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Abstract. Let L be an additive map between (real or complex) matrix algebras sending n × n

Hermitian idempotent matrices to m×m Hermitian idempotent matrices. We show that there are

nonnegative integers p, q with n(p + q) = r ≤ m and an m×m unitary matrix U such that

L(A) = U [(Ip ⊗A) ⊕ (Iq ⊗At) ⊕ 0m−r]U∗, for any n× n Hermitian A with rational trace.

We also extend this result to the (complex) von Neumann algebra setting, and provide a supplement

to the Dye-Bunce-Wright Theorem asserting that every additive map of Hermitian idempotents

extends to a Jordan ∗- homomorphism.

1. Introduction

Let Mn be the set of real or complex n× n matrices with identity In, and let Hn = {A ∈Mn :

A = A∗} be the set of Hermitian matrices, and Un = {A ∈Mn : A∗A = In} be the set of unitary

matrices in Mn. We say that two matrices A,B in Mn are orthogonal if A∗B = AB∗ = 0, and A

is an idempotent if A2 = A.

There has been considerable interest in the study of preserver problems on matrices, which

concerns the characterizations of maps on matrices with some special properties. In early study,

researchers often impose linearity or bijective assumption on the maps. For example, Frobenius

shows that a linear map L : Mn → Mn satisfies L(A) = det(L(A)) for all A ∈ Mn if and only if

there are M,N ∈Mn satisfying det(MN) = 1 such that L has the form A 7→MAN or A 7→MAtN .

Dieudonné shows that a bijective linear map L : Mn → Mn sends singular matrices to singular

matrices if and only if there are invertible M,N ∈ Mn such that L has the form A 7→ MAN or

A 7→MAtN . One may see [11] and its references for some general background.

In recent study, researchers try to relax the linearity and/or the bijectivity assumption. See, e.g.,

[10,12]. It follows from the spectral theory that every Hermitian matrix is a real linear combination

of Hermitian idempotents, also known as projections. Therefore, a linear map between matrix

algebras is determined by its action on Hermitian idempotents. More precisely, let P (Mn) be the

lattice of n× n Hermitian idempotents (in the positive semi-definite order), and let spanQ P (Mn)

be the rational linear span of Hermitian idempotents in Hn. By [6, Theorem 1] we see that

spanQ P (Mn) consists of those n× n Hermitian matrices with rational trace. Suppose an additive

map L : Hn → Hm sends Hermitian idempotents to Hermitian idempotents. We will see in

Theorem 2.1 that L agrees with a Jordan ∗-homomorphism on spanQ P (Mn).
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We extend this result to the (complex) von Neumann algebra setting. Let spanQ P (M) be

the rational span of Hermitian idempotents in a von Neumann algebra M , where P (M) is the

lattice of Hermitian idempotents in M . We know that the complex linear span of P (M) is norm

dense in M . The seminal Dye Theorem [5] says that if M,N are von Neumann algebras such

that M does not contain a direct type I2 summand, then any bijective map Φ : P (M) → P (N)

sending orthogonal Hermitian idempotents to orthogonal Hermitian idempotents extends uniquely

to a Jordan ∗-isomorphism between the whole algebras. The non-bijective version of the Dye

Theorem is provided by Bunce and Wright in [2] (see Theorem 3.8), in which they assume a

stronger condition, namely, Φ is an orthomorphism in the sense that Φ sends every pair P,Q

of orthogonal Hermitian idempotents to orthogonal Hermitian idempotents Φ(P ),Φ(Q) such that

Φ(P∨Q) = Φ(P )∨Φ(Q). It is easy to see that Φ is an orthomorphism if and only if it is orthogonally

additive, that is, Φ(P + Q) = Φ(P ) + Φ(Q) whenever P,Q are Hermitian idempotents orthogonal

to each other. However, the conclusion does not hold when M contains a direct type I2 summand,

as demonstrated by the following well known example.

Example 1.1. All nontrivial projections in the von Neumann algebra M2 have rank one, which

are in one-to-one correspondence with the elements in the sphere in R3 of radius 1/2, that is,

P (M2) \ {0, I2} ∼=
{(

1/2 + x y + iz
y − iz 1/2− x

)
: x, y, z ∈ R such that x2 + y2 + z2 = (1/2)2

}
.

In this way, the orthogonal complement of

P =

(
1/2 + x y + iz
y − iz 1/2− x

)
is I2 − P =

(
1/2− x −y − iz
−y + iz 1/2 + x

)
.

