A B K A B K

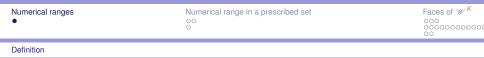
Faces of sets of operators with numerical range in a prescribed polyhedron

Cristina Diogo

ISCTE-IUL and CAMGSD-IST

The 14th Workshop on Numerical Ranges and Numerical Radii June 13-18, 2018

 \mathscr{H} complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ $\mathscr{S}_{\mathscr{H}} = \{x \in \mathscr{H}; ||x|| = 1\}$ the unit sphere $\mathcal{B}(\mathscr{H})$ bounded linear operators on \mathscr{H} .



 $\begin{aligned} & \mathcal{H} \quad \text{complex Hilbert space with inner product} \quad \langle \cdot, \cdot \rangle \\ & \mathcal{S}_{\mathcal{H}} = \{ x \in \mathcal{H}; \quad \|x\| = 1 \} \quad \text{the unit sphere} \\ & \mathcal{B}(\mathcal{H}) \quad \text{bounded linear operators on} \quad \mathcal{H}. \end{aligned}$

The numerical range of $A \in \mathcal{B}(\mathcal{H})$ is

$$W(A) = \{ \langle Ax, x \rangle; \quad x \in \mathscr{S}_{\mathscr{H}} \}.$$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Numerical ranges o	Numerical range in a prescribed set ●o ○	Faces of <i>"₩</i> ^K 000 00000000000000000000000000000000

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Numerical ranges o	Numerical range in a prescribed set ●○ ○	Faces of <i>"₩^{. K}</i> 000 00000000000000000000000000000000
		00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\blacktriangleright \mathscr{W}^{K} = \emptyset \quad \Longleftrightarrow \quad K = \emptyset;$$

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	••• •	000 00000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{\mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K}\}.$$

;

Properties:

$$\mathcal{W}^{K} = \emptyset \iff K = \emptyset;$$
$$\mathcal{W}^{K} = \mathcal{B}(\mathcal{H}) \iff K = \mathbb{C}$$

Numerical ranges	Numerical range in a prescribed set	Faces of \mathcal{W}^K
0		000 00000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\begin{aligned} & \mathcal{W}^{K} = \emptyset & \iff & K = \emptyset; \\ & \mathcal{W}^{K} = \mathcal{B}(\mathcal{H}) & \iff & K = \mathbb{C}; \\ & \mathcal{W}^{\{\alpha\}} = \{\alpha I\}, & \text{where } I \text{ is the identity operator on } \mathcal{H}; \end{aligned}$$

イロト イポト イヨト イヨト

ъ

Numerical ranges	Numerical range in a prescribed set	Faces of \mathcal{W}^K
0		000 00000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\blacktriangleright \mathscr{W}^{K} = \emptyset \quad \Longleftrightarrow \quad K = \emptyset;$$

•
$$\mathscr{W}^{K} = \mathcal{B}(\mathscr{H}) \iff K = \mathbb{C};$$

• $\mathscr{W}^{\{\alpha\}} = \{\alpha I\},$ where *I* is the identity operator on \mathscr{H} ;

• $\mathscr{W}^{\mathbb{R}}$ is the set of all selfadjoint operators in $\mathcal{B}(\mathscr{H})$;

Numerical ranges	Numerical range in a prescribed set	Faces of \mathcal{W}^K
0		000 00000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\blacktriangleright \mathscr{W}^{K} = \emptyset \quad \Longleftrightarrow \quad K = \emptyset;$$

•
$$\mathscr{W}^{\mathsf{K}} = \mathcal{B}(\mathscr{H}) \iff \mathsf{K} = \mathbb{C};$$

- $\mathscr{W}^{\{\alpha\}} = \{\alpha I\},$ where I is the identity operator on \mathscr{H} ;
- $\mathscr{W}^{\mathbb{R}}$ is the set of all selfadjoint operators in $\mathcal{B}(\mathscr{H})$;
- $\mathscr{W}^{\mathbb{R}^+}$ is the set of all positive semidefinite op. in $\mathcal{B}(\mathscr{H})$;

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\blacktriangleright \mathscr{W}^{K} = \emptyset \quad \Longleftrightarrow \quad K = \emptyset;$$

$$\blacktriangleright \mathscr{W}^{\mathsf{K}} = \mathcal{B}(\mathscr{H}) \quad \Longleftrightarrow \quad \mathsf{K} = \mathbb{C};$$

- $\mathscr{W}^{\{\alpha\}} = \{\alpha I\}$, where I is the identity operator on \mathscr{H} ;
- $\mathscr{W}^{\mathbb{R}}$ is the set of all selfadjoint operators in $\mathcal{B}(\mathscr{H})$;
- $\mathscr{W}^{\mathbb{R}^+}$ is the set of all positive semidefinite op. in $\mathcal{B}(\mathscr{H})$;

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

• $U \mathscr{W}^K U^* = \mathscr{W}^K$, for every unitary operator U;

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

$$\blacktriangleright \mathscr{W}^{K} = \emptyset \quad \Longleftrightarrow \quad K = \emptyset;$$

•
$$\mathscr{W}^{\mathsf{K}} = \mathcal{B}(\mathscr{H}) \iff \mathsf{K} = \mathbb{C};$$

