Preservation of essential matricial range

Chi-Kwong Li
Department of Mathematics, College of William and Mary, Virginia,
Institute for Quantum Computing, University of Waterloo

Joint work with

Vern Paulsen (University of Waterloo), Yiu-Tung Poon (Iowa State University).
The joint q-matricial range

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

D.R. Farenick, Matrical extensions of the numerical range: a brief survey, Linear Multilinear Algebra 34 (1993), 197-211.

Chi-Kwong Li, College of William & Mary

Preservation of essential matricial range
The joint q-matricial range

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.
- If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^* x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^* x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.

Let V_q be the set of partial isometries $X : \mathbb{C}^q \to H$ such that $X^* X = I_q$.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^*x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.

Let \mathcal{V}_q be the set of partial isometries $X : \mathbb{C}^q \rightarrow H$ such that $X^*X = I_q$.

The joint spatial q-matricial range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined as

$$W_s^q(A) = \left\{ (X^*A_1X, \ldots, X^*A_mX) : X \in \mathcal{V}_q \right\}.$$
The joint q-matricial range

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.
- If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^*x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.
- Let \mathcal{V}_q be the set of partial isometries $X : \mathbb{C}^q \to H$ such that $X^*X = I_q$.
- The joint spatial q-matricial range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined as
 $$W_s^q(A) = \{(X^*A_1X, \ldots, X^*A_mX) : X \in \mathcal{V}_q\}.$$
- So, $(B_1, \ldots, B_m) \in W_s^q(A)$ if and only if there is a unitary $U = [X|\tilde{X}]$ such that
 $$U^*A_jU = \begin{pmatrix} B_j & \ast \\ \ast & \ast \end{pmatrix}, \quad j = 1, \ldots, m.$$
The joint q-matricial range

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.
- If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^*x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.
- Let \mathcal{V}_q be the set of partial isometries $X : \mathbb{C}^q \rightarrow H$ such that $X^*X = I_q$.
- The joint spatial q-matricial range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined as
 $$W_s^q(A) = \{(X^*A_1X, \ldots, X^*A_mX) : X \in \mathcal{V}_q\}.$$
- So, $(B_1, \ldots, B_m) \in W_s^q(A)$ if and only if there is a unitary $U = [X|\check{X}]$ such that
 $$U^*A_jU = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.$$
- The q-matricial range is useful in the study of operators.
The joint q-matricial range

- Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

- If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^*x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.

- Let \mathcal{V}_q be the set of partial isometries $X : \mathbb{C}^q \to H$ such that $X^*X = I_q$.

- The joint spatial q-matricial range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined as

 $$W_s^q(A) = \{(X^*A_1X, \ldots, X^*A_mX) : X \in \mathcal{V}_q\}.$$

- So, $(B_1, \ldots, B_m) \in W_s^q(A)$ if and only if there is a unitary $U = [X|\tilde{X}]$ such that

 $$U^*A_jU = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.$$

- The q-matricial range is useful in the study of operators.

- For example, two compact operators $A, B \in B(H)$ are unitarily similar if and only if $W^q(A) = W^q(B)$ for all positive integer q.
Let $B(H)$ be the algebra of bounded linear operators acting on the Hilbert space H equipped with the inner product $\langle x, y \rangle$.

If $\dim H = n$, we identify $H = \mathbb{C}^n$ with $\langle x, y \rangle = y^*x$, and identify $B(H)$ with M_n, the algebra of $n \times n$ complex matrices.

Let V_q be the set of partial isometries $X : \mathbb{C}^q \to H$ such that $X^*X = I_q$.

The joint spatial q-matricial range of $A = (A_1, \ldots, A_m) \in B(H)^m$ is defined as

$$W_q^s(A) = \{(X^*A_1X, \ldots, X^*A_mX) : X \in V_q\}.$$

So, $(B_1, \ldots, B_m) \in W_q^s(A)$ if and only if there is a unitary $U = [X | \tilde{X}]$ such that

$$U^*A_jU = \begin{pmatrix} B_j & * \\ * & * \end{pmatrix}, \quad j = 1, \ldots, m.$$

The q-matricial range is useful in the study of operators.

For example, two compact operators $A, B \in B(H)$ are unitarily similar if and only if $W_q^s(A) = W_q^s(B)$ for all positive integer q.

D.R. Farenick, Matrical extensions of the numerical range: a brief survey, Linear Multilinear Algebra 34 (1993), 197-211.
Let \mathcal{A} be a C^*-algebra.

The joint (algebra) q-matricial range of $A = (A_1, \ldots, A_m) \in \mathcal{A}^m$ is defined by

\[W_q(A) = \{ \phi(A) = (\phi(A_1), \ldots, \phi(A_m)) : \phi \text{ is a unital complete positive linear map from } \mathcal{A} \text{ to } M_q \}. \]
Let \mathcal{A} be a C^*-algebra.