Consider the bijective map Φ : P (M2)→ P (M2) fixing every Hermitian idempotent, but exchang-

ing

(
1 0
0 0

)
with its orthogonal complement

(
0 0
0 1

)
. It is clear that Φ preserves orthogonality,

and indeed, Φ is orthogonally additive. But the discontinuous map Φ cannot extend to any (con-

tinuous) Jordan ∗-homomorphism (indeed, any linear map either) of the whole matrix algebra

M2.

To obtain a full version of our expected result, we need to assume a stronger condition on Φ. It

turns out that if Φ is an additive map between the rational spans of the Hermitian idempotents

then everything works. We can include the type I2 case in our main result below, which can be

considered as a supplement to both the Dye Theorem and the Bunce-Wright Theorem.

Theorem 1.2. Let M be a von Neumann algebra and B be a C∗-algebra. Let L : spanQ P (M)→
spanQ P (B) be an additive map sending Hermitian idempotents to Hermitian idempotents. Then

L extends to a Jordan ∗-homomorphism J : M → B.

2. Additive preservers of Hermitian idempotent matrices

In the following, we determine the structure of additive maps that send Hermitian idempotents

to Hermitian idempotents. Our approach is different from the one in [3,13], in which additive (not

Hermitian) idempotent preservers are studied through a pure ring theoretical argument. It is also
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different from [4] in which the additivity is replaced by a weaker assumption, while the surjectivity

is assumed.

Theorem 2.1. Let L : Hn → Mm be an additive map. Then L sends Hermitian idempotent

matrices (up to rank 2) to Hermitian idempotent matrices if and only if there are nonnegative

integers p, q with n(p+ q) = r ≤ m and there is U ∈ Um such that

L(A) = U [(Ip ⊗A)⊕ (Iq ⊗At)⊕ 0m−r]U
∗, for any A ∈ Hn with rational trace. (2.1)

Remark 2.2. (a) It is clear that an additive map L : Hn →Mm is exactly rational linear. In many

preserver problems, the additive assumption will ensure real linearity. However, it is not the case

for Theorem 2.1. On the other hand, a careful reader will see that condition (2.1) is equivalent to

the following two separated conditions:

L(αIn) = U(αIr ⊕ 0m−r)U
∗ for any rational number α, (2.2)

and

L(A) = U [(Ip ⊗A)⊕ (Iq ⊗At)⊕ 0m−r]U
∗ for any A ∈ Hn with zero trace. (2.3)

So, the map L is linear on the real linear subspace of trace zero Hermitian matrices in Mn, and it

is rational homogeneous on the identity matrix.

(b) Note that we have no control on the image L(A) when A does not have rational trace. In

fact, one can define an additive map T : Hn → Mm by setting T (A) = L(A) + L0(A), where L0

is an arbitrary additive map such that L0(A) = 0 whenever trA is zero. For instance, we can let

L0(A) = τ(trA), where τ : R → Mm is any rational linear map such that τ(1) = 0. Clearly, T

agrees with L at every Hermitian matrix with rational trace, but T (A) can be arbitrary when A

does not have rational trace.

We establish some lemmas to prove Theorem 2.1. For two Hermitian matrices A,B, we write

A ≥ B if A−B is positive semi-definite.

Lemma 2.3. If L : Hn →Mm is additive and preserves Hermitian idempotents, then L(P ) ≤ L(Q)

whenever P,Q ∈ Hn are idempotents satisfying P ≤ Q.

Proof. If P,Q ∈ Hn are idempotents such that Q ≥ P , then Q = P + P̂ for some Hermitian

idempotent P̂ orthogonal to P . So, L(Q) = L(P ) + L(P̂ ) ≥ L(P ).

Lemma 2.4. If L : Hn → Mm is additive and sends Hermitian idempotents (up to rank 2) to

Hermitian idempotents, then L is real linear on the set of trace zero Hermitian matrices.

Proof. Suppose x, y are unit vectors orthogonal to each other. Since L(x∗x+y∗y) = L(x∗x)+L(y∗y)

is a Hermitian idempotent, the Hermitian idempotents L(x∗x) and L(y∗y) are orthogonal to each

other. We may assume that there is U ∈ Um such that L(xx∗) = U(Ir ⊕ 0s ⊕ 0m−r−s)U
∗ and

L(yy∗) = U(0r⊕ Is⊕ 0m−r−s)U
∗. For notation simplicity, we assume that U = Im, xx∗ = E11, and

yy∗ = E22, where Eij denotes the matrix unit with 1 at the (i, j)th entry and zero elsewhere.