- $\mathscr{W}^{\{\alpha\}} = \{\alpha I\}$, where I is the identity operator on \mathscr{H} ;
- $\mathscr{W}^{\mathbb{R}}$ is the set of all selfadjoint operators in $\mathcal{B}(\mathscr{H})$;
- $\mathscr{W}^{\mathbb{R}^+}$ is the set of all positive semidefinite op. in $\mathcal{B}(\mathscr{H})$;

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

• $U \mathscr{W}^K U^* = \mathscr{W}^K$, for every unitary operator U;

$$\blacktriangleright K_1 \subseteq K_2 \implies \mathscr{W}^{K_1} \subseteq \mathscr{W}^{K_2}.$$

Numerical ranges o	Numerical range in a prescribed set ○● ○	Faces of <i>₩</i> ^K 000 000000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

• K closed
$$\Rightarrow \mathscr{W}^K$$
 sot-closed;

0 00000	
00	000000

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

- K closed $\Rightarrow \mathscr{W}^K$ sot-closed;
- K is convex $\implies \mathscr{W}^K$ is convex;

Numerical ranges	Numerical range in a prescribed set	Faces of \mathscr{W}^K
0		000 00000000000 00

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

Properties:

- K closed $\Rightarrow \mathscr{W}^K$ sot-closed;
- K is convex $\implies \mathscr{W}^K$ is convex;
- ▶ Let $K_j \subseteq \mathbb{C}$ $(j \in J)$ be an arbitrary family of closed sets.

$$K = \bigcap_{j \in J} K_j \implies \mathscr{W}^K = \bigcap_{j \in J} \mathscr{W}^{K_j}$$

くぼう くきり くきり

-

 $K \subseteq \mathbb{C}$ non-empty set

$$\mathscr{W}^{\mathsf{K}} = \{ \mathsf{A} \in \mathcal{B}(\mathscr{H}); \quad \overline{\mathsf{W}(\mathsf{A})} \subseteq \mathsf{K} \}.$$

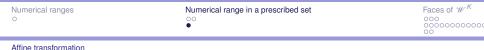
Properties:

- K closed $\Rightarrow \mathscr{W}^{K}$ sot-closed;
- K is convex $\implies \mathscr{W}^K$ is convex;
- ▶ Let $K_j \subseteq \mathbb{C}$ $(j \in J)$ be an arbitrary family of closed sets.

$$\mathcal{K} = \bigcap_{j \in J} \mathcal{K}_j \implies \mathscr{W}^{\mathcal{K}} = \bigcap_{j \in J} \mathscr{W}^{\mathcal{K}_j}$$

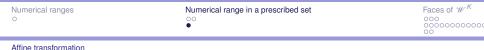
• Let $K \subseteq \mathbb{C}$ be a non-empty closed convex set. Then

$$rb(\mathscr{W}^{K}) = \{A \in \mathscr{W}^{K} : \overline{W(A)} \cap rb(K) \neq \emptyset\}.$$



 $\theta(u+iv) = au + bv + e + i(cu + dv + f)$

 $a, b, c, d, e, f \in \mathbb{R}, ad - bc \neq 0.$



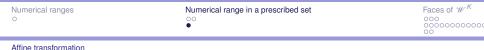
$$\theta(u+iv) = au + bv + e + i(cu + dv + f)$$

 $a, b, c, d, e, f \in \mathbb{R}, ad - bc \neq 0.$

$$\begin{split} \theta \quad \text{induces inv. aff. transformation} \quad \Theta : \ \mathcal{B}(\mathscr{H}) \to \mathcal{B}(\mathscr{H}) \text{:} \\ A \in \mathcal{B}(\mathscr{H}) : \quad A = H + iK, \quad H, K \quad \text{self-adjoint} \end{split}$$

$$\Theta(H+iK) = aH + bK + eI + i(cH + dK + fI).$$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの



$$\theta(u+iv) = au + bv + e + i(cu + dv + f)$$

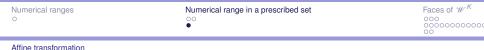
 $a, b, c, d, e, f \in \mathbb{R}, ad - bc \neq 0.$

$$\begin{split} \theta \quad \text{induces inv. aff. transformation} \quad \Theta : \ \mathcal{B}(\mathscr{H}) \to \mathcal{B}(\mathscr{H}) \text{:} \\ A \in \mathcal{B}(\mathscr{H}) : \quad A = H + iK, \quad H, K \quad \text{self-adjoint} \end{split}$$

$$\Theta(H+iK) = aH + bK + eI + i(cH + dK + fI).$$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Easily seen: $W(\Theta(A)) = \theta(W(A))$.



$$\theta(u + iv) = au + bv + e + i(cu + dv + f)$$

 $a, b, c, d, e, f \in \mathbb{R}, \quad ad - bc \neq 0.$

$$\begin{split} \theta \quad \text{induces inv. aff. transformation} \quad \Theta : \ \mathcal{B}(\mathscr{H}) \to \mathcal{B}(\mathscr{H}) \text{:} \\ A \in \mathcal{B}(\mathscr{H}) : \quad A = H + iK, \quad H, K \quad \text{self-adjoint} \end{split}$$

$$\Theta(H+iK) = aH + bK + eI + i(cH + dK + fI).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Easily seen: $W(\Theta(A)) = \theta(W(A))$.

