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1 Introduction

Let A be an n×n matrix. In connection to the study of quantum error correction, Choi et al. [4, 5]

introduced the rank-k-numerical range Λk(A) of A which is defined by

Λk(A) = {λ ∈ C : AP = λP for some k−dimensional orthogonal projection P},

where k is a given integer in {1, . . . , n}. If k = 1, the rank-k-numerical range reduces to the classical

numerical range which is denoted by

W (A) = {〈Aξ, ξ〉 : ξ ∈ C
n, 〈ξ, ξ〉 = 1}.

Choi et al. [4, 5] conjectured that Λk(A) is convex, Woerdeman [12] confirmed the conjecture.

Furthermore, Li and Sze [8] showed that

Λk(A) = ∩t∈[0,2π){µ ∈ C : <(e−itµ) ≤ λk(<(e−itA)},
1Corresponding author.
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where λ1(H) ≥ · · · ≥ λn(H) denote the eigenvalues of a Hermitian matrix H ∈ Mn, and <(B) =

(B+B∗)/2 the Hermitian part of a square matrix B. The characterization of Λk(A) can be rewritten

as

Λk(A) = ∩−π/2≤t≤π/2{µ ∈ C : λn+1−k(<(e−itA)) ≤ <(e−itµ) ≤ λk(<(e−itA))}.

Note that

max{<(µ) : µ ∈ Λk(A)} ≤ λk(<(A)).

In the case that k = 1, it is known that

max{<(µ) : µ ∈ W (A)} = λ1(<(A)).

For a compact convex set K ⊂ C ≡ R
2, we consider the distance

d(t) = max{<(e−itµ) : µ ∈ K} − min{<(e−itµ) : µ ∈ K} (1.1)

of the two parallel support lines with normal vector eit for t ∈ [0, π]. The diameter of K is the

maximum of the function d(t) on [0, 2π]. The width of K is the minimum of the function d(t).

The convex set K has constant width if diameter and width are equal. The diameter and width

of the numerical range are investigated in [3] (see also [11]). The authors provided an algorithm

for computing the diameter and width of the numerical range, and examined the numerical ranges

of certain nilpotent Toeplitz matrices having constant width. As shown in [11], for the classical

numerical range W (A) of a matrix A ∈ Mn, the function d(t) with t ∈ [0, π] can be expressed as

d(t) = λ1<(eitA) − λn<(eit).

In view of the characterization in [8], one might think that for Λk(A) the function d(t) with t ∈ [0, π]

can be expressed as

d(t) = λk<(eitA) − λn−k+1<(eit).

It turns out that this is not true for k > 1. In this paper, we give a computational criterion for

the boundary points of Λk(A), and describe a general scheme for constructing its boundary curve;

see Section 2. The results are used to study the diameter and minimal width of the higher rank

numerical range that somewhat explains the above phenomenon. Detailed study on a 6-by-6 matrix

is done in Section 3. While its rank-2-numerical range is not of constant width, it shares interesting

properties of convex set with constant width.

We close this section by extending a conjecture on the classical numerical range in [3] to the

higher rank numerical range as follows.

The higher rank numerical range of a matrix has constant width if and only if it is a circular

disk.

2 Boundary of the higher rank numerical range

2.1 Boundary points

Suppose A ∈ Mn. For t ∈ [0, 2π), let fk(t) = λk(<(e−itA)), Pt = {z ∈ C : <(e−itz) ≤ fk(t)}, and

Rt = {reit : r ≥ 0}. We give a computational criterion for the boundary points of the higher rank
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numerical range. Furthermore, we obtain a modified function f̃k(t) of fk(t), which will be useful in

constructing the boundary curve.

Theorem 2.1 Let A ∈ Mn and k ∈ {1, . . . , n} be such that 0 is an interior point of Λk(A). Suppose

fk(t) = λk(<(e−itA)) for t ∈ [0, 2π). Then r(t)eit is a boundary point of Λk(A) if and only if

r(t) = min{fk(t + s)

cos s
: −π/2 < s < π/2}.

The modified kth eigenvalue f̃k(t) of the Hermitian matrix <(e−itA) is given by

f̃k(t) = max{<(e−itz) : z ∈ Λk(A)} = max{r(t + u) cosu : −π/2 ≤ u ≤ π/2}

= max
−π/2≤u≤π/2

min
−π/2<s<π/2

{fk(t + u + s)
cos u

cos s
}.