Consider a positive real sequence {αn} → 0. Let Qn = αn(E11 − E22). We will show that

L(Qn)→ 0. For each n, let rn be a rational number with 0 < αn < rn ≤ 2αn, let

Rn = rn(E11 + E22), and A±n = αn(E11 − E22)±
√
r2
n − α2

n(E12 + E21).
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Then (Rn ± A±n )/(2rn) are rank one Hermitian idempotents with range space lying in that of

E11 + E22. By Lemma 2.3,

1

2rn
(L(Rn)± L(A±n )) ≤ Ir+s ⊕ 0m−r−s.

Since L(Rn) = rn(Ir+s ⊕ 0m−r−s), we see that L(A±n ) ∈ Hm and

±L(A±n ) ≤ rn(Ir+s ⊕ 0m−r−s).

Consequently, L(Qn) = 1
2(L(A+

n ) + L(A−n )) satisfies

±L(Qn) ≤ rn(Ir+s ⊕ 0m−r−s) ≤ 2αn(Ir+s ⊕ 0m−r−s).

We conclude that L(αn(E11 − E22)) = L(Qn)→ 0.

We thus see that for any matrix A ∈ Hn of the form xx∗ − yy∗ for an orthonormal pair x, y and

any positive real number α, we can choose a sequence {qn} of positive and rational real numbers

converging to α. Then

L(αA) = L(qnA) + L((α− qn)A) = qnL(A) + L((α− qn)A)→ αL(A).

Note that every trace zero matrix in Hn is a real linear combination of Hermitian matrices of the

form xx∗ − yy∗ for an orthonormal set {x, y}. To see this, if A is Hermitian with trA = 0, then

A = V DV ∗ for some V ∈ Un and a real diagonal matrix D = diag (d1, . . . , dn) with
∑n

j=1 dj = 0.

Then we can write D =
∑n−1

j=1 (αjEjj − αjEj+1,j+1) for a suitable choice of α1, . . . , αn−1 ∈ R. So,

A = α1A1 + · · ·+ αn−1An−1 with Aj = V (Ejj − Ej+1,j+1)V ∗ = xjx
∗
j − yjy∗j for some orthonormal

pairs {xj , yj}, j = 1, . . . , n− 1. In this way, we see that L(αA) = αL(A) for any α ∈ R and trace

zero Hermitian matrix A.

Proof of Theorem 2.1. The sufficiency is clear.

To prove the necessity, we note that Hn is the direct sum of the real linear subspace of trace zero

matrices and the one dimensional span of the identity matrix. Indeed, A = (A−tr (A)In)+tr (A)In

is the decomposition of any matrix A. We may consider the real linear map L̃ : Hn →Mm defined

by L̃(A) = L(A) if A ∈ Hn with trA = 0 and L̃(αIn) = αL(In) for any α ∈ R.

Assume that the underlying field is the complex numbers. Extend L̃ to a complex linear map

from Mn into Mm by setting L̃(H + iG) = L̃(H) + iL̃(G) for H,G ∈ Hn. By the spectral theory,

every square complex matrix is the complex linear sum of two Hermitian matrices, and every

Hermitian matrix is the orthogonal real linear sum of orthogonal rank one Hermitian idempotents.

Since L̃ sends orthogonal rank one Hermitian idempotents to orthogonal idempotents, it preserves

orthogonal Hermitian idempotents. Consequently, L̃ preserves squares of matrices. Therefore,

L̃ is a Jordan ∗-homomorphism, and indeed a direct sum of an algebra ∗-homomorphism and

an algebra ∗-anti-homomorphism sending Mn into Mm. It follows that L̃ has the asserted form

A 7→ U [(Ip ⊗ A) ⊕ (Iq ⊗ At) ⊕ 0m−p−q]U
∗. Since L and L̃ agree on any Hermitian idempotent,

L(A) = L̃(A) for any A ∈ Hn with rational trace as stated in (2.1).

The case when the underlying field is the real numbers demands an other approach. Below, we

borrow an idea from the proof of [10, Theorem 4.10]. We now assume that L̃ is a real linear map

sending real n×n matrices to m×m matrices, which sends orthogonal real symmetric idempotents
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to orthogonal Hermitian idempotents. Since every real symmetric matrix is a real linear sum of

orthogonal real symmetric idempotents, we see that L̃ preserves zero products; namely, L̃(A)L̃(B) =

0 whenever A,B are real symmetric matrices with AB = 0. Without loss of generality, let L̃(In) =

Is ⊕ 0m−s. We can further assume that m = s, L̃(In) = Is and

L̃(Eii) = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1
⊕ · · · ⊕ 0kn , i = 1, . . . , n.

Here, k1 + k2 + · · ·+ kn = s.

Let

B = L̃(E12 + E21) =

(
B11 B12

B21 B22

)
⊕ 0s′ ,

where Bij are ki× kj matrices for i, j = 1, 2, and s′ = s− k1− k2. For any nonzero real γ, consider

X1 =

(
γ 1
1 1/γ

)
⊕ 0n−2 and X2 =

(
1/γ −1
−1 γ

)
⊕ 0n−2.

