On Restricted Numerical Range

Karol Życzkowski

in collaboration with

Konrad Szymański and Jakub Czartowski (Kraków)

Jagiellonian University, Cracow, & Academy of Sciences, Warsaw

14-th WONRA, Munich, June 15, 2018

Numerical Range (Field of Values)

Definition

For any operator A acting on \mathcal{H}_N one defines its NUMERICAL RANGE as a subset of the complex plane defined by:

 $\Lambda(A) = \{ \langle x | A | x \rangle : | x \rangle \in \mathcal{H}^N, \ \langle x | x \rangle = 1 \}.$ In physics: Rayleigh quotient, $\mathcal{R}(A) := \langle x | A | x \rangle / \langle x | x \rangle$

Numerical Range (Field of Values)

Definition

For any operator A acting on \mathcal{H}_N one defines its NUMERICAL RANGE as a subset of the complex plane defined by:

$$\Lambda(A) = \{ \langle x | A | x \rangle : | x \rangle \in \mathcal{H}^N, \langle x | x \rangle = 1 \}.$$

In physics:

Rayleigh quotient, $\mathcal{R}(A) := \langle x | A | x \rangle / \langle x | x \rangle$

Hermitian case

For any hermitian operator $A = A^{\dagger}$ with spectrum $\lambda_1 < \lambda_2 < \cdots < \lambda_N$ its numerical range forms an interval: the set of all possible expectation values of the observable A among arbitrary pure states, $\Lambda(A) = [\lambda_1, \lambda_N]$.

$$N=4 \xrightarrow{\lambda_1 \quad \lambda_2 \quad \lambda_3 \quad \lambda_4}{\overbrace{\leftarrow} \quad \land \quad }$$

Numerical range and its properties

Compactness

 $\Lambda(A)$ is a **compact** subset of \mathbb{C} .

Convexity: Toeplitz (1918) - Hausdorff (1919) theorem

- $\Lambda(A)$ is a **convex** subset of \mathbb{C} .

100-th Aniversary !

Example

Numerical range of a random (not-hermitian) matrix of order N = 6red dots represent its eigenvalues

KŻ (IF UJ/CFT PAN)

KŻ (IF UJ/CFT PAN)

Line 15, 2018 4 / 35

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 4 / 35

Numerical range for a normal matrix

Convex hull of the spectrum & Numerical range

Lemma. If A is **normal** i.e. $A^{\dagger}A = AA^{\dagger}$, then $\Lambda(A) = Co(\sigma(A))$. **Proof.** The eigen decomposition reads $A|\phi_1\rangle = z_i|\phi_1\rangle$ and $\langle\phi_i|\phi_j\rangle = \delta_{ij}$. Take convex combination λ of arbitrary two eigenvalues, $\lambda = az_1 + (1 - a)z_2$ and the superposition $|\psi\rangle := \sqrt{a}|\phi_1\rangle + \sqrt{1 - a}|\phi_2\rangle$. Then $\langle\psi|A|\psi\rangle = az_1 + (1 - a)z_2 = \lambda$ hence $\lambda \in \Lambda(A)$.

Example

Numerical range of a random normal matrix for N = 6

KŻ (IF UJ/CFT PAN)

Generalization of NUMERICAL RANGE

Restricted Numerical Range, (Gawron et al. 2010)

defined by restricting the set of states to a given subset $\Omega_X \in \Omega$ of the set Ω of all normalized states,

 $\Lambda_X(A) = \{ \langle \psi | A | \psi \rangle : | \psi \rangle \in \Omega_X \} \,,$

Physically motivated **Examples of restricted numerical range:** a) **Real States**, $\Omega_R = \{|\psi\rangle \in \mathbb{R}^N\}$

leads to Numerical range restricted to Real states Notions for composite Hilbert space, e.g. $\mathcal{H}_{MN} = \mathcal{H}_M \otimes \mathcal{H}_N$.

b) Product States, (Schulte-Herbrueggen at al. 2008)

 $\Omega_P = \{ |\psi_1\rangle \otimes |\psi_2\rangle \}$ leads to Product (local) Numerical range c) Maximally Entangled states, $\Omega_F = \{ U_1 \otimes U_2 | \psi^+ \rangle \}$

with $|\psi^+\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle \otimes |i\rangle$ and local unitaries $U_1, U_2 \in U(N)$ leads to **Entangled Numerical range**, (**Puchała** *et al.* 2012)

d) Separable (mixed) states, (in convex hull of all product states) leads to Separable Numerical range

KŻ (IF UJ/CFT PAN)

Why do we analyze restricted numerical range ?

