Tarski-Seidenberg quantifier elimination



Proving algorithmic decidabillity

l. Finite domain

II.  Tarski-Seidenberg quantifier elimination

dr e R: a1x? > as

S ag<0Vayp >0

Is decidable within a computable ordered field (e.g. for algebraic numbers)
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l. Finite domain

II.  Tarski-Seidenberg quantifier elimination

¢(5Ua a,) Boolean combination of polynomial (in-)equalities with integer coefficients and variables
(r,a) € R" x R}

alg

Y(a) = (lel . QnTn gb(a:,a)), Q; € {v,3}

There exists a quantifier-free formula 0(a) that is

i. Boolean combination of polynomial inequalities,
ii. effectively computable,

iii. equivalentin the sense that

Va: (¢(a) < 6(a))



Proving algorithmic decidabillity

l. Finite domain

II.  Tarski-Seidenberg quantifier elimination

¢(5Ua a,) Boolean combination of polynomial (in-)equalities with integer coefficients and variables
(r,a) € R" x R}

alg

Y(a) = (lel . QnTn gb(a:,a)), Q; € {v,3}

There exists a quantifier-free formula 0(a) that is
i. Boolean combination of polynomial inequalities,
ii. effectively computable,
iii. equivalentin the sense that
Va: (¢(a) < 6(a)) Examples: Is a given state entangled?
Is X in numerical range of A?



Proving undecidability

Halting Problem:

Does a universal TM halt upon a given input?

A given problem is undecidable if the Halting Problem can be reduced to it.



Proving undecidability

Halting Problem:

Does a universal TM halt upon a given input?

A given problem is undecidable if the Halting Problem can be reduced to it.

In formal language this involved quantification over IN (instead of IR ), which makes quantifier elimination

impossible. Expressions like 3n € N or lim appear as:
Non—o0

o Large block size limit
o Number of steps/rounds in a protocol

o Thermodynamic limit



Quantum control problems

Given a set of quantum channels 7T = {Ti . Cdxd (DdXd}f:l

s there a finite sequence 7" :=T; ---T;, with T;, € T s.t. ...

1) ... for given initial state p , target statev and fidelity threshold A € (0,1)
WIT(p)lY) > A7
2) ... for given target unitary U and fidelity threshold A € (0, 1)

/ GUT($) )T |d)dd > A ?



Quantum control problems

Given a set of quantum channels 7T = {Ti . Cdxd (DdXd}f:l

s there a finite sequence 7" :=T; ---T;, with T;, € T s.t. ...

1) ... for given initial state p , target statev and fidelity threshold A € (0,1)
WIT(p)lY) > A7

For (k,d) > (3, 3) this is undecidable by reduction from the Halting Problem via PCP

[Wolf, Cubitt, Perez-Garcia, 2011]
[Buchinger, Wolf, 2015]



Quantum control problems

Given a set of quantum channels 7T = {Ti . Cdxd (DdXd}f:l

s there a finite sequence 7" :=T; ---T;, with T;, € T s.t. ...

2) ... for given target unitary U and fidelity threshold X\ € (0,1)
[l Torehuleds > A2

Is decidable by realizing that 7 = 71 U To with
T1 :={T; € T|det(T;) = 1} generates algebraic group, enabling quantifier elimination

To :={T; € 7" |det(T;)| < 1} leads to upper bound of used elements

[Buchinger, Wolf, 2015]
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Spectral gap

for guantum spin lattices closely related to
o quantum phase transitions

o criticality

o decay of correlations

Seminal results

o Lieb-Schultz-Mattis
o Affleck-Kennedy-Lieb-Tasaki
o Hastings

Lieb

Haldane

Notorious open problems

o Haldane conjecture
o 2D AKLT
o Yang-Mills existence and mass gap

e

'CN Yang and Robert Mills

Yang & Mills




Spectral gap

d? x d?
h‘COl E (Dalg

2 2
Brow € C4 %4

Hy :=transl. inv. Hamiltonian onL x L lattice with e
nearest neighbour interactions hcor, Rrow
and on-site term hy
hl e @dxd

alg



Spectral gap

d? x d?
h‘COl E (Dalg

!
SSSSOTTN 1
Hp, := transl. inv. Hamiltonian onL x L lattice with " dddhd
nearest neighbour interactions hcor, Rrow ij
and on-site term hy ’ r Y ? Y Y Y
o 0 0 0 0 % ¢

dxd
‘_hlé(]ja;;