Because X1X2 = 0n, we see that

0s = L̃(X1)L̃(X2) = (L̃(γE11 + E22/γ) +B)(L̃(E11/γ + γE22)−B)

=

[(
γIk1 0

0 Ik2/γ

)
⊕ 0s′ +B

] [(
Ik1/γ 0

0 γIk2

)
⊕ 0s′ −B

]
=

(
Ik1 0
0 Ik2

)
⊕ 0s′ −B2 −

(
γB11 γB12

B21/γ B22/γ

)
⊕ 0s′ +

(
B11/γ γB12

B21/γ γB22

)
⊕ 0s′

=

(
Ik1 0
0 Ik2

)
⊕ 0s′ −B2 −

(
(γ − 1/γ)B11 0

0 (1/γ − γ)B22

)
⊕ 0s′ .

Since this is true for all nonzero real γ, we see that B11 and B22 are zero blocks. Because the (1, 1)

and (2, 2) blocks of B are zero, we get

B12B21 = Ik1 and B21B12 = Ik2 .

Hence, k1 = k2 and B21 = B−1
12 = B∗12, noting that B = L̃(E12 + E21) is a Hermitian unitary.

Similarly, we get all k1 = k2 = · · · = kn, and we set this common value to be k. It follows s = nk.

Now, we may replace L̃ with the map (B∗12 ⊕ Ik ⊕ Is−2k)L̃(X)(B12 ⊕ Ik ⊕ Is−2k) so that B12 is

changed to Ik. Consequently, we can assume

B = L̃(E12 + E21) =

(
0 Ik
Ik 0

)
⊕ 0s−2k.

In a similar manner, we can assume, up to similarity,

L̃(E1j + Ej1) = (E1j + Ej1)⊗ Ik for all j = 1, . . . , n.

Notice that E11 and Eij + Eji are orthogonal for all i, j = 2, . . . , n. It follows that L̃(E11) =

Ik ⊕ 0s−k and L̃(Eij +Eji) are orthogonal for all i, j = 2, . . . , n. Consequently, all L̃(Eij +Eji) are

contained in (0k ⊕ Is−k)Ms(0k ⊕ Is−k).

With an induction argument we can show that

L̃(Eij + Eji) = (Eij + Eji)⊗ Ik for all i, j = 1, . . . , n.

After a permutation similarity, we can assume instead

L̃(Eij + Eji) = Ik ⊗ (Eij + Eji) for all i, j = 1, . . . , n.
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Since {Eij +Eji : i, j = 1, . . . , n} is a basis for the real symmetric n× n matrices, we arrive at the

asserted representation (2.1) in which At = A since all A are real symmetric.

Corollary 2.5. Let L : Hn →Mn be a nonzero additive map. Then L sends Hermitian idempotents

(up to rank 2) to Hermitian idempotents if and only if there is U ∈ Un such that L assumes either

the form

A 7→ UAU∗ or A 7→ UAtU∗, for all A ∈ Hn with rational trace.

In view of Remark 2.2, we may rewrite the necessary condition of the corollary as: L(I) = I and

there is U ∈ Um satisfying either

(1) L(A) = UAU∗ for all trace zero A ∈ Hn, or (2) L(A) = UAtU∗ for all trace zero A ∈ Hn.

3. Additive Hermitian idempotent preservers of von Neumann algebras

Let M be a (complex) von Neumann algebra (resp. C∗-algebra), which can be considered as

a *-subalgebra of the ∗-algebra B(H) of bounded linear operators on a complex Hilbert space H

closed in the weak operator topology (resp. norm topology). When H has finite dimension, M is

a direct sum of matrix algebras. Let P (M) and Msa denote the set of Hermitian idempotents and

the self-adjoint part of M , respectively.

Let M be a von Neumann algebra, let B be a C∗-algebra, and let L : Msa → B be an additive

map. Assume that L sends Hermitian idempotents in M to Hermitian idempotents in B. We

want to study the structure of L. Our expectation is that L extends to a (complex linear) Jordan

∗-homomorphism J : M → B.

Let spanQ P (M) be the rational linear span of the Hermitian idempotents in M . We can con-

sider spanQ P (M) as a Q-linear subspace of Msa. Similarly, spanQ P (B) is a Q-linear subspace

of Bsa, and also B. Then any Q-linear map L : Msa → B factorizing through the Q-quotient

spaces Msa/ spanQ P (M) and B/ spanQ P (B) is an additive map preserving Hermitian idempo-

tents. There are indeed many of them.