When k = 1, we have f̃1(t) = f1(t) for all t ∈ [0, 2π).

Proof. Evidently, the intersection of Λk(A) and the ray Rt = {reit : r ≥ 0} can be written as

Rt ∩ (∩s∈[0,2π)Ps) = ∩s∈[0,2π)(Rt ∩ Ps) = ∩t−π/2≤s≤t+π/2(Rt ∩ Ps).

If t is a minimal point of the function fk(u) on u ∈ [0, 2π), r(t) is given as fk(t). So we may assume

that

fk(t) = α min{fk(u) : u ∈ [0, 2π)}

for some α > 1. Then the angle −π/2 < s < π/2, cos s < 1/α satisfies

fk(t + s)

cos s
> fk(t) =

fk(t)

cos 0
.

So the continuous function fk(t+s)/ cos s on the closed interval [− arccos(1/α), arccos(1/α)] attains

its minimum. We get the first assertion.

For the second assertion, note that for each t ∈ [0, 2π), there is a unit vector x such that

<(e−itA)x = f1(t)x so that x∗Ax ∈ W (A) with real part equal to f1(t). So that f̃1(t) = f1(t).

Remark As shown in Section 3, in general one may have f2(t) > f̃2(t). One can modify the

example to get examples that fk(t) > f̃k(t) for any k > 1; see the final remark in Section 3.

2.2 Boundary generating curve

By Rellich’s perturbation theorem [7], the function fk(t) is differentiable except for a finite number

of points. We consider the envelope of the lines

{µ ∈ C : <(e−itµ) = fk(t)}

for those 0 ≤ t ≤ 2π at which fk(t) is differentiable (cf. [2]), which we call the boundary generating

curve zk(t) of Λk(A). So this curve zk(t) = X(t) + iY (t) is given by

zk(t) = fk(t)eit + if ′
k(t)e

it, (2.1)
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i.e.,

<(zk(t)) = fk(t) cos t − f ′
k(t) sin t,

=(zk(t)) = fk(t) sin t + f ′
k(t) cos t,

for differentiable points t. At non-differentiable points t, the two points zk(t−), zk(t+) may be

different. The line segment [zk(t
−), zk(t

+)] forms a flat portion on the boundary of Λk(A). It

is a crucial subject to recognize the relation between the boundary of Λk(A) and the boundary

generating curve zk(t). Kippenhahn showed that Λ1(A) is the convex hull of the curve z1(t).

Recently, Plaumann et al. [9] provided a Kippenhahn type formulation of the joint numerical range

of an m-ple of n × n Hermitian matrices. A modified Kippenhahn’s type theorem for Λk(A) is

formulated in [2] at which the dual convex set Dk(A) of Λk(A) under the assumption that 0 is an

interior point of Λk(A), or equivalently fk(t) > 0 for 0 ≤ t ≤ 2π, is obtained as

Dk(A) = {(x, y) ∈ R
2 : xu + yv + 1 ≥ 0 for everyu + iv ∈ Λk(A), u, v are real}.

This compact convex set Dk(A) is the convex hull of the simple closed curve

{

(x(t), y(t)) = (
− cos t

fk(t)
,
− sin t

fk(t)
) : 0 ≤ t ≤ 2π

}

. (2.2)

In the case k = 1, the curve (2.2) is an oval and is exactly the boundary of D1(A) (see [1, Corollary

3.23]). At a differentiable point of fk(t), the tangent of the curve (x(t), y(t)) (2.2) is given by

X(t)x + Y (t)y + 1 = 0,

where

X(t) =
−y′(t)

x(t)y′(t) − y(t)x′(t)
, Y (t) =

x′(t)

x(t)y′(t) − y(t)x′(t)
.

Under the assumption fk(t) > 0 for t ∈ [0, 2π], the curve (x(t), y(t)) (2.2) is constructed. Then

the set Dk(A) is the convex hull of the curve (2.2), and based on the duality the range Λk(A) is

determined by

Λk(A) = {u + iv ∈ C : xu + yv + 1 ≥ 0 for any (x, y) ∈ Dk(A)}.