It follows: $\mathscr{W}^{\theta(K)} = \Theta(\mathscr{W}^K).$

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ● o o ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Definition and properties

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

Faces

A convex subset $\mathscr{F} \subseteq \mathscr{W}^{K}$ is a face if $A \in \mathscr{F}, \quad B, C \in \mathscr{W}^{K}, \quad 0 < t < 1: \quad A = tB + (1 - t)C$ $\Rightarrow \quad B, C \in \mathscr{F}.$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Definition and properties

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

Faces

A convex subset $\mathscr{F} \subseteq \mathscr{W}^{\mathcal{K}}$ is a face if

- $A \in \mathscr{F}, \quad B, C \in \mathscr{W}^{K}, \quad 0 < t < 1: \quad A = tB + (1 t)C$
- $\Rightarrow B, C \in \mathscr{F}.$

• \emptyset , \mathscr{W}^{K} are trivial faces, other are proper faces;

Definition and properties

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

Faces

A convex subset $\mathscr{F} \subseteq \mathscr{W}^K$ is a face if

- $A \in \mathscr{F}, \quad B, C \in \mathscr{W}^{K}, \quad 0 < t < 1: \quad A = tB + (1-t)C$
- $\Rightarrow B, C \in \mathscr{F}.$
 - \emptyset , \mathscr{W}^{K} are trivial faces, other are proper faces;
 - Proper face is a subset of

$$\mathit{rb}(\mathscr{W}^{\mathit{K}}) = \{ \mathit{A} \in \mathscr{W}^{\mathit{K}}; \quad \overline{\mathit{W}(\mathit{A})} \cap \mathit{rb}(\mathit{K}) \neq \emptyset \};$$

 $K \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^K$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

Faces

A convex subset $\mathscr{F} \subseteq \mathscr{W}^{\mathcal{K}}$ is a face if

- $\begin{array}{ll} A \in \mathscr{F}, & B, C \in \mathscr{W}^{K}, & 0 < t < 1: & A = tB + (1 t)C \\ \Rightarrow & B, C \in \mathscr{F}. \end{array}$
 - \emptyset , \mathscr{W}^{K} are trivial faces, other are proper faces;
 - Proper face is a subset of

$$\mathit{rb}(\mathscr{W}^{\mathit{K}}) = \{\mathit{A} \in \mathscr{W}^{\mathit{K}}; \quad \overline{\mathit{W}(\mathit{A})} \cap \mathit{rb}(\mathit{K}) \neq \emptyset\};$$

• $A \in \mathscr{W}^K$ is extreme point if $\{A\}$ is a face.

 $\mathcal{K} \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^{\mathcal{K}}$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

$$\mathscr{W}^{ heta(K)} = \Theta(\mathscr{W}^K)$$

ces of WK
0 0000000000

 $\mathcal{K} \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^{\mathcal{K}}$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

$$\mathscr{W}^{\theta(K)} = \Theta(\mathscr{W}^K)$$

-

A B K A B K

• \mathscr{F} proper face of $\mathscr{W}^{K} \Leftrightarrow \Theta(\mathscr{F})$ proper face of $\mathscr{W}^{\theta(K)}$;

 $\mathcal{K} \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^{\mathcal{K}}$ is sot-closed and convex.

What are faces of $\mathscr{W}^{\mathcal{K}}$?

$$\mathscr{W}^{\theta(K)} = \Theta(\mathscr{W}^K)$$

- \mathscr{F} proper face of $\mathscr{W}^{K} \Leftrightarrow \Theta(\mathscr{F})$ proper face of $\mathscr{W}^{\theta(K)}$;
- A extreme point of $\mathscr{W}^{K} \Leftrightarrow \Theta(A)$ extreme point of $\mathscr{W}^{\theta(K)}$.

イロト イポト イヨト イヨト

э

Definition and properties

 $\mathcal{K} \subseteq \mathbb{C}$ non-empty closed convex set $\Longrightarrow \mathscr{W}^{\mathcal{K}}$ is sot-closed and convex.

What are faces of \mathscr{W}^{K} ?

• dim
$$(\mathscr{H}) < \infty$$

 $K = \bigcap_{j=1}^{n} K_j$, where K_j are closed convex sets on \mathbb{C}
 \mathscr{F} face of $\bigcap_{j=1}^{n} \mathscr{W}^{K_j} \iff \exists \mathscr{F}_j$ faces of \mathscr{W}^{K_j} , $\mathscr{F} = \bigcap_{j=1}^{n} \mathscr{F}_j$.