Standard **numerical range** of a matrix A of order N gives us a *possible* projection of the set Ω_N of mixed states of size N on a 2-plane

Numerical range restricted to the subset Ω_X yields a *possible* projection of the set Ω_X on a 2-plane and provides information about **geometry** of the subset Ω_X .

KŻ (IF UJ/CFT PAN)

Cognate notions

Restricted Numerical Radius

defined by restricting the set of states to a given subset $\Omega_X \in \Omega$ of the set Ω of all normalized states.

 $r_X(A) = \max\{|z| : z \in \Lambda_X(A)\}$

Physical applications motivate examples of restricted numerical radius a) Real States, $\Omega_R = \{ |\psi\rangle \in \mathbb{R}^N \}$

leads to **Numerical radius restricted to Real states** Notions for composite Hilbert space, e.g. $\mathcal{H}_{MN} = \mathcal{H}_M \otimes \mathcal{H}_N$.

b) Product States, $\Omega_P = \{ |\psi_1\rangle \otimes |\psi_2\rangle \}$ leads to Product (local) Numerical radius

c) Maximally Entangled states, Ω_E = {U₁ ⊗ U₂|ψ⁺⟩} with |ψ⁺⟩ = 1/√N ∑_{i=1}^N |i⟩ ⊗ |i⟩ and local unitaries U₁, U₂ ∈ U(N) leads to Numerical Radius with respect to Entangled States
d) Separable (mixed) states, (in convex hull of all product states) leads to Separable Numerical radius.

KŻ (IF UJ/CFT PAN)

Wawel castle in Cracow

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

< □ > < 同

:▶ ৰ ≣ ▶ ≣ ∽ ৭.ে June 15, 2018 9 / 35

D.& K. Ciesielscy theorem

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 10 / 35

D.& K. Ciesielscy theorem: For any $\epsilon > 0$ there exist $\eta > 0$ such that with **probability** $1 - \epsilon$ the bench **Banach** talked to **Nikodym** in **1916** was localized in η -neighbourhood of the red arrow.

Plate commemorating the discussion between Stefan Banach and Otton Nikodym (Kraków, summer 1916)

Product (local) numerical range (**PNR**)

Definition

Product numerical range of an operator A acting on $\mathcal{H}_N \otimes \mathcal{H}_M$

$$\Lambda_{\otimes}(\mathcal{A}) = \left\{ \langle \psi \otimes \phi | \mathcal{A} | \psi \otimes \phi
angle : | \psi
angle \in \mathbb{C}^{\mathcal{N}}, | \phi
angle \in \mathbb{C}^{\mathcal{M}}
ight\}, \ ext{ with } \langle \psi | \psi
angle = \langle \phi | \phi
angle = 1.$$

Product numerical range forms a subset of numerical range

Product numerical range of a random normal matrix

Product numerical range of a **random** matrix

Lemma

Consider a composed complex Hilbert space $\mathcal{H}_n = \mathcal{H}_k \otimes \mathcal{H}_m$. Then

- Any subspace $S_d \subset \mathcal{H}_n$ of dimension d = (k-1)(m-1)+1 contains at least one product state,
- **2** There exists a subspace of dimension d 1 = (k 1)(m 1), which does not contain any product states.

can be proved by dimension counting ...

Wallach 2002; Parthasarathy 2004; Cubitt, Montanaro and Winter, 2008.

Product numerical range for Hermitian operators

Definition

By minimal (maximal) local values we call: $\lambda_{\text{loc}}^{\min}(A) = \min(\Lambda_{\otimes}(A))$, $\lambda_{\text{loc}}^{\max}(A) = \max(\Lambda_{\otimes}(A))$.

Convexity for hermitian operators

For any Hermitian A its local numerical range is convex and forms an interval of the real axis, $\Lambda_{\otimes}(A) = [\lambda_{\rm loc}^{\min}(A), \lambda_{\rm loc}^{\max}(A)]$.