At a C(1)-differentiable point t of fk(t), the curve (x(t), y(t)) (2.2) has the following length

element

d` =

√

fk(t)2 + f ′
k(t)

2

fk(t)2
dt.

The signed curvature κ(t) of the curve (x(t), y(t)) (2.2) is given by

κ(t) =
fk(t) + f ′′

k (t)

(fk(t)2 + f ′
k(t)

2)3/2

(cf. [6, Chapter 1]). The signature of fk(t) + f ′′
k (t) may change as the typical example given in [2,

Example 1],

f2(t) =
(

2 +
√

2 −
√

2 + 1

2

√

5 − cos(4t)
)1/2

,
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0 ≤ t ≤ 2π. Even if fk(t) + f ′′
k (t) > 0 for any C(2)-differentiable points t, the curve (x(t), y(t)) may

have interior points in Dk(A) a case which we will treat in Section 2. An angle t ∈ [0, 2π] for which

(x(t), y(t)) is an interior point of Dk(A) corresponds to zk(t) /∈ Λk(A). If fk(t) is C(2)-differentiable

at every t ∈ [0, 2π] and fk(t)+ f ′′
k (t) > 0 for all t, the total absolute curvature of this curve C (2.2)

satisfies
∫

C
|κ(`)|d` =

∫ 2π

0
κ(t)

d`

dt
=

∫ 2π

0

fk(t)
2 + f ′′

k (t)fk(t)

fk(t)2 + f ′
k(t)

2
dt = 2π

and this identity implies that the domain bounded by C is convex (cf. [6, 10]).

3 A case study

In this section, we do a detailed study of the rank-2-numerical range of the following matrix

A = A(r) =

(

1 2r

0 1

)

⊕
(

w 2r

0 w

)

⊕
(

w2 2r

0 w2

)

with w = e2πi/3 = (−1 + i
√

3)/2. (3.1)

Not only does the study illustrate how to use our results in Section 2, it also shows that the higher

rank numerical range may have some geometrical properties resembling convex sets with constant

width.

3.1 Diameter and width

Theorem 3.1 Let A be the matrix described in (3.1). Suppose r ≥
√

3/2. Then

λ2(<(e−itA)) − λ5(<(e−itA)) = 2r (3.2)

for all 0 ≤ t ≤ 2π. In fact, the six eigenvalues of <(e−itA) can be computed explicity and ordered

according to t-intervals:

(i) If t ∈ [0, π/3], then

r + cos t ≥ r +
1

2
(− cos t +

√
3 sin t) ≥ r +

1

2
(− cos t −

√
3 sin t)

≥ −r + cos t ≥ −r +
1

2
(− cos t +

√
3 sin t) ≥ −r +

1

2
(− cos t −

√
3 sin t), (3.3)

(ii) If t ∈ [π/3, 2π/3], then

r +
1

2
(− cos t +

√
3 sin t) ≥ r + cos t ≥ r +

1

2
(− cos t −

√
3 sin t) ≥ −r +

1

2
(− cos t +

√
3 sin t)

≥ −r + cos t ≥ −r +
1

2
(− cos t −

√
3 sin t), (3.4)

(iii) If t ∈ [2π/3, π], then

r +
1

2
(− cos t +

√
3 sin t) ≥ r +

1

2
(− cos t −

√
3 sin t) ≥ r + cos t ≥ −r +

1

2
(− cos t +

√
3 sin t)

≥ −r +
1

2
(− cos t −

√
3 sin t) ≥ −r + cos t. (3.5)
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Proof. Note that for any t ∈ [0, 2π), if αt = 1
2 (− cos t +

√
3 sin t) and βt = −1

2 (cos t +
√

3 sin t),

then

<(e−itA) = cos t<(A) + sin t=(A) =

(

cos t re−it

reit cos t

)

⊕
(

αt re−it

reit αt

)

⊕
(

βt re−it

reit βt

)

with eigenvalues

cos t ± r,
1

2
(− cos t +

√
3 sin t) ± r,

1

2
(− cos t −

√
3 sin t) ± r.

Since λk(<(e−itA)) is −λn+1−k(<(e−i(t+π)A)), we only need to consider t ∈ [0, π].