Example 3.1. (a) Let M be any nonzero von Neumann algebra. Let BP be a Hamel basis of the

Q-linear space spanQ P (M), and let B be any Hamel basis of the Q-linear space Msa extending

BP . Suppose l : B → B is any map fixing every basic element in BP . Then l induces a Q-linear

map L : Msa → M sending Hermitian idempotents to Hermitian idempotents. For such a map l,

choose a sequence {vk} from B \ BP and redefine l(vk) = kvk for k = 1, 2, . . .. In this way, l defines

an unbounded additive Hermitian idempotent preserver L of Msa.

(b) Let U be a free ultrafilter on the natural numbers N. Consider the bounded linear functional

L : `∞ → C of the abelian von Neumann algebra `∞ of bounded scalar sequences sending (xn)

to limU xn. A Hermitian idempotent of `∞ is the indicator function 1A of a subset A of N. Now,

L(1A) = 1 exactly when A ∈ U, and it is zero otherwise. Therefore, L sends Hermitian idempotents

to Hermitian idempotents. Note that L is not a normal state, that is, it is not continuous for the

weak* topology of `∞.

(c) Consider a commutative von Neumann algebra M = L∞(Ω, µ). The Hermitian idempotent

lattice P (M) of M consists of indicator functions 1X of measurable subsets X of Ω. Moreover,
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spanQ P (M) consists of all measurable functions which assume finitely many rational values, or

equivalently those Hermitian elements with finite rational spectrum.

Let L : L∞(Ω, µ)sa → L∞(Ω′, µ′) be an additive map sending Hermitian idempotents to Her-

mitian idempotents. In other words, L sends indicator functions 1X of measurable sets X in Ω to

indicator functions 1Y of measurable sets Y in Ω′. In this way, L induces a map Φ between the

underlying σ-algebras such that L(1X) = 1Φ(X) for every measurable set X in (Ω, µ). Here, Φ(X)

is a measurable set in (Ω′, µ′) determined uniquely up to a measure zero error. Indeed, Φ preserves

null sets, differences, finite unions and finite intersections, all up to measure zero errors. But Φ

might not preserve countable unions or countable intersections, as shown in the example in (b) in

which Φ(N) = Ω′ while Φ({n}) = ∅ for n = 1, 2, . . ..

We can define an algebra ∗-homomorphism J : L∞(Ω, µ)→ L∞(Ω′, µ′) which extends the corre-

spondence J(1X) = 1Φ(X) by (complex) linearity and (norm) continuity. Clearly, L agrees with J

on spanQ P (L∞(Ω, µ)); namely, L(f) = J(f) whenever f assumes essentially finitely many rational

values.

(d) In general, let B be a C∗-algebra and let L : L∞(Ω, µ)sa → B be an additive map sending

Hermitian idempotents to Hermitian idempotents. Arguing as above, we see that L induces a

rational linear map from spanQ P (L∞(Ω, µ)) into spanQ P (B) preserving squares. Extending this

map by linearity and continuity, we have an algebra ∗-homomorphism J : L∞(Ω, µ) → B which

agrees with L at every function f in L∞(Ω, µ)sa assuming essentially finitely many rational values.

We note that Msa = spanQP (M) is the norm closure of the rational linear space spanned by

the Hermitian idempotents in M . The following well-known lemma helps us to tell which additive

Hermitian idempotent preserver arises from a Jordan ∗-homomorphism.

Lemma 3.2. Let T : E → F be an additive map between two real normed space. The following

conditions are equivalent.

(a) T is (locally) bounded, that is, T sends the unit ball of E into a norm bounded set in F .

(b) T is norm-norm continuous.

In this case, T is real linear.

Recall that a C∗-algebra A has real rank zero when every Hermitian element in A can be ap-

proximated in norm by Hermitian elements with finite spectrum [1]. In particular, von Neumann

algebras have real rank zero.

Lemma 3.3. Let A,B be C∗-algebras such that A has real rank zero. Let L : Asa → B be

an additive, or equivalently, a Q-linear map. If L sends Hermitian idempotents to Hermitian

idempotents, then L extends to a (complex linear) Jordan ∗-homomorphism J : A → B exactly

when L is bounded.

Proof. We provide here an easy proof for completeness. We only need to consider the case L is a

bounded additive Hermitian idempotent preserver. If p, q are orthogonal Hermitian idempotents

in A, then all L(p), L(q) and L(p+ q) are Hermitian idempotents in B. It amounts to saying that

L(p)L(q) + L(q)L(p) = 0. Since both L(p), L(q) are Hermitian idempotents, we have

−L(q)L(p) = L(p)L(q) = L(p)(L(p)L(q)) = −L(p)(L(q)L(p)) = (L(q)L(p))L(p) = L(q)L(p) = 0.
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In other words, L(p), L(q) are orthogonal to each other. For any Hermitian x in Asa, we can

approximate x in norm by a rational linear sum of orthogonal Hermitian idempotents
∑

k αkpk.