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ○○○ ●○○○○○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set K		

- $K \subseteq \mathbb{C}$ closed convex set
- $F \subseteq K$ face
- $\blacktriangleright \ \mathscr{R} \subseteq \mathscr{S}_{\mathscr{H}}.$

 $\text{Define} \quad \mathscr{G}_{F}^{K}(\mathscr{R}) = \{ A \in \mathscr{W}^{K}; \quad \langle Ax, x \rangle \in F \quad \forall \; x \in \mathscr{R} \}.$

- * ロ > * @ > * 注 > * 注 > … 注 … の < @

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>"₩^K</i> ○○○ ●○○○○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set K		

- $K \subseteq \mathbb{C}$ closed convex set
- $F \subseteq K$ face
- $\blacktriangleright \ \mathscr{R} \subseteq \mathscr{S}_{\mathscr{H}}.$

 $\text{Define} \quad \mathscr{G}_{F}^{K}(\mathscr{R}) = \{ A \in \mathscr{W}^{K}; \quad \langle Ax, x \rangle \in F \quad \forall \; x \in \mathscr{R} \}.$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Theorem

•
$$\mathscr{G}_{F}^{K}(\mathscr{R})$$
 is a face of \mathscr{W}^{K} .

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ○○○ ●○○○○○○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set K		

- $K \subseteq \mathbb{C}$ closed convex set
- $F \subseteq K$ face
- $\blacktriangleright \ \mathscr{R} \subseteq \mathscr{S}_{\mathscr{H}}.$

Define $\mathscr{G}_{F}^{K}(\mathscr{R}) = \{ A \in \mathscr{W}^{K}; \quad \langle Ax, x \rangle \in F \quad \forall \ x \in \mathscr{R} \}.$

Theorem

- $\mathscr{G}_{F}^{K}(\mathscr{R})$ is a face of \mathscr{W}^{K} .
- ► For every index set J and $F_j \subseteq K$ a face, $\mathscr{R}_j \subseteq \mathscr{S}_{\mathscr{H}}$, the set $\bigcap_{j \in J} \mathscr{G}_{F_j}^K(\mathscr{R}_j)$ is a face of \mathscr{W}^K .

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>"₩^K</i> ○○○ ○●○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set K		

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

Theorem

- dim $(\mathscr{H}) < \infty$.
- $K \subseteq \mathbb{C}$ closed polyhedron
- $F_1, \ldots, F_n \subseteq K$ all proper faces of K.

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>"</i> ₩ ^K ○○○ ○●○○○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set	κ	

Theorem

- dim $(\mathcal{H}) < \infty$.
- $K \subseteq \mathbb{C}$ closed polyhedron
- $F_1, \ldots, F_n \subseteq K$ all proper faces of K.
- If \mathscr{F} is a face of \mathscr{W}^{K} , then $\exists \mathscr{R}_1, \ldots, \mathscr{R}_n \subseteq \mathscr{S}_{\mathscr{H}}$:

$$\mathscr{F} = \bigcap_{j=1}^{n} \mathscr{G}_{F_j}^{K}(\mathscr{R}_j).$$

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ○○○ ○○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Faces of \mathscr{W}^K for a polyhedron set K

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩^K</i> ○○ ○○ ○○
Faces of \mathscr{W}^K for a polyhedron set K		

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

• $K = \mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$ half line;

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ⊙

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>"₩^K</i> ○○ ○○●○○○○○○○○○○○○○
Eaces of \mathcal{W}^K for a polyhedron set K		

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

•
$$K = \mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$$
 half line;

• $K = \mathbb{I} = \{r \in \mathbb{R}; 0 \le r \le 1\}$ line segment;

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ○○○ ○○●○○○○○○○○○○○○
Faces of \mathcal{W}^K for a polyhedron set K		

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

•
$$K = \mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$$
 half line;

• $K = \mathbb{I} = \{r \in \mathbb{R}; \quad 0 \le r \le 1\}$ line segment;

•
$$K = \mathbb{S} = \{z \in \mathbb{C}; 0 \le \operatorname{Re}(z) \le 1\}$$
 strip;

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

•
$$K = \mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$$
 half line;

• $K = \mathbb{I} = \{r \in \mathbb{R}; \quad 0 \le r \le 1\}$ line segment;

•
$$K = \mathbb{S} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1\}$$
 strip;

• $\mathcal{K} = \mathbb{P} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1, \ \operatorname{Im}(z) \geq 0\}$ half strip;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

•
$$K = \mathbb{C}_+ = \{z \in \mathbb{C}; Re(z) \ge 0\}$$
 half plane;

- $K = \mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$ half line;
- $K = \mathbb{I} = \{r \in \mathbb{R}; \quad 0 \le r \le 1\}$ line segment;
- $K = \mathbb{S} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1\}$ strip;
- $\mathcal{K} = \mathbb{P} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1, \ \operatorname{Im}(z) \geq 0\}$ half strip;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• $\mathcal{K} = \mathbb{H} = \{z \in \mathbb{C}; \quad \mathsf{Re}(z) \ge 0, \ \mathsf{Im}(z) \ge 0\}$ sector.

$$\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \mathsf{Re}(z) \ge 0\}$$
 half plane

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00 0	000 0000000000 00

 $\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \operatorname{Re}(z) \ge 0\}$ half plane

• $i\mathbb{R}$ the only proper face of \mathbb{C}^+ .