The third inequality in (3.3), (3.4), (3.5) holds due to the fact that

2r −
√

3
(

√
3

2
cos t +

1

2
sin t

)

= 2r −
√

3 sin(t +
π

3
) ≥ 0

for t ∈ [0, π/3],

2r −
√

3 sin t ≥ 0

for t ∈ [π/3, 2π/3], and

2r −
√

3
(

− 3

2
cos t +

1

2
sin t

)

= 2r −
√

3 sin(t − π

3
) ≥ 0

for t ∈ [2π/3, π] under the assumption that r ≥
√

3/2. The second and the fifth inequalities in

(3.3), and the first and the fourth inequalities in (3.5) follow from sin t ≥ 0 for t ∈ [0, π]. The first

and fourth inequalities in (3.3) hold for the reason that

√
3 cos t − sin t ≥ 0

for t ∈ [0, π/3]. The first, second, fourth and the fifth inequalities in (3.4) follow from

sin t ±
√

3 cos t ≥ 0

for t ∈ [π/3, 2π/3]. The second and the fifth inequalities in (3.5) hold owing to the fact that

−
√

3 cos t − sin t ≥ 0

for t ∈ [2π/3, π]. This completes the proof of the inequalities (3.3), (3.4), (3.5). Applying the

five ordered eigenvalues of <(e−itA)) in the respect t-intervals of (i), (ii), (iii), we obtain that the

difference λ2(<(e−itA))− λ5(<(e−itA)) is 2r. Now, the first assertion readily from (3.3) – (3.5).

Remark

1. If we ignore the distinction of the third and the fourth eigenvalues of <(e−itA), we may relax

the assumption r ≥
√

3/2 by r ≥ 3/4 in Theorem 3.1.
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2. Given an n × n matrix B, if λ1(<(e−itB)) − λn(<(e−itB)) is constant for all t ∈ [0, 2π], then

by [3, Theorem 2.1], Λ1(B) has constant width. By (3.2), λ2(<(e−itB)) − λn−2(<(e−itB))

is constant for all t ∈ [0, 2π]. One may regard the boundary generating curve of Λ2(A(r))

as a generalization of a curve enclosing a convex set of constant width. However, we may

have max{<(e−itµ) : µ ∈ Λ2(A(r))} < λ2(<(e−itA(r))) for some t so that Λ2(A(r)) is not of

constant width.

3. Let w = e2πi/5. Consider the 10 × 10 matrix

A =

(

1 2r
0 1

)

⊕
(

w 2r
0 w

)

⊕
(

w2 2r
0 w2

)

⊕
(

w3 2r
0 w3

)

⊕
(

w4 2r
0 w4

)

. We may generalize the

result of (3.2) in Theorem 3.1 to conclude that λ3(<(e−itA)) − λ8(<(e−itA)) = 2r for all t

which characterizes the boundary generating curve of Λ3(A).

Using the ordered eigenvalues of <(e−itA) in Theorem 3.1, we are ready to describe the boundary

of Λ2(A).

Theorem 3.2 Let A be the 6× 6 matrix defined in (3.1). Suppose r ≥
√

3/2. Then, the boundary

of Λ2(A) lies on the union of the 3 lines

Lj = {z ∈ C : <(wj−1z) = r − 1

2
} with w = ei2π/3 for j = 1, 2, 3,

and the 3 circular arcs

C1 =
{

1 + reit : t ∈ [
π

3
,
2π

3
] ∪ [

4π

3
,
5π

3
]
}

, C2 =
{

e−2iπ/3 + reit : t ∈ [0,
π

3
] ∪ [π,

4π

3
]
}

,

C3 =
{

e−4iπ/3 + reit : t ∈ [
2π

3
, π] ∪ [

5π

3
, 2π]

}

,

where these arcs have the normalized tangent ieit for each parameter t.