Proposition for 2×2 problem

Local numerical range includes the central segment of the spectrum, $\Lambda_2(A) = [\lambda_2, \lambda_3] \subset \Lambda_{\otimes}(A) \subset \Lambda(A).$ $N=4 \xrightarrow{\begin{array}{c} \lambda_1 & \ddots & \lambda_2 \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \end{array}}$

KŻ (IF UJ/CFT PAN)

2×2 example: two–qubit density matrix ρ

$$\rho(\alpha) := U_{\alpha} D U_{\alpha}^{\dagger},$$

with the spectrum $D = \text{diag}\{0, 1/6, 2/6, 3/6\}$, and a **non local** unitary matrix U_{α} of eigenvectors

$$U_{\alpha} = \exp(i\alpha \ \sigma_{x} \otimes \sigma_{x}) \ .$$

Figure: Spectrum and product numerical range (grey) for the family of states $\rho = \rho(\alpha)$

KŻ (IF UJ/CFT PAN)

Example: a single qubit map Ψ

One qubit map $\Psi: \rho \to \Psi(\rho)$ can be represented by the dynamical matrix, (Choi matrix) $D_{\Psi} = (\Psi \otimes \mathbb{1}) |\psi^+\rangle \langle \psi^+|$ where $|\psi^+\rangle = \frac{1}{\sqrt{2}} (|0,0\rangle + |1,1\rangle)$,

$$D_{\Psi} \;=\; \left[egin{array}{cccc} rac{1}{2} & a & 0 & 0 \ ar{a} & rac{1}{2} & b & 0 \ 0 & b & rac{1}{2} & c \ 0 & 0 & ar{c} & rac{1}{2} \end{array}
ight],$$

where $a, b \in \mathbb{C}$ and c = xa for some $x \in R$. Checking **positivity of polynomials** (**Ł. Skowronek, K. Ż**, *J. Phys.* **A**, 2009) we find

$$egin{aligned} &\Lambda_{\otimes}(D_{\Psi}) = \left\lfloor rac{1}{2} - M, rac{1}{2} + M
ight
ceil\,, \ &M = rac{1}{4} \left(|m{a} + m{c}| + \sqrt{|m{a} - m{c}|^2 + |m{b}|^2}
ight). \end{aligned}$$

Г1 1 **]**

Jamiołkowski theorem: a map Ψ is positive iff D_{Ψ} is **block positive**, $\langle x, y | D_{\Psi} | x, y \rangle \ge 0 \iff \lambda_{\min}^{loc}(D_{\Psi}) \ge 0$ **Conclusion:** The map $\Psi(a, b, c)$ is **positive** if $M(a, b, c) \le 1/2$.

KŻ (IF UJ/CFT PAN)

Product numerical range for Hermitian opertors II

Two-qubit toy example

$$H_a = egin{bmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & a & 0 \ 0 & a & 0 & 0 \ 1 & 0 & 0 & 0 \end{bmatrix}, \quad a \in \mathbb{R}_+$$

with spectrum (-1, -a, a, 1)standard numerical range: $\Lambda(H_a) = [-1, 1]$

product numerical range: $\Lambda_{\otimes}(H_a) = [-b, b]$, where $b = \frac{1+a}{2}$.

special case: a = 0 so $H_0 = \text{anti diag}(1, 0, 0, 1)$

in this case we have $\Lambda(H_0) = [-1, 1]$ and $\Lambda_{\otimes}(H_0) = [-1/2, 1/2]$, so the ratio of their volumes is $\mu = \frac{\operatorname{Vol}(\Lambda_{\otimes}(H_0))}{\operatorname{Vol}(\Lambda(H_0))} = \frac{1}{2}$.

Open problem: For what hermitian operator $H = H^*$ of order 4 the ratio $\mu(H)$ is the smallest ?

KŻ (IF UJ/CFT PAN)

Several parties: $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_k$

k-parties product states: $|\psi_{\otimes}\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_k\rangle$ *k*-parties Product Numerical Range: $\Lambda_{\otimes}(X) = \langle \psi_{\otimes} | X | \psi_{\otimes} \rangle$,

(Schulte-Herbrueggen, Dirr, Helmke, Glaser 2008) *k*-qubit toy example: hermitian G_k of dimension $L = 2^k$:

anti-diagonal symmetrix matrix:

 $\begin{array}{rcl} G_k &=& A(x_1, x_2, \ldots, x_{L/2}, \ x_{L/2}, \ldots, x_2, x_1) = G_k^* \\ & \text{with } x_i \geq 0 \text{ and spectrum } (\pm x_1, \pm x_2, \ldots, \pm x_{L/2}) \\ \textbf{standard numerical range: } \Lambda(G_k) &=& [-x_{max}, x_{max}] \end{array}$

product numerical range: $\Lambda_{\otimes}(G_k) = [-b, b]$, where $b = \frac{\sum_{j=1}^{L/2} x_j}{2^{k-1}}$.

special case: antidiagonal matrix $G_k = A(1, 0, 0..., 0, 0, 1)$

so that $\Lambda(G_k) = [-1,1]$ and $\Lambda_{\otimes}(G_k) = [-1/2^{k-1}, 1/2^{k-1}]$, Then the ratio of their volumes $\mu = \frac{\operatorname{Vol}(\Lambda_{\otimes}())}{\operatorname{Vol}(\Lambda())} = \frac{1}{2^{k-1}} \to 0$ for $k \to \infty$.