- 4 日 > 4 週 > 4 週 > 4 週 > - 週 - 釣 Q ()

 $\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \text{Re}(z) \ge 0\}$ half plane

• $i\mathbb{R}$ the only proper face of \mathbb{C}^+ .

$$\bullet \ A = R + iS \in \mathscr{W}^{\mathbb{C}^+} \quad \Longleftrightarrow \quad R \ge 0.$$

 $\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \text{Re}(z) \geq 0\}$ half plane

• $i\mathbb{R}$ the only proper face of \mathbb{C}^+ .

$$\bullet \ A = R + iS \in \mathscr{W}^{\mathbb{C}^+} \quad \Longleftrightarrow \quad R \ge 0.$$

What are faces of $\mathscr{W}^{\mathbb{C}^+}$?

イロト イポト イヨト イヨト

э

Faces of \mathscr{W}^K for a polyhedron set K

$$\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \text{Re}(z) \geq 0\}$$
 half plane

• $i\mathbb{R}$ the only proper face of \mathbb{C}^+ .

$$\bullet \ A = R + iS \in \mathscr{W}^{\mathbb{C}^+} \quad \Longleftrightarrow \quad R \ge 0.$$

What are faces of $\mathscr{W}^{\mathbb{C}^+}$?

► A proper face of
$$\mathscr{W}^{\mathbb{C}^+}$$
 is a non-empty subset of
 $rb(\mathscr{W}^{\mathbb{C}^+}) = \{A \in \mathscr{W}^{\mathbb{C}^+} : W(A) \cap i\mathbb{R} \neq \emptyset\}.$

イロト 不得 トイヨト イヨト

ъ

Faces of \mathcal{W}^K for a polyhedron set K

$$\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \text{Re}(z) \geq 0\}$$
 half plane

•
$$i\mathbb{R}$$
 the only proper face of \mathbb{C}^+ .

$$\bullet \ A = R + iS \in \mathscr{W}^{\mathbb{C}^+} \quad \Longleftrightarrow \quad R \ge 0.$$

What are faces of $\mathscr{W}^{\mathbb{C}^+}$?

► A proper face of
$$\mathscr{W}^{\mathbb{C}^+}$$
 is a non-empty subset of
 $rb(\mathscr{W}^{\mathbb{C}^+}) = \{A \in \mathscr{W}^{\mathbb{C}^+} : W(A) \cap i\mathbb{R} \neq \emptyset\}.$

►
$$\mathscr{F} \subseteq \mathscr{W}^{\mathbb{C}^+}$$
 is a face $\iff \exists P_{\mathscr{F}}$ orth. projection:
 $\mathscr{F} = \{A = R + iS \in \mathscr{W}^{\mathbb{C}^+} : R \le \lambda P_{\mathscr{F}}, \text{ for some } \lambda \ge 0\}.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Faces of \mathscr{W}^K for a polyhedron set K

$$\mathbb{C}_+ = \{z \in \mathbb{C}; \quad \text{Re}(z) \geq 0\}$$
 half plane

•
$$i\mathbb{R}$$
 the only proper face of \mathbb{C}^+ .

$$\bullet \ \mathbf{A} = \mathbf{R} + i\mathbf{S} \in \mathscr{W}^{\mathbb{C}^+} \quad \Longleftrightarrow \quad \mathbf{R} \ge \mathbf{0}.$$

What are faces of $\mathscr{W}^{\mathbb{C}^+}$?

► A proper face of
$$\mathscr{W}^{\mathbb{C}^+}$$
 is a non-empty subset of
 $rb(\mathscr{W}^{\mathbb{C}^+}) = \{A \in \mathscr{W}^{\mathbb{C}^+} : W(A) \cap i\mathbb{R} \neq \emptyset\}.$

►
$$\mathscr{F} \subseteq \mathscr{W}^{\mathbb{C}^+}$$
 is a face $\iff \exists P_{\mathscr{F}}$ orth. projection:
 $\mathscr{F} = \{A = R + iS \in \mathscr{W}^{\mathbb{C}^+} : R \le \lambda P_{\mathscr{F}}, \text{ for some } \lambda \ge 0\}.$

•
$$\mathscr{W}^{\mathbb{C}_+}$$
 has no extreme point.

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00 0	000 0000000000 00

$$\mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$$
 half line

Numerical ranges o	Numerical range in a prescribed set	Faces of <i>₩</i> ^K 000 00000000000000000000000000000000
Faces of \mathscr{W}^K for a polyhedron set K		

$$\mathbb{R}_+ = \{r \in \mathbb{R}; r \ge 0\}$$
 half line

• $\{0\}$ the only proper face of \mathbb{R}^+ .

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00	000 0000000000 00

$$\mathbb{R}_+ = \{ r \in \mathbb{R}; \quad r \ge 0 \}$$
 half line

• $\{0\}$ the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00	000 0000000000 00

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00 0	000 0000000000 00

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

 $\begin{array}{rcl} \mathbb{R}^+ &=& \mathbb{C}^+ \cap \mathbb{R} \\ \mathscr{W}^{\mathbb{R}^+} &=& \mathscr{W}^{\mathbb{C}^+} \cap \mathscr{W}^{\mathbb{R}} \end{array}$

イロト 不得 トイヨト イヨト

ъ

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00 0	000 0000000000 00

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

 $\begin{array}{rcl} \mathbb{R}^+ & = & \mathbb{C}^+ \cap \mathbb{R} \\ \mathscr{W}^{\mathbb{R}^+} & = & \mathscr{W}^{\mathbb{C}^+} \cap \mathscr{W}^{\mathbb{R}} \end{array}$