The joint (algebra) q-matricial range of $A = (A_1, \ldots, A_m) \in \mathcal{A}^m$ is defined by

$$W^q(A) = \{\phi(A) = (\phi(A_1), \ldots, \phi(A_m)) : \phi \text{ is a unital complete positive linear map from } \mathcal{A} \text{ to } M_q\},$$

which is a compact convex set containing $W^s_q(A)$.

Chi-Kwong Li, College of William & Mary
Let \(\mathcal{A} \) be a \(C^* \)-algebra.

The joint (algebra) \(q \)-matricial range of \(A = (A_1, \ldots, A_m) \in \mathcal{A}^m \) is defined by

\[
W^q(A) = \{ \phi(A) = (\phi(A_1), \ldots, \phi(A_m)) : \phi \text{ is a unital complete positive linear map from } \mathcal{A} \text{ to } M_q \},
\]

which is a compact convex set containing \(W^q_s(A) \).

For \(A \in B(H)^m \) it is hard to check whether \((B_1, \ldots, B_m) \in M_q^m \) lies in \(W^q_s(A) \).
Let \mathcal{A} be a C^*-algebra.

The joint (algebra) q-matricial range of $A = (A_1, \ldots, A_m) \in \mathcal{A}^m$ is defined by

$$W^q(A) = \{\phi(A) = (\phi(A_1), \ldots, \phi(A_m)) : \phi \text{ is a unital complete positive linear map from } \mathcal{A} \text{ to } M_q\},$$

which is a compact convex set containing $W^q_s(A)$.

For $A \in B(H)^m$ it is hard to check whether $(B_1, \ldots, B_m) \in M_q^m$ lies in $W^q_s(A)$. For $W^q(A)$, we have the following.

Proposition [Li, Paulsen, Poon, 2018]

Let $A_1, \ldots, A_m \in B(H)$. An m-tuple of matrices $(B_1, \ldots, B_m) \in M_q^m$ lies in $W^q(A_1, \ldots, A_m)$ if and only if for any $R_0, R_1, \ldots, R_m \in M_q$,

$$\|I_q \otimes R_0 + B_1 \otimes R_1 + \cdots + B_m \otimes R_m\| \leq \|I_H \otimes R_0 + A_1 \otimes R_1 + \cdots + A_m \otimes R_m\|.$$
Let $K(H)$ be the set of compact operators in $B(H)$, $B(H)/K(H)$ be the Calkin algebra, and $\pi : B(H) \to B(H)/K(H)$ is the canonical surjection.

Then the joint essential q-matricial range of $A \in B(H)$ is defined by
\[\cap \{ W_q(A + K) : K \in K(H) \} , \]
which equals $W_q(\pi(A))$ with $\pi(A) = (\pi(A_1), \ldots, \pi(A_m))$.

Define the essential spatial q-matricial range by
\[W_{q,\text{ess}}(A) = \cap \{ \overline{W}_q(A + K) : K \in K(H) \} . \]
The set $W_q(\pi(A))$ is C^*-convex.

That is, for any $B_1, \ldots, B_N \in W_q(\pi(A))$ and $L_1, \ldots, L_N \in M_q$ satisfying
\[\sum_{j=1}^N L_j^* L_j = I_q, \]
\[\sum_{j=1}^N L_j^* B_j L_j \in W_q(\pi(A)) . \]

Theorem [Li, Paulsen, Poon, 2018]
Let $A \in B(H)$. Then $W_{q,\text{ess}}(A)$ is C^*-convex. Consequently, $W_{q,\text{ess}}(A) = W_q(\pi(A))$.

Chi-Kwong Li, College of William & Mary

Preservation of essential matricial range
Let $K(H)$ be the set of compact operators in $B(H)$, $B(H)/K(H)$ be the Calkin algebra, and $\pi : B(H) \to B(H)/K(H)$ is the canonical surjection. Then the joint essential q-matricial range of $A \in B(H)$ is defined by

$$\cap\{W^q(A + K) : K \in K(H)^m\},$$

which equals $W^q(\pi(A))$ with $\pi(A) = (\pi(A_1), \ldots, \pi(A_m))$.

Theorem [Li, Paulsen, Poon, 2018] Let $A \in B(H)^m$. Then $W^q_{\text{ess}}(A)$ is C^*-convex. Consequently, $W^q_{\text{ess}}(A) = W^q(\pi(A))$.