Since

[L(
∑
k

αkpk)]2 =
∑
k

α2
kL(pk) +

∑
r 6=s

αrαsL(pr)L(ps) =
∑
k

α2
kL(pk) = L(

∑
k

α2
kpk),

we see that L(x2) = L(x)2. We also note that, L is real linear and sends Hermitian elements to

Hermitian elements. Define J : A→ B by J(x+ iy) = L(x) + iL(y) for x, y ∈ Asa. It is easy to see

that J is a Jordan ∗-homomorphism extending L.

Lemma 3.4. For a von Neumann algebra M without finite type I summand, any additive Hermitian

idempotent preserver L : Msa → B into a C∗-algebra B extends to a Jordan ∗-homomorphism

J : M → B.

Proof. By a result of Goldstein and Paszkiewicz [7, Theorem 3(3)], any Hermitian element of M of

norm not greater than one can be represented in the form

p1 + · · ·+ p12 − p13 − · · · − p24

for some (maybe zero) Hermitian idempotents p1, . . . , p24 in M . For any x in Msa, we see that x/α

is an algebraic sum of 24 Hermitian idempotents for any rational number α ≥ ‖x‖. Consequently,

L(x) = αL(x/α) has norm not greater than 24α. Therefore, Msa coincides with the Q-linear span

spanQ P (M) of its Hermitian idempotents and L is an additive map from Msa into B of norm

bounded by 24. It follows from Lemma 3.3 that L extends to a Jordan ∗-homomorphism from M

into B.

Recall that we can embed a C∗-algebra B into B(K) as a C∗-subalgebra for some complex

Hilbert space K, by the Gelfand-Naimark theorem.

Corollary 3.5. Let H,K be complex Hilbert spaces of infinite dimension. Let L : B(H)sa → B(K)

be a nonzero additive map preserving Hermitian idempotents. Then dimH ≤ dimK, and thus

we can consider H as a closed subspace of K. Moreover, there are a unitary U and orthogonal

projections Ir, Is in B(K) such that in the operator block matrix form

L(A) = U

A⊗ Ir 0 0
0 At ⊗ Is 0
0 0 0

U∗, ∀A ∈ B(H)sa.

Here, At is the transpose of A with respect to some fixed orthonormal basis of K.

Proof. By Lemma 3.4 we see that L extends to a Jordan ∗-homomorphism J : B(H) → B(K).

Since B(H) is simple, we see that J is injective and thus dimH ≤ dimK. It is well known that

J = Φ1 + Φ2 is a sum of an injective algebra ∗-homomorphism Φ1 and an injective algebra *-anti-

homomorphism Φ2, which have orthogonal ranges, and every ∗-algebra homomorphism of B(H) is

a direct sum of inner homomorphisms (see, e.g., [12, Section 2]). The assertion follows.

We now consider the case when M is a finite type In factor.
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Lemma 3.6. Let n > 1 and L : Hn → B(K) be a nonzero additive Hermitian idempotent preserver

for some Hilbert space K. Then dimK ≥ n and there is a unitary U and orthogonal Hermitian

idempotents Ir, Is in B(K) such that in the operator matrix block form

L(A) = U

A⊗ Ir 0 0
0 At ⊗ Is 0
0 0 0

U∗, ∀A ∈ spanQ P (Mn).

Proof. By (the proof of) Lemma 2.4, we see that L is real linear on the real linear subspace of Hn

of Hermitian matrices with zero trace. The conclusion follows from the proof of Theorem 2.1.

Recall that for any von Neumann algebra M of type In with center Z(M) for any finite integer

n ≥ 2, we can think of M ∼= Z(M)⊗Mn
∼= Mn(Z(M)). The commutative von Neumann alge-

bra Z(M) is in general a direct sum of L∞(Ωj , µj) spaces for some (can be uncountably many)

localizable measure spaces (Ωj , µj). Therefore, we can write the type In von Neumann algebra

M ∼=
⊕

j Mn(L∞(Ωj , µj)).

An elementA(ω) = [a1(ω) a2(ω) . . . an(ω)] in Mn(L∞(Ω, µ)) is a measurable n×nmatrix valued

function with measurable column vectors a1, a2, . . . , an on the (not necessarily localizable) measure

space (Ω, µ). Note that when (Ω, µ) is not localizable, L∞(Ω, µ) might not be a von Neumann

algebra since it might not have a predual, i.e., L1(Ω, µ)∗ 6= L∞(Ω, µ). However, L∞(Ω, µ) is still a

commutative C∗-algebra full of Hermitian idempotents.