-

• Let \mathscr{F} be a proper face of $\mathscr{W}^{\mathbb{R}^+}$.

ces of WK
_ 00●0000000

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

$$\begin{array}{rcl} \mathbb{R}^+ &=& \mathbb{C}^+ \cap \mathbb{R} \\ \mathscr{W}^{\mathbb{R}^+} &=& \mathscr{W}^{\mathbb{C}^+} \cap \mathscr{W}^{\mathbb{R}} \end{array}$$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

▶ Let \mathscr{F} be a proper face of $\mathscr{W}^{\mathbb{R}^+}$. $\exists \mathscr{F}_1 \in \mathscr{F}(\mathscr{W}^{\mathbb{C}^+}), \quad \mathscr{F}_2 \in \mathscr{F}(\mathscr{W}^{\mathbb{R}}): \quad \mathscr{F} = \mathscr{F}_1 \cap \mathscr{F}_2.$

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00	000 0000000000 00

$$\mathbb{R}_+ = \{ r \in \mathbb{R}; \quad r \geq 0 \}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

$$\begin{array}{rcl} \mathbb{R}^+ &=& \mathbb{C}^+ \cap \mathbb{R} \\ \mathbb{W}^{\mathbb{R}^+} &=& \mathbb{W}^{\mathbb{C}^+} \cap \mathbb{W}^{\mathbb{R}} \end{array}$$

Let ℱ be a proper face of 𝔐^{ℝ+}. ∃ℱ₁ ∈ ℱ(𝔐^{ℂ+}), ℱ₂ ∈ ℱ(𝔐^ℝ): ℱ = ℱ₁ ∩ ℱ₂.
∃ P_{ℱ1} orthogonal projection: ℱ₁ = {A = R + iS ∈ 𝔐^{ℂ+} : R ≤ λP_{ℱ1}, for some λ ≥ 0} ℱ₂ = 𝔐^ℝ.

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

$$\mathscr{F} \subseteq \mathscr{W}^{\mathbb{R}^+} \text{ is a face } \iff \exists P_{\mathscr{F}} \text{ orth. projection:} \\ \mathscr{F} = \{ R \in \mathscr{W}^{\mathbb{R}^+} : R \leq \lambda P_{\mathscr{F}}, \text{ for some } \lambda \geq 0 \}.$$

イロト 不得 トイヨト イヨト

ъ

$$\mathbb{R}_+ = \{r \in \mathbb{R}; \quad r \ge 0\}$$
 half line

•
$$\{0\}$$
 the only proper face of \mathbb{R}^+ .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{R}^+} \iff R \ge 0$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{R}^+}$?

►
$$\mathscr{F} \subseteq \mathscr{W}^{\mathbb{R}^+}$$
 is a face $\iff \exists P_{\mathscr{F}}$ orth. projection:
 $\mathscr{F} = \{ R \in \mathscr{W}^{\mathbb{R}^+} : R \leq \lambda P_{\mathscr{F}}, \text{ for some } \lambda \geq 0 \}.$

イロト イポト イヨト イヨト

э

• $\{0\}$ is the only extreme point of $\mathscr{W}^{\mathbb{R}^+}$.

$$\mathbb{I} = \{r \in \mathbb{R}; \quad 0 \le r \le 1\}$$
 line segment

Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K ○○○ ○○○○○○●○○○○

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

- * ロ * * @ * * 注 * * 注 * うへぐ

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00	000 0000000000000000000000000000000000

 $\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$ line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

• $A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$ and S = 0.

(4日)(4日)(4日)(4日)(日)(900)

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00	000 0000000000000 00

 $\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$ line segment

 \triangleright {0} and {1} the only proper face of \mathbb{I} .

► $A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \leq R \leq I$ and S = 0.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

Numerical ranges	Numerical range in a prescribed set	Faces of WK
0	00	000 0000000000000000000000000000000000

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

• $A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$ and S = 0.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

- W. N. Anderson Jr., G. E. Trapp, The extreme points of a set of positive semidefinite operators, Lin. Alg. App. 106 (1988), 209-217;
- S.-L. Eriksson, H. Leutwiler *A potential-theoretic approach to parallel addition*, Math. Ann. **274** (1986), 301-317.

-

A (10) A (10)

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00	000
	0	000000000000000000000000000000000000000
		00

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$$
 and $S = 0$.

 $\begin{array}{rcl} \hline & \underline{\mathbb{W}}^{\mathrm{Mat}} \mbox{ are faces of } & \underline{\mathbb{W}}^{\mathbb{I}}? \\ \hline & \mathbb{I} & = & \mathbb{R}^+ \cap (\mathbf{1} - \mathbb{R}^+), & \mathbf{1} - \mathbb{R}^+ = \{\mathbf{1} - \lambda, & \lambda \ge \mathbf{0}\} \\ & \underline{\mathbb{W}}^{\mathbb{I}} & = & \underline{\mathbb{W}}^{\mathbb{R}^+} \cap \underline{\mathbb{W}}^{\mathbf{1} - \mathbb{R}^+} \end{array}$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

$$\begin{split} \mathbb{I} &= \mathbb{R}^+ \cap (\mathsf{1} - \mathbb{R}^+), \quad \mathsf{1} - \mathbb{R}^+ = \{\mathsf{1} - \lambda, \quad \lambda \geq \mathsf{0}\} \\ \mathscr{W}^{\mathbb{I}} &= \mathscr{W}^{\mathbb{R}^+} \cap \mathscr{W}^{\mathsf{1} - \mathbb{R}^+} \end{split}$$

イロト イポト イヨト イヨト

э

Let ℱ be a proper face of ℋ^I.