Chi-Kwong Li, College of William & Mary

Preservation of essential matricial range
Let $K(H)$ be the set of compact operators in $B(H)$, $B(H)/K(H)$ be the Calkin algebra, and $\pi : B(H) \rightarrow B(H)/K(H)$ is the canonical surjection. Then the joint essential q-matricial range of $A \in B(H)$ is defined by

$$\cap\{W^q(A + K) : K \in K(H)^m\},$$

which equals $W^q(\pi(A))$ with $\pi(A) = (\pi(A_1), \ldots, \pi(A_m))$.

Define the essential spatial q-matricial range by

$$W^q_{ess}A) = \cap\{\text{cl} (W^q_s(A + K)) : K \in K(H)^m\}.$$
Essential matricial range

Let $K(H)$ be the set of compact operators in $B(H)$, $B(H)/K(H)$ be the Calkin algebra, and $\pi : B(H) \to B(H)/K(H)$ is the canonical surjection.

Then the joint essential q-matricial range of $A \in B(H)$ is defined by

$$\cap \{ W^q(A + K) : K \in K(H)^m \},$$

which equals $W^q(\pi(A))$ with $\pi(A) = (\pi(A_1), \ldots, \pi(A_m))$.

Define the essential spatial q-matricial range by

$$W^q_{\text{ess}}(A) = \cap \{ \text{cl} \left(W^q_s(A + K) \right) : K \in K(H)^m \}.$$

The set $W^q(\pi(A))$ is C^*-convex.
Let $K(H)$ be the set of compact operators in $B(H)$, $B(H)/K(H)$ be the Calkin algebra, and $\pi : B(H) \to B(H)/K(H)$ is the canonical surjection.

Then the joint essential q-matricial range of $A \in B(H)$ is defined by

$$ \cap \{ W^q(A + K) : K \in K(H)^m \}, $$

which equals $W^q(\pi(A))$ with $\pi(A) = (\pi(A_1), \ldots, \pi(A_m))$.

Define the essential spatial q-matricial range by

$$ W^q_{ess}A = \cap \{ \text{cl} (W^q_s(A + K)) : K \in K(H)^m \}. $$

The set $W^q(\pi(A))$ is C^*-convex. That is, for any $B_1, \ldots, B_N \in W^q(\pi(A))$ and $L_1, \ldots, L_N \in M_q$ satisfying $\sum_{j=1}^N L_j^*L_j = I_q$,

$$ \sum_{j=1}^N L_j^*B_jL_j \in W^q(\pi(A)). $$

Theorem [Li,Paulsen,Poon,2018]

Let $A \in B(H)^m$. Then $W^q_{ess}(A)$ is C^*-convex. Consequently,

$$ W^q_{ess}(A) = W^q(\pi(A)). $$
Preservation problem

Problems and results [Smith and Ward, 1980]

Let $A \in B(H)^m$.

- For a given positive integer N, can we find $K \in K(H)^m$ such that
 \[W^q(A + K) = W^q(\pi(A)) \quad \text{for all } q \in \{1, \ldots, N\} \]
Problems and results [Smith and Ward, 1980]

Let $A \in B(H)^m$.

- For a given positive integer N, can we find $K \in K(H)^m$ such that

 $$W^q(A + K) = W^q(\pi(A)) \quad \text{for all } q \in \{1, \ldots, N\}.$$

 The answer is yes if $A = (A_1)$.

- Can we find $K \in K(H)^m$ such that

 $$W^q(A + K) = W^q(\pi(A)) \quad \text{for all positive integer } q?$$
Preservation problem

Problems and results [Smith and Ward, 1980]

Let $A \in B(H)^m$.

- For a given positive integer N, can we find $K \in K(H)^m$ such that
 $$W^q(A + K) = W^q(\pi(A))$$
 for all $q \in \{1, \ldots, N\}$?

 The answer is yes if $A = (A_1)$.

- Can we find $K \in K(H)^m$ such that
 $$W^q(A + K) = W^q(\pi(A))$$
 for all positive integer q?

 The answer is yes if $A = (A_1)$, where $A_1 = A_1^*$.

Theorem [Müller, 2010]

Let $A \in B(H)^m$. There is $K \in K(H)^m$ such that
$$W^{1_{ess}}(A) = \text{cl}(W^{1_{s}}(A + K)) = W^{1_{s}}(A + K) = W^{1_{s}}(\pi(A)).$$
Preservation problem

Problems and results [Smith and Ward, 1980]

Let $A \in B(H)^m$.

- For a given positive integer N, can we find $K \in K(H)^m$ such that
 \[W^q(A + K) = W^q(\pi(A)) \quad \text{for all } q \in \{1, \ldots, N\}? \]

 The answer is yes if $A = (A_1)$.