Proof. By using the second and the fifth largest eigenvalue of <(e−itA) on subintervals (0, π/3),

(π/3, 2π/3), (2π/3, π), the boundary generating curve z2(t) = X(t) + iY (t) of Λ2(A) is computed

as

(X(t), Y (t)) =











(1 + r cos t, r sin t), if t ∈ (π/3, 2π/3)∪ (4π/3, 5π/3),

(−1/2 + r cos t,
√

3/2 + r sin t), if t ∈ (0, π/3)∪ (π, 4π/3),

(−1/2 + r cos t,−
√

3/2 + r sin t, if t ∈ (2π/3, π)∪ (5π/3, 2π).

for r ≥
√

3/2. To consider the relation between the curve z2(t) and the range Λ2(A), we consider

the curve

{(x(t), y(t)) = (− cos t

f2(t)
,− sin t

f2(t)
) : 0 ≤ t ≤ 2π} (3.6)

and its convex hull D2(A). As the result of Theorem 2.1, the second largest eigenvalue f2(t) =

λ2(<(e−itA)) of the Hermitian matrix <(e−itA)
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f2(t) =











r + cos t, ift ∈ (π/3, 2π/3)∪ (4π/3, 5π/3),

r + 1
2 (− cos t +

√
3 sin t) if t ∈ (0, π/3)∪ (π, 4π/3),

r + 1
2 (− cos t −

√
3 sin t) if t ∈ (2π/3, π)∪ (5π/3, 2π),

for r ≥
√

3/2. The curve (x(t), y(t)) lies on the union of the 3 conic curves

{(x, y) ∈ R
2 : (r2 − 1)x2 − 2x + r2y2 − 1 = 0},

{(x, y) ∈ R
2 : (4r2 − 1)x2 + 2

√
3xy + (4r2 − 3)y2 + 4x − 4

√
3y − 4 = 0},

{(x, y) ∈ R
2 : (4r2 − 1)x2 − 2

√
3xy + (4r2 − 3)y2 + 4x + 4

√
3y − 4 = 0}.

We consider the part of the curve (x(t), y(t)) for

t ∈ (−δ, δ) ∪ (4π/3− δ, 4π/3]∪ (2π/3− δ, 2π/3 + δ) ∪ (4π/3− δ, 4π/3 + δ)

for 0 < δ < π/3. For t = 0, the point (x(0), y(0)) = (−1/(r − 1/2), 0). We also get

(x(4π/3), y(4π/3)) = (
1

2r − 1
,

√
3

2r − 1
), (x(2π/3), y(2π/3)) = (

1

2r − 1
,−

√
3

2r − 1
).

At each point (x(t), y(t)) of this curve for t = 0, t = 2π/3 or t = 4π/3, this curve has 2 tangents.

At the point (x, y) = (−1/(r − 1/2), 0), the two tangents of the curve (x(t), y(t)) are

y = ±2r − 1√
3

(x +
2

2r − 1
), (3.7)

which are also expressed as

(r − 1

2
)x± (−

√
3

2
)y + 1 = 0.

This expression corresponds to the end points (r− 1
2 )± (−

√
3

2 )i of one flat portion of the boundary

of Λ2(A), where

(r − 1

2
) +

√
3

2
i = z(0+) = X(0+) + iY (0+)

and

(r − 1

2
) −

√
3

2
i = z(0−) = X(0−) + iY (0−).

The following result gives more details of Theorem 3.2 and determines the diameter and width

of Λ2(A).

Theorem 3.3 Let A be the 6× 6 matrix defined in (3.1).

(i) If
√

3/2 ≤ r ≤ 1, the boundary of Λ2(A) is the regular triangle on the lines L1, L2, L3 with

vertices −(2r − 1), (r − 1
2 )(1 +

√
3i), (r − 1

2 )(1−
√

3i), and hence the diameter and the width

of Λ2(A) are respectively given by
√

3(2r − 1) and 3
2(2r − 1).
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(ii) If r > 1, the boundary of Λ2(A) has 6 circular arcs for the t-subintervals:

Σ(r) = [−π

3
+ δ(r),

π

3
− δ(r)] ∪ [

π

3
+ δ(r), π − δ(r)] ∪ [π + δ(r),

4π

3
− δ(r)],

where 0 < δ(r) < π/3 is defined by sin(δ(r)) =
√

3/(2r). These circular arcs and the flat

portions on L1 ∪ L2 ∪ L3 form the boundary of Λ2(A).

(iii) If 1 < r ≤
√

3, the diameter and the width of Λ2(A) are respectively given by
√

3
2 (

√
4r2 − 3+1)

and r +
√

4r2−3
2 .

(iv) If r >
√

3, the angle δ(r) < π/6 and the set Σ(r) contains nonempty intervals

{t ∈ Σ(r) : −π

3
< t <

2π

3
, t + π ∈ Σ(r)}.

