Star-shapedness of numerical range of a set of matrices

Raymond Nung-Sing Sze The Hong Kong Polytechnic University

June 17, 2018

The 14th Workshop on Numerical Rangse and Radii Technical University of Munich Max-Planck-Institute for Quantum Optics

Based on a joint work [arXiv:1805.00602] with P.S. Lau (PolyU), C.K. Li (William & Mary), Y.T. Poon (Iowa State).

Research Grants Council 研究黄助局

Notations

- \blacktriangleright \mathbb{R} : the set of real numbers
- \mathbb{C} : the set of complex numbers
- M_n : the set of $n \times n$ complex matrices
- ▶ *H_n*: the set of *n* × *n* Hermitian matrices
- $\blacktriangleright~B(\mathcal{H}):$ the set of bounded linear operators on a complex Hilbert space $\mathcal H$
- $S(\mathcal{H})$: the set of self-adjoint operators in $B(\mathcal{H})$
- $S_F(\mathcal{H})$: the set of finite rank operators in $S(\mathcal{H})$
- $S_K(\mathcal{H})$: the set of compact operators in $S(\mathcal{H})$
- $\mathbf{cl}(S)$: the closure of a set S

Convexity and Star-shapedness

A set S is said to be convex if for any $a, b \in S$, the line segment joining a and b also lies in S. That is,

$$ta + (1-t)b \in S$$
 for all $t \in [0,1]$.

A set S is said to be star-shaped if there is a star center $s \in S$ such that the line segment joining s and any other point $b \in S$ also lies in S. That is,

 $ts{+}(1{-}t)b \in S \quad \text{for all } t \in [0,1].$

 $A:\ n\times n \text{ matrix}$

The numerical range (field of values) is defined as

$$W(A) = \{x^* A x \in \mathbb{C} : ||x|| = 1, x \in \mathbb{C}^n\}$$
$$= \{\langle x|A|x \rangle : \langle x|x \rangle = 1\}$$

- The spectrum of A, $\sigma(A) \subseteq W(A)$.
- For any $a, b \in \mathbb{C}$, W(aA + bI) = aW(A) + b.
- For any unitary U, $W(U^*AU) = W(A)$.
- ► W(A) is always nonempty.
- $\blacktriangleright W(A) = \{\mu\} \iff A = \mu I.$
- $\blacktriangleright W(A) \subseteq \mathbb{R} \iff A = A^*.$
- ▶ $W(A) \subseteq [0,\infty) \iff A$ is positive semidefinite.
- W(A) and $W(A^{-1})$ lie in the unit disk $\iff A$ is unitary.
- If A is Hermitian with eigenvalues $a_1 \ge a_2 \ge \cdots \ge a_n$, then

$$W(A) = [a_n, a_1].$$

• If $A = \begin{bmatrix} a_1 & b \\ 0 & a_2 \end{bmatrix}$, then W(A) is the elliptical disk with foci a_1 and a_2 and minor axis of length |b|.

$$W(A) = \operatorname{conv} \{a_1, \ldots, a_n\},\$$

which is a convex polygon.

In general,

$$W(A) = \bigcap_{t \in [0,2\pi)} \left\{ \mu \in \mathbb{C} : e^{-it}\mu + e^{it}\bar{\mu} \le \lambda_1 \left(e^{-it}A + e^{it}A^{\dagger} \right) \right\}$$

where $\lambda_k(H)$ denotes the k-th largest eigenvalue of Hermitian H.

▶ W(A) is always convex. (Toeplitz-Hausdorff Theorem [1918-1919])

Generalization: k-numerical range, c-numerical range, q-numerical range, C-numerical range, kth generalized numerical range, product numerical range, restricted numerical range, rank-k numerical range, indefinite numerical range, nuclear numerical range, q-matricial range...

Given a matrix C, the C-numerical range of A is defined as

 $W_C(A) = \{ \operatorname{tr} (CU^{\dagger}AU) : U \text{ is unitary} \}.$

▶ If
$$C = E_{11}$$
, $W_C(A) = W(A)$.
▶ If $C = E_{11} + \dots + E_{kk}$, then it reduces to k-numerical range
 $W_C(A) = W_k(A) = \left\{ \sum_{j=1}^k x_j^* A x_j : x_1, \dots, x_k \text{ are orthonormal in } \mathbb{C}^n \right\},$

which is convex.