- Can we find $K \in K(H)^m$ such that
 \[W^q(A + K) = W^q(\pi(A)) \quad \text{for all positive integer } q? \]

 The answer is yes if $A = (A_1)$, where $A_1 = A_1^*$.

Theorem [Müller, 2010]

Let $A \in B(H)^m$. There is $K \in K(H)^m$ such that

\[W^1_{ess}(A) = \text{cl} \left(W^1_s(A + K) \right) = W^1(A + K) = W^1(\pi(A)). \]
Theorem [Li, Paulsen, Poon, 2018]

Let \(\mathbf{A} \in B(H)^m \). Suppose \(N \) is a positive integer. Then there is \(\mathbf{K} \in K(H)^m \) such that for all \(q \in \{1, \ldots, N\} \):

\[
W^q_{\text{ess}}(\mathbf{A}) = W^q(\pi(\mathbf{A})) = \text{cl}(W^q_{\text{ss}}(\mathbf{A} + \mathbf{K})) = W^q(\mathbf{A} + \mathbf{K}).
\]
Theorem [Li, Paulsen, Poon, 2018]

Let $A \in B(H)^m$. Suppose N is a positive integer. Then there is $K \in K(H)^m$ such that for all $q \in \{1, \ldots, N\}$:

$$W_{ess}^q(A) = W^q(\pi(A)) = \text{cl}(W^q_s(A + K)) = W^q(A + K).$$
Theorem [Li, Paulsen, Poon, 2018]

Let \(A \in B(H)^m \). Suppose \(N \) is a positive integer. Then there is \(K \in K(H)^m \) such that for all \(q \in \{1, \ldots, N\} \):

\[
W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl}(W^q_s(A + K)) = W^q(A + K).
\]

Theorem [Li, Paulsen, Poon, 2018]

Let \(A \in S(H)^m \) be an \(m \)-tuple of self-adjoint operators such that \(W_{\text{ess}}(1 : A) \) is a simplex in \(\mathbb{R}^m \), i.e., a polyhedral set with \(m + 1 \) vertices.
Theorem [Li, Paulsen, Poon, 2018]

Let $A \in B(H)^m$. Suppose N is a positive integer. Then there is $K \in K(H)^m$ such that for all $q \in \{1, \ldots, N\}$:

$$W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl} \left(W^q_s(A + K) \right) = W^q(A + K).$$

Theorem [Li, Paulsen, Poon, 2018]

Let $A \in S(H)^m$ be an m-tuple of self-adjoint operators such that $W_{\text{ess}}(1 : A)$ is a simplex in \mathbb{R}^m, i.e., a polyhedral set with $m + 1$ vertices. Then there is $K \in K(H)^m$ such that for all positive integer q:

$$W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl} \left(W^q_s(A + K) \right) = W^q(A + K).$$
Results

Theorem [Li, Paulsen, Poon, 2018]

Let \(A \in B(H)^m \). Suppose \(N \) is a positive integer. Then there is \(K \in K(H)^m \) such that for all \(q \in \{1, \ldots, N\} \):

\[
W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl} \left(W^q_s(A + K) \right) = W^q(A + K).
\]

Theorem [Li, Paulsen, Poon, 2018]

Let \(A \in S(H)^m \) be an \(m \)-tuple of self-adjoint operators such that \(W_{\text{ess}}(1 : A) \) is a simplex in \(\mathbb{R}^m \), i.e., a polyhedral set with \(m + 1 \) vertices. Then there is \(K \in K(H)^m \) such that for all positive integer \(q \):

\[
W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl} \left(W^q_s(A + K) \right) = W^q(A + K).
\]

The proof of the first theorem depends on the connection of maps from \(B(H) \) to \(M_q \) and maps from \(B(H)/K(H) \) to \(M_q \).
Results

Theorem [Li, Paulsen, Poon, 2018]
Let $A \in B(H)^m$. Suppose N is a positive integer. Then there is $K \in K(H)^m$ such that for all $q \in \{1, \ldots, N\}$:

$$W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl}(W^q_s(A + K)) = W^q(A + K).$$

Theorem [Li, Paulsen, Poon, 2018]
Let $A \in S(H)^m$ be an m-tuple of self-adjoint operators such that $W^q_{\text{ess}}(1 : A)$ is a simplex in \mathbb{R}^m, i.e., a polyhedral set with $m + 1$ vertices. Then there is $K \in K(H)^m$ such that for all positive integer q:

$$W^q_{\text{ess}}(A) = W^q(\pi(A)) = \text{cl}(W^q_s(A + K)) = W^q(A + K).$$

The proof of the first theorem depends on the connection of maps from $B(H)$ to M_q and maps from $B(H)/K(H)$ to M_q.