On these intervals the function d(t) defined in (1.1) attains the value 2r which is the diameter

of Λ2(A). In this case the width of Λ2(A) is r +
√

4r2−3
2 .

Proof. We adopt the notation in the proof of Theorem 3.2.

(i) Assume that
√

3/2 ≤ r ≤ 1. Then the absolute values of the slopes of the tangents (3.7) are

less than or equal to 1/
√

3 = tan(π/6) for
√

3/2 ≤ r ≤ 1. The origin (x, y) = (0, 0) of the xy-plane

belongs to the domain bounded by the hyperbolic arcs for r < 1 and the parabolic arcs for r = 1.

It follows that the curve (x(t), y(t)) for
√

3/2 ≤ r ≤ 1 is contained in the closed triangular domain

with the 3 vertices (x(0), y(0), (x(2π/3), y(2π/3)), (x(4π/3), y(4π/3)) for
√

3/2 ≤ r ≤ 1. The two

lines
u

2r − 1
+

√
3v

2r − 1
+ 1 = 0,

u

2r − 1
−

√
3v

2r − 1
+ 1 = 0

intersect at (u, v) = (−(2r−1), 0). By the duality of the convex set, the boundary of the range Λ2(A)

for
√

3/2 ≤ r ≤ 1 is the regular triangle with vertices −(2r − 1), (r− 1
2 )(1+

√
3i), (r− 1

2 )(1−
√

3i).

(ii) Assume that r > 1. Then the above 3 points (x(2kπ/3), y(2kπ/3)), k = 0, 1, 2, give the

inequalities

<(z) ≤ r − 1

2
, <(e−2iπ/3z) ≤ r − 1

2
, <(e−4iπ/3z) ≤ r − 1

2

for z ∈ Λ2(A). We use the duality method to determine the range Λ2(A). For this purpose, we

consider the curve (x(t), y(t)) on a typical interval 2π/3 ≤ t ≤ 4π/3. In the interval 2π/3 < t <

4π/3, the function x(t) attains its maximum x0 =
√

4r2−3−1
2(r2−1)

twice. The two maximum points

2π/3 < t1 = π − δ(r) < t2 = π + δ(r) < 4π/3 satisfy y(t2) = −y(t1) > 0, where the angle

0 < δ(r) < π/3 is given by δ(r) = arcsin(
√

3/(2r)), equivalently, sin δ(r) =
√

3
2r . The line segment

joining two points (x(t1), y(t1)), (x(t2), y(t2)) passes through the point (x0, 0) = (
√

4r2−3−1
2(r2−1)

, 0). The

point (x(t), y(t)) at t = π is (2/(2r + 1), 0). The assumption r > 1 implies that 2/(2r + 1) < x0.

The gap is crucial for the fact that Λ2(A) is not of constant width. Since (x0, 0) belongs to D2(A),

it follows that for z ∈ Λ2(A),

<(z) ≥ − 1

x0
= −1 +

√
4r2 − 3

2
,

9



and thus

−1 +
√

4r2 − 3

2
≤ <(z) ≤ r − 1

2

for z ∈ Λ2(A). The distance between the first term and the third term is

r − 1

2
+

1 +
√

4r2 − 3

2
= r +

√
4r2 − 3

2
< 2r.

For the angle π − δ(r) < t < π + δ(r), we replace an interior point by the point

(− cos t

f̃2(t)
,
− sin t

f̃2(t)

)

on the line segment joining (x(t1), y(t1)) and (x(t2), y(t2)) where the modified second eigenvalue

0 < f̃2(t) < f2(t) is given by

f̃2(t) =
1 +

√
4r2 − 3

2
cos(t − π).

(iv) Assume that r >
√

3. Then δ(r) < π/6, thus π
6 + ε ∈ Σ(r) and also 7π

6 + ε ∈ Σ(r) for

sufficient small |ε|. Hence for t = π/6 + ε, d(t) = 2r which is the diameter of Λ2(A). On the other

hand if −δ(r) ≤ t ≤ δ(r), then d(−t) = d(t) and

d(t) = r + cos(t − 2π

3
) +

1 +
√

4r2 − 3

2
cos t

for 0 ≤ t ≤ δ(r). On the interval [0, δ(r)], the function d(t) is increasing. Its maximum is d(δ(r)) =

2r and its minimum is d(0) = r +
√

4r2−3
2 . This shows that the diameter of Λ2(A) is 2r and the

width of Λ2(A) is

d(0) = r +

√
4r2 − 3

2
< 2r,

Λ2(A) is not of constant width.