Open problem: For what hermitian operator $H = H^*$ of order 2^k the ratio $\mu(H)$ is the smallest ?

KŻ (IF UJ/CFT PAN)

Product numerical range for non-hermitian operators

Two-qubit unitary example

$$U = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} = H_1 + iH_2$$

with spectrum (1, i, -1, -i)

standard numerical range : $\Lambda(U) = \operatorname{conv} \operatorname{hull}(1, i, -1, -i) = \diamond$

product numerical range forms a square: $\Lambda_{\otimes}(U) = \operatorname{conv} \operatorname{hull}(z, \overline{z}, -z, -\overline{z}), \text{ where } z = \frac{1+i}{2},$

so the ratio of their volumes is $\mu = \frac{Vol(\Lambda_{\otimes}(B))}{Vol(\Lambda(B))} = \frac{1}{2}$. **Open problem**: For what nonhermitian **operator** *B* **of order** 4 **the ratio** $\mu(B)$ **is the smallest** ?

KŻ (IF UJ/CFT PAN)

Product numerical range for non-normal operators

Two-qubit non-normal example

$$X = \begin{bmatrix} 1+i & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1+i \end{bmatrix}$$

with spectrum (0, 0, 1 + i, 1 + i)

standard numerical range : $\Lambda(X) = \operatorname{conv} \operatorname{hull}[C(0,1), \{1+i\}]$ product numerical range $\Lambda_{\otimes}(X)$ forms an 'eye' . and the ratio of their volumes is $\mu = \frac{\operatorname{Vol}(\Lambda_{\otimes}(X))}{\operatorname{Vol}(\Lambda(X))} = \frac{4+\pi}{8+6\pi} \approx 0.25699.$

Joint Numerical Range & Quantum States

Joint Numerical Range (JNR) of a set of *m* operators

$$\Lambda(A_1, A_2, \dots, A_m) = (\langle \psi | A_1 | \psi \rangle, \langle \psi | A_2 | \psi \rangle, \dots, \langle \psi | A_m | \psi \rangle) \subset \mathbb{R}^m$$

For $m \ge 3$ JNR is (in general) **not** a **convex set**!

Set m = 2, decompose $A = A_H + iA_A$ into its **Hermitian** and **anti–Hermitian** part. Then $\Lambda(A) = \Lambda(A_H, A_A)$

Proposition 3. Take a set $\{A_1, \ldots, A_{N^2-1}\}$ of matrices of size N forming an **orthonormal basis** in the space of Hermitian, traceless matrices. Then

- Λ(A₁, A₂,..., A_{N²-1}) is affine isomorphic to the set Ω_N = ℂP^{N-1} of pure quantum states of size N (embedded in ℝ^{N²-1}),
- The convex hull of Λ(A₁, A₂,..., A_{N²-1}) is isomorphic to the set *M_N* of mixed quantum states of size N.
- $\Lambda(A_1, A_2, ..., A_m)$ with $m \le N^2 1$ forms a projection of Ω_N into \mathbb{R}^m .

Joint Numerical Range: some examples

N = 2: one qubit states

Let $\sigma_1, \sigma_2, \sigma_3$ denote three trace-less **Pauli matrices** of size N = 2. Then

- Λ(σ₁, σ₂, σ₃) = Ω₂ = ℂP¹ forms the Bloch sphere S² of all one–qubit pure states.
- The **convex hull** of $\Lambda(\sigma_1, \sigma_2, \sigma_3)$ forms the **Bloch ball**, $\mathcal{M}_2 = B_3 \subset \mathbb{R}^3$ of all one-qubit mixed states.

N = 3: one qutrit states

Let $\lambda_1, \ldots \lambda_8$ denote eight traceless **Gell–Man matrices** of size 3: the generators of SU(3).

Then

- $\Lambda(\lambda_1, \dots \lambda_8) = \Omega_3 = \mathbb{C}P^2$ forms the set of all one–qutrit pure states.
- The convex hull of Λ(λ₁,...,λ₈) forms the set of N = 3 mixed states a convex body M₃ embedded in ℝ⁸

Joint Numerical Range: 3D examples for m = 3

N = 3: one qutrit

Take any triple of hermitian operators $\{A_1, A_2, A_3\}$ of size N = 3.

Then joint numerical range $\Lambda(A_1, A_2, A_3) \subset \mathbb{R}^3$ gives a projection of the 8D set \mathcal{M}_3 of mixed states of a qutrit into **3D**.