The proof of the second theorem depends on a result on joint dilation.
Theorem [Binding,Farenick,Li,1995]

Let \(A = (A_1, \ldots, A_m) \in M_q^m \) is an \(m \)-tuple of Hermitian matrices such that \(W(A_1, \ldots, A_m) \) is a simplex in \(\mathbb{R}^m \).

Proposition [Li,Paulsen,Poon, 2018]

Let \(A = (A_1, \ldots, A_m) \in S(H)^m \).

Suppose \(W_1 \text{ess}(A) \) is a subset of a simplex \(S \) in \(\mathbb{R}^m \) with vertices \(v_k = (v_1^k, \ldots, v_m^k) \) for \(k = 1, \ldots, m+1 \).

Then there is \(K = (K_1, \ldots, K_m) \in S(H)^m \cap K(H)^m \) such that for any \(R_0, \ldots, R_m \in M_q \),

\[
\| R_0 \otimes I + R_1 \otimes (A_1 + K_1) + \cdots + R_m \otimes (A_m + K_m) \| \leq \max \{ \| R_0 + v_1^1 R_1 + \cdots + v_m^m R_m \| : 1 \leq k \leq m+1 \}.
\]

(1)

In fact, \(K \) can be chosen such that the equality holds in (1) for any choice of \(R_0, \ldots, R_m \in M_q \).
Theorem [Binding,Farenick,Li,1995]

Let \(A = (A_1, \ldots, A_m) \in M_q^m \) is an \(m \)-tuple of Hermitian matrices such that \(W(A_1, \ldots, A_m) \) is a simplex in \(\mathbb{R}^m \). Then \(B = (B_1, \ldots, B_m) \in S(H)^m \) satisfies \(W(B) \subseteq W(A) \) if and only if there is an partial isometry \(X \) such that \(B_j = X^* (I \otimes A_j) X \) for \(j = 1, \ldots, m \).

Proposition [Li,Paulsen,Poon, 2018]

Let \(A = (A_1, \ldots, A_m) \in S(H)^m \). Suppose \(W_1 \text{ess}(A) \) is a subset of a simplex \(S \) in \(\mathbb{R}^m \) with vertices \(v_k = (v_1^k, \ldots, v_m^k) \) for \(k = 1, \ldots, m+1 \). Then there is \(K = (K_1, \ldots, K_m) \in S(H)^m \cap K(H)^m \) such that for any \(R_0, \ldots, R_m \in M_q \),

\[
\| R_0 \otimes I + R_1 \otimes (A_1+K_1) + \cdots + R_m \otimes (A_m+K_m) \| \leq \max \{ \| R_0 + v_1^1 R_1 + \cdots + v_i^k R_k + \cdots + v_m^m R_m \| : 1 \leq k \leq m+1 \}.
\]

(1) In fact, \(K \) can be chosen such that the equality holds in (1) for any choice of \(R_0, \ldots, R_m \in M_q \).
Theorem [Binding, Farenick, Li, 1995]

Let $A = (A_1, \ldots, A_m) \in M_q^m$ be an m-tuple of Hermitian matrices such that $W(A_1, \ldots, A_m)$ is a **simplex** in \mathbb{R}^m. Then $B = (B_1, \ldots, B_m) \in S(H)^m$ satisfies $W(B) \subseteq W(A)$ if and only if there is a partial isometry X such that

$$B_j = X^*(I \otimes A_j)X \quad \text{for } j = 1, \ldots, m.$$
Theorem [Binding,Farenick,Li,1995]

Let $A = (A_1, \ldots, A_m) \in M_q^m$ is an m-tuple of Hermitian matrices such that $W(A_1, \ldots, A_m)$ is a simplex in \mathbb{R}^m. Then $B = (B_1, \ldots, B_m) \in S(H)^m$ satisfies $W(B) \subseteq W(A)$ if and only if there is a partial isometry X such that

$$B_j = X^*(I \otimes A_j)X \quad \text{for } j = 1, \ldots, m.$$

Proposition [Li,Paulsen,Poon, 2018]

Let $A = (A_1, \ldots, A_m) \in S(H)^m$.

\[\text{(1)}\]
Theorem [Binding, Farenick, Li, 1995]

Let \(A = (A_1, \ldots, A_m) \in M_q^m \) is an \(m \)-tuple of Hermitian matrices such that \(W(A_1, \ldots, A_m) \) is a simplex in \(\mathbb{R}^m \). Then \(B = (B_1, \ldots, B_m) \in S(H)^m \) satisfies \(W(B) \subseteq W(A) \) if and only if there is a partial isometry \(X \) such that

\[
B_j = X^*(I \otimes A_j)X \quad \text{for } j = 1, \ldots, m.
\]