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

$$\begin{array}{rcl} \mathbb{I} & = & \mathbb{R}^+ \cap (\mathsf{1} - \mathbb{R}^+) \,, & \mathsf{1} - \mathbb{R}^+ = \{\mathsf{1} - \lambda, & \lambda \geq \mathsf{0}\} \\ \\ \mathscr{W}^{\mathbb{I}} & = & \mathscr{W}^{\mathbb{R}^+} \cap \mathscr{W}^{\mathsf{1} - \mathbb{R}^+} \end{array}$$

▶ Let \mathscr{F} be a proper face of $\mathscr{W}^{\mathbb{I}}$. $\exists \mathscr{F}_1 \in \mathscr{F}(\mathscr{W}^{\mathbb{R}^+}), \quad \mathscr{F}_2 \in \mathscr{F}(\mathscr{W}^{1-\mathbb{R}^+}): \quad \mathscr{F} = \mathscr{F}_1 \cap \mathscr{F}_2.$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

• $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

•
$$A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$$
 and $S = 0$.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

$$\begin{split} \mathbb{I} &= \mathbb{R}^+ \cap (\mathbf{1} - \mathbb{R}^+), \quad \mathbf{1} - \mathbb{R}^+ = \{\mathbf{1} - \lambda, \quad \lambda \geq \mathbf{0} \} \\ \mathscr{W}^{\mathbb{I}} &= \mathscr{W}^{\mathbb{R}^+} \cap \mathscr{W}^{\mathbf{1} - \mathbb{R}^+} \end{split}$$

ъ

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00	000 0000000000000000000000000000000000

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

▶ $\{0\}$ and $\{1\}$ the only proper face of \mathbb{I} .

• $A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \le R \le I$ and S = 0.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

 $\begin{array}{l} \blacktriangleright \ \mathscr{F} \subseteq \mathscr{W}^{\mathbb{I}} \text{ is a face } \Longleftrightarrow \ \exists \mathcal{P}_{\mathscr{F}}, \mathcal{Q}_{\mathscr{F}} \text{ orthogonal projections:} \\ \\ \mathscr{F} = \{ \mathcal{R} \in \mathscr{W}^{\mathbb{I}} : \ \mathcal{Q}_{\mathscr{F}} \leq \mathcal{R} \leq \mathcal{P}_{\mathscr{F}} \}; \end{array}$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

Numerical ranges	Numerical range in a prescribed set	Faces of <i>W</i> ^K
0	00	000 0000000000000000000000000000000000

$$\mathbb{I} = \{ r \in \mathbb{R}; \quad 0 \le r \le 1 \}$$
 line segment

 \triangleright {0} and {1} the only proper face of \mathbb{I} .

• $A = R + iS \in \mathscr{W}^{\mathbb{I}} \iff 0 \leq R \leq I$ and S = 0.

What are faces of $\mathscr{W}^{\mathbb{I}}$?

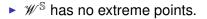
• $\mathscr{F} \subseteq \mathscr{W}^{\mathbb{I}}$ is a face $\iff \exists P_{\mathscr{F}}, Q_{\mathscr{F}}$ orthogonal projections: $\mathscr{F} = \{ R \in \mathscr{W}^{\mathbb{I}} : Q_{\mathscr{F}} \leq R \leq P_{\mathscr{F}} \};$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへつ

• Extreme points of $\mathscr{W}^{\mathbb{I}}$ are orthogonal projections.

$$\mathcal{K} = \mathbb{S} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1\}$$
 strip

► $\mathscr{F} \subseteq \mathscr{W}^{\mathbb{S}}$ is a face $\iff \exists P_{\mathscr{F}}, Q_{\mathscr{F}}$ orthogonal projections: $\mathscr{F} = \{R + iS \in \mathscr{W}^{\mathbb{S}} : Q_{\mathscr{F}} \leq R \leq P_{\mathscr{F}}\};$



$$\mathcal{K} = \mathbb{P} = \{z \in \mathbb{C}; \quad 0 \leq \operatorname{Re}(z) \leq 1, \ \operatorname{Im}(z) \geq 0\}$$
 half strip

• $\mathscr{F} \subseteq \mathscr{W}^{\mathbb{P}}$ is a face $\iff \exists P_{\mathscr{F}_1}, Q_{\mathscr{F}_1}, P_{\mathscr{F}_2}$ orth. projections:

 $\mathscr{F} = \{ R + iS \in \mathscr{W}^{\mathbb{P}} : \ Q_{\mathscr{F}_1} \leq R \leq P_{\mathscr{F}_1} \text{ and } 0 \leq S \leq \lambda P_{\mathscr{F}_2}, \text{ for some } \lambda \geq 0 \};$