Lemma 3.7. Let B be a C∗-algebra, let (Ω, µ) be a measure space and let n be an integer n ≥ 2.

Let L : Mn(L∞(Ω, µ))sa → B be an additive map sending Hermitian idempotents to Hermitian

idempotents. Then there is a Jordan ∗-homomorphism J : Mn(L∞(Ω, µ)) → B such that J(A) =

L(A) whenever A ∈ spanQ P (Mn(L∞(Ω, µ))).

Proof. Let A(ω) = [a1(ω) a2(ω) . . . an(ω)] in Mn(L∞(Ω, µ)) be a measurable n × n Hermitian

matrix valued function on (Ω, µ). By [9, Theorem 2.4] (although it is stated for real symmetric

random matrices, the statement and the proof work also for the complex Hermitian matrix case),

we can order the real eigenvalues d1(ω) ≤ d2(ω) ≤ · · · ≤ dn(ω) of A(ω) as measurable functions

on Ω with corresponding measurable eigenvector functions u1(ω), u2(ω), . . . , un(ω) which form an

orthonormal basis of Cn for every ω in Ω. Then U(ω) = [u1(ω), u2(ω), . . . , un(ω)] is a unitary

element in Mn(L∞(Ω, µ)).

Arguing as in the proof of Lemma 2.4, if A(ω) is Hermitian with trA(ω) = 0 almost everywhere

on Ω, then we can write A = α1A1 + · · · + αn−1An−1 with Aj = U(αjEjj − αjEj+1,j+1)U∗ =

αj(xjx
∗
j − yjy∗j ) for some α1, . . . , αn−1 ∈ R, and measurable orthonormal pairs of Cn vector valued

functions {xj , yj} on (Ω, µ), for j = 1, . . . , n − 1. Moreover, we can show that L is homogeneous

on all Aj ’s, and thus real linear on the set of matrix-valued functions on Ω with zero central traces

almost everywhere.

On the other hand, consider the additive map La : L∞(Ω, µ)sa → B defined by La(k) = L(k⊗In).

Then La sends Hermitian idempotents to Hermitian idempotents. By Example 3.1(d), we have an

algebra ∗-homomorphism Ja : L∞(Ω, µ) → B agreeing with La at every function in L∞(Ω, µ)sa

assuming essentially finitely many rational values.
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Let A ∈ spanQ P (Mn(L∞(Ω, µ))). It amounts to say that the central trace g(ω) = trA(ω) of A

assumes essentially finitely many rational values on Ω. Then C(ω) = A(ω)− g(ω)
n In is an element

in Mn(L∞(Ω, µ))sa of zero central trace. Define L̃ : Mn(L∞(Ω, µ))sa → Bsa by L̃(C) = L(C)

whenever C has almost everywhere zero central trace, and L̃(k⊗In) = Ja(k)L(1Ω⊗In) for any real

valued function k ∈ L∞(Ω, µ)sa. It is clear that L̃ is bounded, real linear and preserves Hermitian

idempotents. Thus L̃ extends to the desired Jordan ∗-homomorphism J : Mn(L∞(Ω, µ))→ B.

Although an additive Hermitian idempotent preserver L : Msa → B might not arise from a

Jordan ∗-homomorphism when M has a nonzero finite type I summand, it is very close to the case

as suggested by Lemmas 3.6 and 3.7. Indeed, we have the following Dye-Bunce-Wright Theorem.

Here, an orthomorphism is a map Φ between Hermitian idempotent lattices such that Φ sends

orthogonal Hermitian idempotents p, q to orthogonal Hermitian idempotents Φ(p),Φ(q) such that

Φ(p ∨ q) = Φ(p) ∨ Φ(q); in other words, Φ is orthogonally additive in the sense that Φ(p + q) =

Φ(p) + Φ(q) for orthogonal Hermitian idempotents p, q.

Theorem 3.8 ([2], see also [8, Theorem 8.1.1]). Let M be a von Neumann algebra without type I2

direct summand and B be a C∗-algebra. For every orthomorphism Φ : P (M) → P (B), there is a

Jordan ∗-homomorphism J : M → B extending Φ.

While some of our previous results can be derived from Theorem 3.8, it is known that Theorem

3.8 does not hold if M has a type I2 direct summand (see Example 1.1). Recall that for a general

von Neumann algebra M , there is a central Hermitian idempotent zIf (resp. zI2) in M such that

the weak* closed ideal zIfM (resp. zI2M) has finite type If (resp. type I2), while the weak* closed

ideal (1− zIf )M (resp. (1− zI2)M) has no finite type I (resp. type I2) summand.