[Halmos, Berger (1963)]

• If $C = \text{diag}(c_1, \ldots, c_n)$, then it reduces to *c*-numerical range

$$W_C(A) = W_c(A) = \left\{ \sum_{j=1}^n c_j x_j^* A x_j : x_1, \dots, x_n \text{ are orthonormal in } \mathbb{C}^n \right\},$$

which is also convex when C is Hermitian. [V

[Westwick (1975), Poon (1980)]

• In general, $W_C(A)$ is not convex.

- ► $W_C(A)$ is convex if there is $\gamma \in \mathbb{C}$ such that $\hat{C} = C \gamma I$ satisfies one of the following conditions.
 - \hat{C} is rank one.
 - \hat{C} is a multiple of a Hermitian matrix.
 - \hat{C} is unitarily similar to a block matrix of the form $[C_{ij}]_{i,j}$ such that C_{11}, \ldots, C_{mm} are square and $C_{ij} = 0$ if $j \neq i + 1$.

[Cheung, Tsing, LAMA (1996)]

Joint numerical range

The joint numerical range of $m\text{-tuple}\ \mathbf{A}=(A_1,\ldots,A_m)$ is defined by

$$W(\mathbf{A}) = \{ (x^* A_1 x, x^* A_2 x, \dots, x^* A_m x) : \|x\| = 1, x \in \mathbb{C}^n \}$$

= {all joint measurements of pure states by the observables A_1, \ldots, A_m }.

Write $A_j = H_j + iG_j$ for Hermitian matrices H_j and G_j ,

 $W(A_1,\ldots,A_m) \subseteq \mathbb{C}^m \cong W(H_1,G_1,H_2,G_2,\ldots,H_m,G_m) \subseteq \mathbb{R}^{2m}.$

Here, assume A_j are Hermitian.

• $W(A_1, A_2, A_3)$ is NOT convex when

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Actually, $W(A_1, A_2, A_3) = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1^2 + a_2^2 + a_3^2 = 1\}.$

For $n \ge 3$, $W(A_1, A_2, A_3)$ is always convex.

[Au-Yeung & Poon, LAA 27:69-79 (1979)]

- For $m \ge 4$, $W(\mathbf{A})$ may not be convex in general.
- $W(\mathbf{A})$ is star-shaped if the dimension n is sufficiently large.

Li & Poon, Studia 194:91-104 (2009)]

Generalized joint numerical ranges

For any
$$\mathbf{A} = (A_1, \dots, A_m) \in H_n^m$$
,

$$W(\mathbf{A}) = \{(x^*A_1x, x^*A_2x, \dots, x^*A_mx) : ||x|| = 1, x \in \mathbb{C}^n\}$$

$$= \{(\mu_1, \dots, \mu_m) \in \mathbb{R}^m : X^*A_jX = \mu_j \text{ with } X \in M_{n \times 1}, X^*X = 1\}$$
(numerical range)

$$\Lambda_k(\mathbf{A}) = \{(\mu_1, \dots, \mu_m) \in \mathbb{R}^m : X^*A_jX = \mu_j I_k \text{ with } X \in M_{n \times k}, X^*X = I_k\}$$
(rank-k numerical range)

$$W(q: \mathbf{A}) = \{(B_1, \dots, B_m) \in H_q^m : X^*A_jX = B_j \text{ with } X \in M_{n \times q}, X^*X = I_q\}$$
(q-matricial range)

$$\Lambda_{p,q}(\mathbf{A}) = \{(B_1, \dots, B_m) \in H_q^m : X^*A_jX = I_p \otimes B_j$$
with $X \in M_{n \times pq}, X^*X = I_{pq}\}$
((p, q)-matricial range)

All these ranges are non-empty and star-sharped when the dimension is sufficiently large. [Lau, Li, Poon, S. JFA, in press]

Generalized joint numerical ranges

• A quantum channel ϕ of the form

$$A\mapsto \sum_{j=1}^r F_j A F_j^\dagger \quad ext{with} \quad \sum_{j=1}^r F_j^\dagger F_j = I$$

has a k-dimensional quantum error correcting code if and only if

$$\Lambda_k(F_1^{\dagger}F_1, F_1^{\dagger}F_2, \dots, F_m^{\dagger}F_m) \neq \emptyset.$$

[Knill and Laflamme, PRA 55:900-911 (1997)], [Choi, Kribs, Zyczkowski, RMP 58:77-91 (2006)]