Proposition [Li, Paulsen, Poon, 2018]

Let \(A = (A_1, \ldots, A_m) \in S(H)^m \). Suppose \(W_{ess}^1(A) \) is a subset of a simplex \(S \) in \(\mathbb{R}^m \) with vertices \(v_k = (v_{1k}, \ldots, v_{mk}) \) for \(k = 1, \ldots, m + 1 \).
Related results

Theorem [Binding,Farenick,Li,1995]

Let $\mathbf{A} = (A_1, \ldots, A_m) \in M_q^m$ is an m-tuple of Hermitian matrices such that $W(A_1, \ldots, A_m)$ is a simplex in \mathbb{R}^m. Then $\mathbf{B} = (B_1, \ldots, B_m) \in S(H)^m$ satisfies $W(\mathbf{B}) \subseteq W(\mathbf{A})$ if and only if there is an partial isometry X such that

$$B_j = X^*(I \otimes A_j)X \quad \text{for} \ j = 1, \ldots, m.$$

Proposition [Li,Paulsen,Poon, 2018]

Let $\mathbf{A} = (A_1, \ldots, A_m) \in S(H)^m$. Suppose $W_{\text{ess}}^1(\mathbf{A})$ is a subset of a simplex S in \mathbb{R}^m with vertices $v_k = (v_{1k}, \ldots, v_{mk})$ for $k = 1, \ldots, m + 1$. Then there is $\mathbf{K} = (K_1, \ldots, K_m) \in S(H)^m \cap K(H)^m$ such that
Related results

Theorem [Binding,Farenick,Li,1995]

Let \(A = (A_1, \ldots, A_m) \in M_q^m \) is an \(m \)-tuple of Hermitian matrices such that \(W(A_1, \ldots, A_m) \) is a simplex in \(\mathbb{R}^m \). Then \(B = (B_1, \ldots, B_m) \in S(H)^m \) satisfies \(W(B) \subseteq W(A) \) if and only if there is an partial isometry \(X \) such that

\[
B_j = X^* (I \otimes A_j) X \quad \text{for} \quad j = 1, \ldots, m.
\]

Proposition [Li,Paulsen,Poon, 2018]

Let \(A = (A_1, \ldots, A_m) \in S(H)^m \). Suppose \(W_{ess}^1(A) \) is a subset of a simplex \(S \) in \(\mathbb{R}^m \) with vertices \(v_k = (v_{1k}, \ldots, v_{mk}) \) for \(k = 1, \ldots, m + 1 \). Then there is \(K = (K_1, \ldots, K_m) \in S(H)^m \cap K(H)^m \) such that for any \(R_0, \ldots, R_m \in M_q \),

\[
\| R_0 \otimes I + R_1 \otimes (A_1 + K_1) + \cdots + R_m \otimes (A_m + K_m) \| \\
\leq \max\{\| R_0 + v_{1k} R_1 + \cdots + v_{mk} R_m \| : 1 \leq k \leq m + 1 \}.
\] (1)
Theorem [Binding,Farenick,Li,1995]

Let $A = (A_1, \ldots, A_m) \in M_q^m$ be an m-tuple of Hermitian matrices such that $W(A_1, \ldots, A_m)$ is a simplex in \mathbb{R}^m. Then $B = (B_1, \ldots, B_m) \in S(H)^m$ satisfies $W(B) \subseteq W(A)$ if and only if there is a partial isometry X such that

$$B_j = X^* (I \otimes A_j) X \quad \text{for } j = 1, \ldots, m.$$

Proposition [Li,Paulsen,Poon, 2018]

Let $A = (A_1, \ldots, A_m) \in S(H)^m$. Suppose $W_{\text{ess}}(A)$ is a subset of a simplex S in \mathbb{R}^m with vertices $v_k = (v_{1k}, \ldots, v_{mk})$ for $k = 1, \ldots, m + 1$. Then there is $K = (K_1, \ldots, K_m) \in S(H)^m \cap K(H)^m$ such that for any $R_0, \ldots, R_m \in M_q$,

$$\|R_0 \otimes I + R_1 \otimes (A_1 + K_1) + \cdots + R_m \otimes (A_m + K_m)\|$$

$$\leq \max \{\|R_0 + v_{1k} R_1 + \cdots + v_{mk} R_m\| : 1 \leq k \leq m + 1\}. \quad (1)$$

In fact, K can be chosen such that the equality holds in (1) for any choice of $R_0, \ldots, R_m \in M_q$.