Theorem 3.9. Let M be a von Neumann algebra and B be a C∗-algebra. Let L : Msa → B be an

additive map sending Hermitian idempotents to Hermitian idempotents. Then there is a (complex

linear) Jordan ∗-homomorphism J : M → B agreeing with L on the non finite type I part; namely,

L((1− zIf )x) = J((1− zIf )x), ∀x ∈Msa.

In general, we have

L(x) = J(x), ∀x ∈ spanQ P (M).

Proof. Suppose first that M has no type I2 direct summand. We note that L restricts to an

orthomorphism Ψ : P (M) → P (B) between the Hermitian idempotent lattices, i.e., Ψ(p + q) =

Ψ(p)+Ψ(q) is an orthogonal sum of Hermitian idempotents whenever p, q are orthogonal Hermitian

idempotents. Consequently, Ψ sends orthogonal Hermitian idempotents to orthogonal Hermitian

idempotents. By Theorem 3.8, Ψ extends to a Jordan ∗-homomorphism J : M → B. It is then

clear that J and L agree on spanQ P (M). Moreover, by Lemma 3.4, J and L agree on the non

finite type I part (1− zIf )M .

Suppose next M ∼= M2(Z(M)) is a type I2 von Neumann algebra with center Z(M) ∼= C(Ω) for

some hyperstonean space Ω. Let A ∈M2(C(Ω))sa have central trace trA(ω) = 0 on Ω. Write

A(ω) =

[
a(ω) b(ω)

b(ω) −a(ω)

]
, ∀ω ∈ Ω,
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where a, b are continuous scalar functions on Ω such that a(ω) ∈ R for all ω ∈ Ω. Since all

entry functions of A are continuous on the compact space Ω, by adding a zero trace constant

Hermitian matrix function kT to A for some big integer k > 0, where T is the constant field

ω 7→
[
0 1
1 0

]
, we can assume that A(ω) + kT (ω) is always invertible with a continuous eigenvalue

function α(ω) =
√
a(ω)2 + |k + b(ω)|2 while the other one is −α(ω), such that

|k + b(ω)| ≥ 1, ∀ω ∈ Ω.

We can choose two continuous orthonormal vector fields u1, u2 : Ω → C2 such that both

u1(ω), u2(ω) are eigenvectors of A(ω) + kT (ω) on Ω. For example,

u1(ω) =
1√

(a(ω)− α(ω))2 + |k + b(ω)|2

[
−k − b(ω)
a(ω)− α(ω)

]
and

u2(ω) =
1√

(a(ω) + α(ω))2 + |k + b(ω)|2

[
−k − b(ω)
a(ω) + α(ω)

]
.

Define U(ω) = [u1(ω) u2(ω)] for all ω ∈ Ω. Then U is a unitary in M . As in the proof of

Lemma 3.7, we see that A + kT = U

[
α 0
0 −α

]
U∗ = α(u1u

∗
1 − u2u

∗
2), and L is real homogeneous

on A + kT . Arguing as in the proof of Lemma 2.4, we see that L is real homogeneous on T , and

thus also real homogeneous on A. Therefore, L is real linear on the real linear span of Hermitian

elements in M2(C(Ω))sa with zero central trace. It then follows that we can define a real linear

map L̃ : M2(C(Ω))sa → B by setting L̃(A) = L(A) if A has zero central trace, and L̃(βI) = βL(I)

for all β ∈ R, where I is the identity of M2(C(Ω)). Then L̃ extends to a Jordan ∗-homomorphism

J satisfying the assertions.

Finally, if M is a general von Neumann algebra, write

M = zIfM ⊕ (1− zIf )M = zI2M ⊕ (1− zI2)M.

The restriction of L to (1 − zI2)Msa extends to a Jordan ∗-homomorphism J1 : (1 − zI2)M → B,

while the restriction of L to zI2M also extends to a Jordan ∗-homomorphism J2 : zI2M → B by

the above argument. We have seen that J1 agrees with L on (1 − zIf )Msa. Note that J1 and J2

have disjoint ranges since zI2 and 1− zI2 are orthogonal. Therefore, the sum J = J1 + J2 is again

a Jordan ∗-homomorphism. Clearly, J satisfies the asserted conclusions.

Notice that all arguments above for the additive Hermitian idempotent preserver L of Msa

concern only the action of L on spanQ P (M). Theorem 3.9 thus provides us a supplement of the

Dye-Bunce-Wright Theorem 3.8 which also covers the type I2 case as stated in Theorem 1.2.
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