Gapped: unique ground state and uniformly bounded
gap for sufficiently large L

Gapless: asymptotically continuous spectrum above
the ground state

gapped gapless



Undecidability of spectral gap

d? x d?
h‘COl E (Dalg

— — — — 2 72
Thm. [Cubitt, Perez-Garcia, Wolf, Nature ‘15]: T T T T T ] horow € @Zngd
There is a d € N so that the spectral gap problem
for algebraic transl.-inv. nearest-neighbour Hamiltonians
on the 2D square lattice is undecidable. This holds even | , | , hyi € @glfgd
under the promise that

i. the system is gapped or gapless in the strong sense
ii. inthe gapped case

Y > maX{HhrowH7 HhCOZuv ||h1H}

Ao

gapped gapless



Reduction |

o(H) := ground state energy density of H



Reduction |

o(H) := ground state energy density of H

Given

i. Hamiltonians H, for which it is undecidable
whether o(Hy) /' 0 or o(H,) >0,
ii. agapples Hamiltonian Hy with A\o(Hy) = 0,

we can construct a Hamiltonian H with
spec H = {0} U {spec H, + spec Hq} U S
where S > 1.



Reduction |

o(H) := ground state energy density of H

Given

i. Hamiltonians H, for which it is undecidable
whether o(H,) /' 0or o(H,) >0,
ii. agapples Hamiltonian Hy with A\g(Hy) =0,

we can construct a Hamiltonian H with
spec H = {0} U {Spec H, + spec Hd} Us
where S > 1.

zero energy
product state




Reduction I

Feynman, Kitaev, ..., Gottesmann, Irani: “computational history state NG Z £) 1)1)
as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D. t=1

Idea: encode the evolution of a universal Turing machine and penalize the halting state
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Reduction I

Feynman, Kitaev, ..., Gottesmann, Irani: “computational history state NG Z £) 1)1)
as ground state of trans.-inv. nearest-neighbour Hamiltonian in 1D. t=1

Idea: encode the evolution of a universal Turing machine and penalize the halting state

Problem I: where is the input?
Problem II: in the thermodynamic limit the energy will always be zero

Solution I: quantum phase estimation
Solution II: run Turing machines on edges of aperiodic tilings



Quasi-periodic tilings

Robinson tiles [‘71]:
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Quasi-periodic tilings
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Extensions

zero energy
product state




Extensions

Replacing H with other Hamiltonians, one obtains undecidability of essentially all properties
defined in the thermodynamic limit that differ from the low energy behaviour of a gapped system

Ai(Hyg)

0

with product ground state. E.g.:

O O O O

critical correlations
area law violation
specific excitations
topological order

zero energy
product state



Discussion

O 0O O o0 O O

There cannot be a generally valid algorithm/criterion

There are unprovable instances, but we cannot pinpoint them
Thermodynamic limit & extrapolations have to be treated with care
Result also shows extreme form of instability

Decidability for small d or 1D is open

New physical phenomena? “Size-driven phase transitions”




Size-driven phase transitions



Size-driven phase transitions

[Bausch, Lucia, Cubitt, Perez-Garcia, Wolf, PNAS 2018]

Lower bounds on threshold system size after which a size-driven quantum phase transition
from classical to topological ground state occurs (d = local Hilbert space dimension):

L 15 84 420 2310 3 107 103634
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Size-driven phase transitions

[Bausch, Lucia, Cubitt, Perez-Garcia, Wolf, PNAS 2018]

Lower bounds on threshold system size after which a size-driven quantum phase transition
from classical to topological ground state occurs (d = local Hilbert space dimension):

2310 3 107  1036%34

A

v




Conclusion & outlook

Working in information theory, many-body physics or control theory we may be surrounded by undecidable
problems related to the respective large-N limits.
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Working in information theory, many-body physics or control theory we may be surrounded by undecidable
problems related to the respective large-N limits.

Information theoretic problems, however, are so far too ‘parallel’ to exploit the ‘sequential’ tools we have.
What can we learn from undecidability?

o Stop looking for a general algorithm
o Be careful with limits and extrapolations

o Hint at new phenomena?

o Proof tool (purification limitations for FCS, single letter formulas, etc. )

Thanks