Chi-Kwong Li, College of William & Mary
Preservation of essential matricial range
Define the \((p, q)\)-numerical range \(\Lambda_{p,q}(A)\) of \(A = (A_1, \ldots, A_m)\) to be the set of \((B_1, \ldots, B_m) \in M_q^m\) for the existence of \(X \in \mathcal{V}_{pq}\) such that

\[I_p \otimes B_j = X^* A_j X \quad \text{for all } j = 1, \ldots, m, \]
Define the \((p, q)\)-numerical range \(\Lambda_{p, q}(A)\) of \(A = (A_1, \ldots, A_m)\) to be the set of \((B_1, \ldots, B_m) \in M_q^m\) for the existence of \(X \in \mathcal{V}_{pq}\) such that

\[I_p \otimes B_j = X^* A_j X \quad \text{for all } j = 1, \ldots, m, \]

and the essential \((p, q)\)-numerical range by

\[\Lambda_{p, q}^{\text{ess}}(A) = \cap \{ \text{cl} (\Lambda_{p, q}(A + K)) : K \in K(H)^m \}. \]
Define the \((p, q)\)-numerical range \(\Lambda_{p,q}(A)\) of \(A = (A_1, \ldots, A_m)\) to be the set of \((B_1, \ldots, B_m) \in M_q^m\) for the existence of \(X \in \mathcal{V}_{pq}\) such that

\[
I_p \otimes B_j = X^* A_j X \quad \text{for all } j = 1, \ldots, m,
\]

and the essential \((p, q)\)-numerical range by

\[
\Lambda_{p,q}^{\text{ess}}(A) = \bigcap \{ \text{cl} (\Lambda_{p,q}(A + K)) : K \in K(H)^m \}.
\]

When \(q = 1\), we get the rank \(p\)-numerical range \(\Lambda_p(A)\) introduced in [Choi, Kribs, Zyczkowski, 2006] for the study of quantum error correction.
Define the \((p, q)\)-numerical range \(\Lambda_{p,q}(A)\) of \(A = (A_1, \ldots, A_m)\) to be the set of \((B_1, \ldots, B_m) \in M_q^m\) for the existence of \(X \in \mathcal{V}_{pq}\) such that
\[
I_p \otimes B_j = X^* A_j X \quad \text{for all } j = 1, \ldots, m,
\]
and the essential \((p, q)\)-numerical range by
\[
\Lambda_{p,q}^{\text{ess}}(A) = \bigcap \{ \text{cl} (\Lambda_{p,q}(A + K)) : K \in K(H)^m \}.
\]

When \(q = 1\), we get the rank \(p\)-numerical range \(\Lambda_p(A)\) introduced in [Choi, Kribs, Zyczkowski, 2006] for the study of quantum error correction.

The \((p, q)\)-numerical range is related to the work of [Kribs, Spekkens, 2016] concerning the quantum error correctable subsystems.
Theorem [Li,Paulsen,Poon,2018]

Let $A \in S(H)^m$.

(1) For any positive integer N, there is $K \in S_K(H)^m$ such that for every $q \in \{1, \ldots, N\}$,
Theorem [Li,Paulsen,Poon,2018]

Let $\mathbf{A} \in S(H)^m$.

(1) For any positive integer N, there is $\mathbf{K} \in S_K(H)^m$ such that for every $q \in \{1, \ldots, N\}$,

$$
\Lambda_{p,q}^{ess}(\mathbf{A}) = W_{ess}^q(\mathbf{A}) = W^q(\pi(\mathbf{A})) \\
= \Lambda_{p,q}(\mathbf{A} + \mathbf{K}) = W_s^q(\mathbf{A} + \mathbf{K}) = W^q(\mathbf{A} + \mathbf{K}).
$$

The proof depends on some recent results by [Lau,Li,Poon,Sze,2018].
Theorem [Li, Paulsen, Poon, 2018]

Let $A \in S(H)^m$.

(1) For any positive integer N, there is $K \in S_{K}(\mathcal{H})^m$ such that for every $q \in \{1, \ldots, N\}$,

$$
\Lambda_{p,q}^{ess}(A) = W_{q}^{ess}(A) = W^{q}(\pi(A)) = \Lambda_{p,q}(A + K) = W_{q}^{s}(A + K) = W^{q}(A + K).
$$

(2) If $W_{ess}(A)$ is a simplex in \mathbb{R}^m, then there is $K \in S_{K}(\mathcal{H})^m$ such that for every positive integer q,?
Theorem [Li, Paulsen, Poon, 2018]

Let $A \in S(H)^m$.