▲□▶ ▲冊▶ ▲三▶ ▲三▶ 三三 ののの

• Extreme points of $\mathscr{W}^{\mathbb{P}}$ are orthogonal projections.

$$\mathcal{K} = \mathbb{H} = \{z \in \mathbb{C}; \quad \mathsf{Re}(z) \ge 0, \ \mathsf{Im}(z) \ge 0\}$$
 sector

• $\mathscr{F} \subseteq \mathscr{W}^{\mathbb{H}}$ is a face $\iff \exists P_{\mathscr{F}}, Q_{\mathscr{F}}$ orthogonal projections:

 $\mathscr{F} = \{ R + iS \in \mathscr{W}^{\mathbb{H}} : \ 0 \le R \le \lambda P_{\mathscr{F}} \text{ and } 0 \le S \le \mu Q_{\mathscr{F}}, \text{ for some } \lambda, \mu \ge 0 \};$

• $\{0\}$ is the only extreme point of $\mathscr{W}^{\mathbb{H}}$.

・ ・ロト・(部・・ヨト・ヨト・ヨー のへの

Numerical ranges o	Numerical range in a prescribed set	Faces of <i>"₩</i> ^K 000 00000000000000000000000000000000
Faces of $\mathscr{W}^{\overline{\mathbb{D}}}$		

Example $K = \overline{\mathbb{D}}$ closed unit disc $\mathscr{W}^{\overline{\mathbb{D}}} = \{A \in \mathcal{B}(\mathscr{H}); w(A) \leq 1\}$ closed unit ball in $(\mathcal{B}(\mathscr{H}), w)$.

Numerical ranges o	Numerical range in a prescribed set	Faces of <i>₩</i> ^K 000 00000000000000000000000000000000
Faces of $\mathscr{W}^{\overline{\mathbb{D}}}$		

Example $K = \overline{\mathbb{D}}$ closed unit disc $\mathscr{W}^{\overline{\mathbb{D}}} = \{A \in \mathcal{B}(\mathscr{H}); w(A) \leq 1\}$ closed unit ball in $(\mathcal{B}(\mathscr{H}), w)$. If $\mathscr{H} = \mathbb{C}^2$, A is determined by W(A) up to unitary equivalence.

- * ロ * * @ * * 目 * * 目 * うへで

Numerical ranges o	Numerical range in a prescribed set	Faces of <i>"₩^K</i> ○○○ ●○
Faces of $\mathscr{W}^{\overline{\mathbb{D}}}$		

Example $K = \overline{\mathbb{D}}$ closed unit disc $\mathcal{W}(\overline{\mathbb{D}}) = \{A \in \mathcal{B}(\mathcal{H}) \mid w(A) < 1\}$

 $\mathscr{W}^{\overline{\mathbb{D}}} = \{A \in \mathcal{B}(\mathscr{H}); w(A) \leq 1\} \quad \textit{closed unit ball in } (\mathcal{B}(\mathscr{H}), w).$

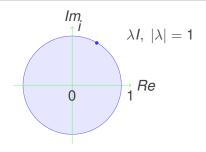
If $\mathscr{H} = \mathbb{C}^2$, A is determined by W(A) up to unitary equivalence.

What are extreme points of $\mathscr{W}^{\mathbb{D}}$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

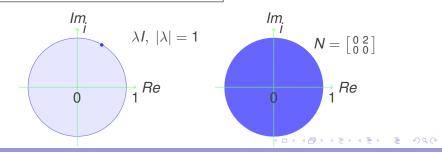
Example $K = \overline{\mathbb{D}}$ closed unit disc $\mathscr{W}^{\overline{\mathbb{D}}} = \{A \in \mathcal{B}(\mathscr{H}); w(A) \leq 1\}$ closed unit ball in $(\mathcal{B}(\mathscr{H}), w)$. If $\mathscr{H} = \mathbb{C}^2$, A is determined by W(A) up to unitary equivalence.

What are extreme points of $\mathscr{W}^{\mathbb{D}}$?

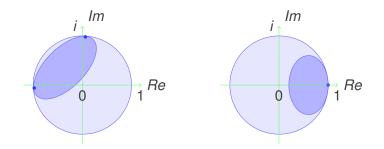


Example $K = \overline{\mathbb{D}}$ closed unit disc $\mathscr{W}^{\overline{\mathbb{D}}} = \{A \in \mathcal{B}(\mathscr{H}); w(A) \leq 1\}$ closed unit ball in $(\mathcal{B}(\mathscr{H}), w)$. If $\mathscr{H} = \mathbb{C}^2$, A is determined by W(A) up to unitary equivalence.

What are extreme points of $\mathscr{W}^{\mathbb{D}}$?



Numerical ranges o	Numerical range in a prescribed set oo o	Faces of <i>₩</i> ^K 000 00000000000000000000000000000000
Faces of $\mathcal{W}^{\overline{\mathbb{D}}}$		



- A. Hopenwasser, R. L. Morre, V. I. Paulsen *C***-extreme points*, Transactions AMS **266** (1981), 291-307;
- M. A. Dritschel, H. J. Woerdeman Model Theory and Linear Extreme points in the Numerical Radius Unit Ball, Memoirs AMS 615 (1997).