• A quantum channel ϕ has correctable (recovery) subsystems with size $p \times q$ if and only if

$$\Lambda_{p,q}(F_1^{\dagger}F_1,F_1^{\dagger}F_2,\ldots,F_m^{\dagger}F_m)\neq\emptyset.$$

[Kribs, Laflamme, Poulin, and Lesosky, QIC 6:383-399 (2006)]

 \mathcal{F} : A nonempty set of matrices in M_n .

$$W(\mathcal{F}) = \bigcup \{ W(A) : A \in \mathcal{F} \}$$

 $= \quad \{ \text{all possible measurements of states by some observable } A \in \mathcal{F} \}$

Example Let
$$A = \begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix}$$
 and
 $\mathcal{F} = \operatorname{conv} \{A, -A\} = \{(2t-1)A : t \in [0,1]\}.$
Then
 $W(\mathcal{F}) = \operatorname{conv} \{0, 1+i, 1-i\} \cup \operatorname{conv} \{0, -1-i, -1+i\},$

which is NOT convex.

1+i

JIC UNIVERSITY

Basic Properties

- ▶ For any $a, b \in \mathbb{C}$, $W(a\mathcal{F} + bI) = aW(\mathcal{F}) + b$.
- For any unitary U, $W(\mathcal{F}) = W(U^*\mathcal{F}U)$, where $U^*\mathcal{F}U = \{U^{\dagger}AU : A \in \mathcal{F}\}.$
- \mathcal{F} is bounded $\Longrightarrow W(\mathcal{F})$ is bounded.
- \mathcal{F} is connected $\Longrightarrow W(\mathcal{F})$ is connected.
- \mathcal{F} is compact $\Longrightarrow W(\mathcal{F})$ is compact.
- \mathcal{F} is convex $\neq W(\mathcal{F})$ is convex.
- \mathcal{F} is closed $\implies W(\mathcal{F})$ is closed.

Example
$$\mathcal{F} = \left\{ \begin{bmatrix} a + \frac{i}{a} & 0\\ 0 & 0 \end{bmatrix} : a > 0 \right\} \cup \left\{ \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} \right\}$$

and

$$W(\mathcal{F}) = \{a + ib : a, b > 0, ab \le 1\} \cup \{0\}.$$

More Properties

$$\blacktriangleright W(\mathcal{F}) = \{\mu\} \Longleftrightarrow \mathcal{F} = \{\mu I\}.$$

$$\blacktriangleright \ W(\mathcal{F}) \subseteq \text{a straight line } L \Longleftrightarrow$$

•
$$\mathcal{F} \subseteq \{\mu I : \mu \in L\}$$
, or

▶ $\exists \alpha \in \mathbb{C} \text{ s.t. } \alpha(A - \operatorname{tr}(A)/n)$ are Hermitian for all $A \in \mathcal{F}$ and

$$\{(\operatorname{tr} A)/n : A \in \mathcal{F}\}$$
 is collinear.

▶
$$W(\mathcal{F})$$
 is a convex polygon $\iff W(\mathcal{F}) = \operatorname{conv} \{v_1, \dots, v_m\},$
where v_j is an eigenvalue of some $A_j \in \mathcal{F}$.

Assume ${\mathcal F}$ is convex

 If *F* contains a scalar matrix μ*I*, then W(*F*) is star-shaped with μ as a star center.

▶ Suppose
$$\bigcap_{A \in \mathcal{F}} W(A) \neq \emptyset$$
. Then $W(\mathcal{F})$ is star-shaped with μ as a star center for all $\mu \in \bigcap_{A \in \mathcal{F}} W(A)$.

• If tr $A = \mu$ for all $A \in \mathcal{F}$, then $W(\mathcal{F})$ is star-shaped with μ as a star center.

Assume $\mathcal{F} = \operatorname{conv} \mathcal{G}$

▶ Suppose
$$\bigcap_{A \in \mathcal{G}} W(A) \neq \emptyset$$
. Then $W(\mathcal{F})$ is star-shaped
with μ as a star center for all $\mu \in \bigcap_{A \in \mathcal{G}} W(A)$.

Assume $\mathcal{F} = \operatorname{conv} \{A, B\} \ (\mathcal{G} = \{A, B\})$

- If W(A) ∩ W(B) ≠ Ø, then W(F) is star-shaped with µ as a star center for all µ ∈ W(A) ∩ W(B).
- ▶ If $W(A) \cup W(B)$ lies on a line, then $W(\mathcal{F}) = \operatorname{conv} \{W(A), W(B)\} \text{ is convex}.$
- Otherwise, there are two non-parallel lines L_1 and L_2 intersecting at μ such that for each j = 1, 2, L_j is a common supporting line of W(A) and W(B) separating the two convex sets; the set $W(\mathcal{F})$ is star-shaped with star-center μ .