(1) For any positive integer N, there is $K \in S_K(H)^m$ such that for every $q \in \{1, \ldots, N\}$,
\[
\Lambda_{p,q}^{\text{ess}}(A) = W_q^{\text{ess}}(A) = W^q(\pi(A))
= \Lambda_{p,q}(A + K) = W_s^q(A + K) = W^q(A + K).
\]

(2) If $W_{\text{ess}}(A)$ is a simplex in \mathbb{R}^m, then there is $K \in S_K(H)^m$ such that for every positive integer q,
\[
\Lambda_{p,q}^{\text{ess}}(A) = W_q^{\text{ess}}(A) = W^q(\pi(A))
= \Lambda_{p,q}(A + K) = W_s^q(A + K) = W^q(A + K).
\]
Theorem [Li,Paulsen,Poon,2018]

Let $A \in S(H)^m$.

(1) For any positive integer N, there is $K \in S_K(\mathcal{H})^m$ such that for every $q \in \{1, \ldots, N\}$,

$$\Lambda_{p,q}^{ess}(A) = W_{ess}^q(A) = W^q(\pi(A))$$

$$= \Lambda_{p,q}(A + K) = W_{s}^q(A + K) = W^q(A + K).$$

(2) If $W_{ess}(A)$ is a simplex in \mathbb{R}^m, then there is $K \in S_K(\mathcal{H})^m$ such that for every positive integer q,

$$\Lambda_{p,q}^{ess}(A) = W_{ess}^q(A) = W^q(\pi(A))$$

$$= \Lambda_{p,q}(A + K) = W_{s}^q(A + K) = W^q(A + K).$$

The proof depends on some recent results by [Lau, Li, Poon, Sze, 2018].
Suppose $A = (A_1, \ldots, A_m) \in S(H)^m$ with $m \geq 4$. Determine whether there is $K = (K_1, \ldots, K_m) \in \mathcal{K}(H)^m \cup S(H)^m$ such that

$$W^q(\pi(A)) = \text{cl} \left(W^q_{\text{ess}}(A + K) \right)$$

for every positive integer q. For $m = 1$, yes. For $m \geq 4$, No. By a result of Paulsen. How about $m = 2, 3$? Any comments and suggestions are welcomed! Thank you for your attention!
Further question

Suppose $A = (A_1, \ldots, A_m) \in S(H)^m$ with $m \geq 4$. Determine whether there is $K = (K_1, \ldots, K_m) \in K(H)^m \cup S(H)^m$ such that

$$W^q(\pi(A)) = \text{cl} \left(W^q_{\text{ess}}(A + K) \right) \quad \text{for every positive integer } q.$$

For $m = 1$, yes.
Further question

Suppose $A = (A_1, \ldots, A_m) \in S(H)^m$ with $m \geq 4$. Determine whether there is $K = (K_1, \ldots, K_m) \in \mathcal{K}(H)^m \cup S(H)^m$ such that

$$W^q(\pi(A)) = \text{cl}(W^q_{\text{ess}}(A + K))$$

for every positive integer q.

For $m = 1$, yes.

For $m \geq 4$, No. By a result of Paulsen.

How about $m = 2, 3$?

Any comments and suggestions are welcomed!

Thank you for your attention!
Further question

Suppose \(A = (A_1, \ldots, A_m) \in S(H)^m \) with \(m \geq 4 \). Determine whether there is \(K = (K_1, \ldots, K_m) \in \mathcal{K}(H)^m \cup S(H)^m \) such that

\[
W^q(\pi(A)) = \text{cl} \left(W^q_{\text{ess}}(A + K) \right)
\]

for every positive integer \(q \).

For \(m = 1 \), yes.

For \(m \geq 4 \), No. By a result of Paulsen.

How about \(m = 2, 3 \)?
Further question

Suppose \(A = (A_1, \ldots, A_m) \in S(H)^m \) with \(m \geq 4 \). Determine whether there is \(K = (K_1, \ldots, K_m) \in \mathcal{K}(H)^m \cup S(H)^m \) such that

\[
W^q(\pi(A)) = \text{cl} \left(W^q_{\text{ess}}(A + K) \right) \quad \text{for every positive integer } q.
\]

For \(m = 1 \), yes.

For \(m \geq 4 \), No. By a result of Paulsen.

How about \(m = 2, 3 \)?

Any comments and suggestions are welcomed!
Further question

Suppose $A = (A_1, \ldots, A_m) \in S(H)^m$ with $m \geq 4$. Determine whether there is $K = (K_1, \ldots, K_m) \in \mathcal{K}(H)^m \cup S(H)^m$ such that

$$W^q(\pi(A)) = \text{cl} \left(W^q_{\text{ess}}(A + K)\right) \text{ for every positive integer } q.$$

For $m = 1$, yes.

For $m \geq 4$, No. By a result of Paulsen.

How about $m = 2, 3$?

Any comments and suggestions are welcomed!

Thank you for your attention!
Thank you for supporting WONRA!

Danke!

Chi-Kwong Li, College of William & Mary
Preservation of essential matricial range