(iii) Assume that 1 < r ≤
√

3. In the case r =
√

3, by using the above arguments, we can

show that the maximum of d(t) on 0 ≤ t ≤ π is attained at t = π/6, t = π/2, t = 5π/6 and

d(π/2) = 2r = 2
√

3, and the minimum of d(t) on 0 ≤ t < π is attained at t = 0, t = π/3, t = 2π/3

and

d(0) = r +

√
4r2 − 3

2
=

√
3 +

3

2
.

We treat the case 1 < r <
√

3. The function d(t) on 0 ≤ t ≤ 2π satisfies d(−t) = d(t), d(t+2π/3) =

d(t) and d(t + π) = d(t). So, we determine the function d(t) for 0 ≤ t ≤ δ(r)(< π/3). If

π/3− δ(r) ≤ t ≤ δ(r), then

d(t) =
1 +

√
4r2 − 3

2
cos(t − π

3
) +

1 +
√

4r2 − 3

2
cos t

=

√
3

2
(1 +

√

4r2 − 3) cos(t − π

6
).
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Its maximum is d(π
6 ) =

√
3

2 (
√

4r2 − 3 + 1), and its minimum is d(δ(r)) =
3(
√

4r2−3+1)2

8r . If 0 ≤ t ≤
π/3− δ(r), then

d(t) = r + cos(t − 2π

3
) +

1 +
√

4r2 − 3

2
cos t.

This function is increasing on [0, π/3− δ(r)] and

d(0) = r +

√
4r2 − 3

2
, d(

π

3
− δ(r)) = d(δ(r)).

Therefore, the diameter and the width of Λ2(A) for 1 < r <
√

3 are respectively given by d(π
6 ) =

√
3

2 (
√

4r2 − 3 + 1) and d(0) = r +
√

4r2−3
2 .

Fig. 1 displays the diameter and width of Λ2(A(r)). The upper curve is the diameter and the

lower one is the width for r ≥
√

3/2 ≈ 0.866. Clearly, Λ2(A(r)) is not of constant width.

Fig. 1. Diameter and width

3.2 Boundary curve

Let A be the matrix defined in (3.1). In this section, we consider boundary generating curve of

Λ2(A), and illustrate the results in Section 2 for the case r = 3
√

3/2. The six eigenvalue functions
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of <(e−itA(r)) are given by

f1(t) = cos t + r

f2(t) = cos t − r,

f3(t) = cos(t − 2π

3
) + r =

1

2
(− cos t +

√
3 sin t) + r,

f4(t) = cos(t − 2π

3
) − r,

f5(t) = cos(t +
2π

3
) + r =

1

2
(− cos t −

√
3 sin t) + r,

f6 = cos(t +
2π

3
) − r.

If −2π/3 ≤ t ≤ −π/3 or π/3 ≤ t ≤ 2π/3, the second largest eigenvalue of <(e−itA(r)) is f1(t). On

these two t-subintervals, the boundary generating curve of Λ2(A(r)) lies on the circle z(t) = 1+reit.

If −π/3 ≤ t ≤ 0 or 2π/3 ≤ t ≤ π, the second largest eigenvalue of <(e−itA(r)) is f5(t). On these

two t-subintervals, the boundary generating curve of Λ2(A(r)) lies on the circle z(t) = e−2πi/3+reit.

If 0 ≤ t ≤ π/3 or π ≤ t ≤ 4π/3, the second largest eigenvalues of <(e−itA(r)) is f3(t). On these

two t-subintervals, the boundary generating curve of Λ2(A(r)) lies on the circle z(t) = e2πi/3 + reit.