Assume $\mathcal{F} = \operatorname{conv} \{A_1, \ldots, A_m\}$ ($\mathcal{G} = \{A_1, \ldots, A_m\}$)

►
$$W(\mathcal{F}) = W^{\otimes}(A_1 \oplus A_2 \oplus \cdots \oplus A_m)$$
, where
 $W^{\otimes}(X) = \{ \langle u \otimes v | X | u \otimes v \rangle : \langle u | u \rangle = \langle v | v \rangle = 1 \}.$ (product numerical range)

[Gawron, Puchala, Miszczak, Skowronek, Zyczkowski, JMP 51:102204 (2010)]

►
$$W(\mathcal{F}) = W(\hat{\mathcal{F}}) = W(\operatorname{conv} \hat{\mathcal{F}})$$
, where
 $\hat{\mathcal{F}} = \{A_x = \operatorname{diag}(\langle x|A_1|x\rangle, \dots, \langle x|A_m|x\rangle) : \langle x|x\rangle = 1, |x\rangle \in \mathbb{C}^n\}.$

Suppose
$$\bigcap_{j=1}^{m} W(A_j) \neq \emptyset$$
. Then $W(\mathcal{F})$ is star-shaped

with μ as a star center for all $\mu \in \bigcap_{j=1}^{m} W(A_j)$.

▶ $\exists \{A_1, A_2, A_3\}$ with $W(A_1) \cap W(A_2) \cap W(A_3) = \emptyset$ and $W(\mathcal{F})$ is NOT star-shaped.

Example Let
$$A = \begin{bmatrix} 1+i & 0\\ 0 & 1-i \end{bmatrix}$$
 and $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ with
 $\mathcal{F}_1 = \operatorname{conv} \{A, -A\} = \{(2t-1)A : t \in [0,1]\}$
 $\mathcal{F}_2 = \operatorname{conv} \{A, -A + 4I_2\} = \{(2t-1)(A - 2I_2) + 2I_2 : t \in [0,1]\}.$

Notice that ${\mathcal F}$ is star-shaped with A as a star center. But

 $W(\mathcal{F}) = \operatorname{conv} \{0, -1+i, -i-i\} \cup \operatorname{conv} \{0, 2, 1-i, 1+i\} \cup \operatorname{conv} \{2, 3+i, 3-i\}.$

Assume $\mathcal{F} = \operatorname{conv} \{A, B\}$ and both $W_C(A)$ and $W_C(B)$ are convex.

- ▶ If $W_C(A) \cap W_C(B) \neq \emptyset$, then $W_C(\mathcal{F})$ is star-shaped with μ as a star center for all $\mu \in W_C(A) \cap W_C(B)$.
- ▶ If $W_C(A) \cup W_C(B)$ lies on a line, then $W_C(\mathcal{F}) = \operatorname{conv} \{W_C(A), W_C(B)\}$ is convex.
- Otherwise, there are two non-parallel lines L₁ and L₂ intersecting at μ such that for each j = 1, 2, L_j is a common supporting line of W_C(A) and W_C(B) separating the two convex sets; the set W_C(F) is star-shaped with star-center μ.

 $\overline{\zeta_A \zeta_B} \cup \overline{\zeta_B y_B} \cup \overline{y_B y_A} \cup \overline{y_A \zeta_A} \subseteq W_C(\mathcal{F})$

 $V \to U \text{ continuously} \Longrightarrow \operatorname{conv} \{ \overline{\zeta_A \zeta_B} \cup \overline{\zeta_B y_B} \cup \overline{y_B y_A} \cup \overline{y_A \zeta_A} \} \subseteq W_C(\mathcal{F})$ $\Longrightarrow \overline{\zeta 0} \subseteq W_C(\mathcal{F})$

Example Let $w = e^{2\pi i/3}$ and $C = \text{diag}(1, w, w^2)$. Suppose $A = C - \frac{1}{6}I$, $B = e^{\pi i/3}C + \frac{1}{6}I$ and $\mathcal{F} = \text{conv}\{A, B\}$. Then both $W_{C+I}(A)$ and $W_{C+I}(B)$ are not star-shaped. Furthermore, $W_{C+I}(\mathcal{F})$ is not star-shaped.

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