Examples:

Different classes of 3D JNR: their further projections into 2D belong to one of **four** classes of **Keeler, Rodman, Spitkovsky** (1997). the possible shapes of the standard numerical range for N = 3.

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 24 / 35

A D > A A P >

Konrad Szymański producing a 3D joint numerical range

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 25 / 3

э

Recall the shadows on the wall of the cave of **Plato**:

we do not understand all details of the 8D set M_3 of quantum states of size three, but at least we can study its 2D and 3D **projections**

How to classify possible shapes of JNR of three Hermitian matrices A_1, A_2, A_3 of size N = 3? earlier results by **Chien and Nakazato** 2010; **Chen, Ji, Li, Poon, Shen, Yu, Zeng, D., Zhou** 2015.

KŻ (IF UJ/CFT PAN)

Ten classes of 3D numerical ranges labeled by

the number of segments *s* and of ellipses *e* in boundary K. Szymański, S. Weis, K.Ż, (2018)

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 27 / 35

Image: Image:

Separable joint numerical range (JNR) $\Lambda_{\otimes}(A_1, A_2, A_3)$

JNR of three matrices A_1 , A_2 , A_3 of order $2 \times 2 = 4$ gives a projection of the 15 D set of mixed states of size N = 4 into 3D !

Comparison of standard JNR, $\Lambda(A_1, A_2, A_3)$ with separable JNR, $\Lambda_{\otimes}(A_1, A_2, A_3)$.

left: octahedron of separable states inside tetrahedron of 4 Bell states

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 28 / 35

Separable joint numerical range (JNR) II

Consider three matrices A_1, A_2, A_3 of order $2 \times 2 = 4$

Comparison of **standard** JNR, with **separable** JNR, **Questions**: 1) What is the minmal **volume ratio** μ for 3D sets? 2) Classify possible shapes of JNR of 3 matrices of order N = 43) Classify possible shapes of **separable** JNR of 3 matrices of N = 4 KZ (IF UJ/CET PAN) Restricted Numerical Range June 15, 2018 29 / 35

more about geometry set of quantum states for $N \ge 3$:

Geometry of Quantum States an Introduction to Quantum Entanglement

I. Bengtsson and K. Życzkowski

Cambridge University Press, 2006

II extended Edition 2017

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 30 / 35

Numerical range and quantum maps

A completely positive, trace preserving map $\Phi : \rho \to \rho'$ is represented by **Jamiołkowski–Choi** matrix $D(\Phi) = (\Phi \otimes \mathbb{I})|\psi_+\rangle\langle\psi_+|$, where $|\psi_+\rangle = \frac{1}{\sqrt{N}}\sum_{j=1}^n |j\rangle \otimes |j\rangle$ is maximally entangled state.

D satisfies partial trace condition $\operatorname{Tr}_A D = \mathbb{I}$ (*). For bistochastic maps, $\Phi(\mathbb{I}) = \mathbb{I}$, additionally $\operatorname{Tr}_B D = \mathbb{I}$ (**). How the set of stochastic / bistochastic maps looks like?

Comparison of **standard numerical range**, with NR restricted to states satisfying (*) and (**) and corresponding to one-qubit **bistochastic maps**.

Concluding Remarks I

- Standard Numerical Range (NR) is a useful algebraic tool ...
- We advocate to study its generalisation the **Restricted NR**:
 - a) product numerical range (PNR) useful for composite systems.
 - b) **separable numerical range (SNR)** and other restricted numerical ranges.
- **PNR** needs not to be **convex** or **simply connected**. Some bounds for **product numerical range** are obtained,

but we do not know how to find it for an arbitrary operator!

- PNR is a versatile tool: it can be used to analyze positivity of quantum maps, quantum entanglement, local fidelity, local distinguishability and other problems in quantum theory of composite systems.
- **Open problem**: for which set of *m* hermitian matrices of size 2^k the ratio of the volumes: Vol(Product NR)/Vol (NR) is minimal ?

Bench commemorating the discussion between Otton Nikodym and Stefan Banach (Kraków, summer 1916)

Sculpture: Stefan Dousa

Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 33 / 35

KŻ (IF UJ/CFT PAN)

June 15, 2018 34 / 35

∃ →

イロン イヨン イヨン イ

2

Restricted Numerical range

is a a) nice algebraic tool

b) and usefull also in theoretical physics !

Consider your research on generalized numerical ranges and their properties !

KŻ (IF UJ/CFT PAN)

Restricted Numerical Range

June 15, 2018 34 / 35

Banach tells his side of the story

Restricted Numerical Range