The boundary generating curve (2.1) of Λ2(A(r)) is given by

<(z(t)) = fj(t) cos t − fj(t)
′ sin t, =(z(t)) = fj sin t + f ′

j(t) cos t,

where j ∈ {1, 3, 5} are determined depending on the above t-subintervals of [−2π/3, 4π/3]. Corre-

sponding to the non-differentiable points t = −2π/3, t = 0, t = 2π/3 of the function λ2(<(e−itA)),

the boundary of the range Λ2(A(r)) has the three flat portions:

`1 = {3
√

3

2
− 1

2
+ is : −

√
3

2
≤ s ≤

√
3

2
}

for t = 0, and

`2 = e−2πi/3`1, `3 = e2πi/3`1

for t = −2π/3, t = 2π/3 respectively. We consider the 6 parts of the boundary generating curve:

C
(1)
1 = {z(t) : −2π/3 ≤ t ≤ −π/3}, C

(1)
3 = {z(t) : −π/3 ≤ t ≤ 0},

C
(1)
2 = {z(t) : 0 ≤ t ≤ π/3}, C

(2)
1 = {z(t) : π/3 ≤ t ≤ 2π/3},

C
(2)
3 = {z(t) : 2π/3 ≤ t ≤ π}, C

(2)
2 = {z(t) : π ≤ t ≤ 4π/3}.

The two arcs C
(2)
3 and C

(2)
2 intersect at X0 = −

√
6 − 1

2 ∼ −2.94949. The two arcs C
(1)
1

and C
(1)
3 intersect at e2πi/3X0 = 1+2

√
6

4 − i
√

3+6
√

2
4 , and the two arcs C

(1)
2 and C

(2)
1 intersect at

e−2πi/3X0 = 1+2
√

6
4 +i

√
3+6

√
2

4 . At these intersection points, the connected sets C
(1)
1 ∪C

(1)
3 ,C

(1)
2 ∪C

(2)
1

and C
(2)
3 ∪ C

(2)
2 are divided into two parts, one belongs to Λ2(A(r)) and one does not belong to

Λ2(A(r)). We remove the parts which are not belonging to Λ2(A(r)). Fig. 2 shows the graphic

12



of the boundary generating curve of Λ2(A(r)). Additional dashed arcs are added to recognize the

relative position of the boundary generating curve on the three circles.

Set 0 < t0 = δ(3
√

3/2) = arcsin(1/3) < arcsin(1/2) = π/6. At each angle t, the curve z(t) has

the normalized tangent vector − sin t + i cos t = ieit. We conclude that the boundary of Λ2(A(r))

is consisting of

{z(t) : −2π/3 ≤ t ≤ −π/3− t0} ∪ {z(t) : −π/3 + t0 ≤ t ≤ π/3− t0} ∪ {z(t) : π/3 + t0 ≤ t ≤ π − t0}

and the 3 line segments `1, `2, `3, see Fig. 3. If t ∈ [0, π] belongs to one of the intervals [t0, π/3−t0],

[π/3 + t0, 2π/3− t0], [2π/3 + t0, π − t0], then

max{<(e−itµ) : µ ∈ Λ2(A(r))} = max<(z(t)e−it)

and

min{<(e−itµ) : µ ∈ Λ2(A(r))} = min−<(z(t + π)e−i(t+π))

and the difference max{<(e−itµ) : µ ∈ Λ2(A(r))} − min{<(e−itµ) : µ ∈ Λ2(A(r))} is the constant

2r = 3
√

3. The boundary ∂Λ2(A) on these circular arcs forms a generalization of curve of constant

width.

Fig. 2. Boundary generating curve of Λ2(A(r)): Three intersected solid arcs
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Fig. 3. Boundary of Λ2(A(r))

The curve (x(t), y(t)) (3.6) plays an important role to construct the set D2(A). Figs. 4, 5, 6

display respectively the graphics of this curve for r = 0.89, r = 1.7 and r = 3
√

3/2.

Fig. 4. The curve (x(t), y(t)) for r = 0.89

Fig. 5. The curve (x(t), y(t)) for r = 1.7
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Fig. 6. The curve (x(t), y(t)) for r = 3
√

3/2

Remark By Theorems 3.1–3.3, we have f2(t) > f̃2(t) for almost all t ∈ [0, 2π) for the matrix

A ∈ M6 satisfying (3.1). For k > 2, we may let Ak = A ⊕ M ⊕ · · · ⊕ M for k − 2 copies of

M =

(

0 γ
0 0

)

so that W (A) ⊆ W (M). Then f̃k(t) of Ak equals f̃2(t) of A, and fk(t) of Ak equals

f2(t) of A. So for Ak, fk(t) > f̃k(t) for almost all t ∈ [0, 2π).
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