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Abstract. A bounded linear operator acting on a Hilbert space is a generalized quadratic

operator if it has an operator matrix of the form[
aI cT

dT ∗ bI

]
.

It reduces to a quadratic operator if d = 0. In this paper, spectra, norms, and various kinds of

numerical ranges of generalized quadratic operators are determined. Some operator inequalities

are also obtained. In particular, it is shown that for a given generalized quadratic operator, the

rank-k numerical range, the essential numerical range, and the q-numerical range are elliptical

disks; the c-numerical range is a sum of elliptical disks. The Davis-Wielandt shell is the convex

hull of a family of ellipsoids unless the underlying Hilbert space has dimension 2.

1. Introduction

Let B(H) be the algebra of bounded linear operators acting on a Hilbert space H. We identify
B(H) with Mn if H has dimension n. An operator A ∈ B(H) is a generalized quadratic operators
if it has an operator matrix of the form

(1.1)
[
aI cT
dT ∗ bI

]
,

where T is an operator from H2 to H1, and a, b, c, d are complex numbers. [In the following
discussion, we will not distinguish the operator and its operator matrix if there is no ambiguity.]
When d = 0, such an operator A satisfies condition

(1.2) (aI −A)(bI −A) = 0

and is known as a quadratic operator. In fact, it is known that an operator A satisfies (1.2)
if and only if it has an operator matrix of the form (1.1) with d = 0, by a suitable choice of
orthonormal basis.

Motivated by theory and applied problems, there has been considerable interest in studying
the norms and generalized numerical ranges (see the definition in later sections) of operators of
the form (1.1) under the additional assumptions that (i) a, b, c, d are nonnegative, or (ii) d = 0;
see [3, 13, 22, 27] and the references therein. In this paper, a complete description is given to
the spectrum, the norm, and various types of generalized numerical ranges of an operator of the

2000 Mathematics Subject Classification. Primary 47A12, 15A60.
Key words and phrases. Spectra, norms, elliptical ranges, generalized numerical ranges, Davis-Wielandt shell.
Research of the first two authors were supported by USA NSF. The first author was also supported by the

William and Mary Plumeri Award. He is an honorary professor of the University of Hong Kong and an honorary
professor of the Taiyuan University of Technology.

1



2 CHI-KWONG LI, YIU-TUNG POON, AND MASARU TOMINAGA

form (1.1). In particular, the spectrum is a union of the spectrum of certain 2 × 2 matrices of
the form

Ap =
[
a cp
dp b

]
, p ≥ 0.

Also the norm of A is the same as that of Ap with p = ‖T‖; the closure of the numerical range
(and also many generalized numerical ranges) is always an elliptical disk. Since quadratic oper-
ators have been studied in [22], we always assume that cdT 6= 0 in the following discussion.

Our paper is organized as follows. In Section 2, we obtain a different operator matrix for an
generalized quadratic operator A. We then use the result to give a description of σ(A), which
is the spectrum of A ∈ B(H). In Section 3, we determine the numerical range, the matricial
range, and the norm of generalized quadratic operators. Furthermore, we obtain some operator
inequalities concerning generalized quadratic operators that extend some results of Furuta [13]
and Garcia [14]. We then give the description of various generalized numerical ranges of A in
Section 4. The results cover those in [3, 22, 27] and the reference therein. Additional remarks
and further research are discussed in Section 5.

We will use the following notations in our discussion. For S ⊆ C, we will use int(S), cl (S)
and conv(S) to denote the relative interior, the closure and the convex hull of S, respectively.
Note that in our discussion, it may happen that S = conv{µ1, µ2} is a line segment in C so
that int(S) = S \ {µ1, µ2}.

For A ∈ B(H), let kerA and rangeA denote the null space and range space of A, respectively.
Let V be a closed subspace of H and Q the embedding of V into H. Then B = Q∗AQ is the
compression of A onto V. More generally, A has a compression B if A has an operator matrix[
B ∗
∗ ∗

]
with respect to an orthonormal basis; alternatively, there is a closed subspace V of H

and X : V → H such that X∗X = IV and X∗AX = B. Note that, in this case, X(V) is closed
and X∗AX is the compression of A on X(V).

2. A different operator matrix representation and the spectrum

First, we obtain a different operator matrix for A of the form (1.1). The special form reduces
to that of quadratic operators in [22, Theorem 1.1] if d = 0.

Theorem 2.1. Let A ∈ B(H) be an operator with an operator matrix[
aI cT
dT ∗ bI

]
with cdT 6= 0.

Then H has a decomposition H1 ⊕H1 ⊕H2 such that A has an operator matrix of the form

(2.1)
[
aIr cP
dP bIr

]
⊕ γIs with cdP 6= 0,

where γ ∈ {a, b}, dimH1 = r, dimH2 = s, and P : H1 → H1 is a positive semidefinite operator,
i.e., 〈Px, x〉 ≥ 0 for all x ∈ H1, with the additional condition that 〈Px, x〉 6= 0 for all nonzero
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x ∈ H1 if a = b. Here Is may be vacuous. Furthermore, we have decompositions H1 = ⊕nk=1Vk
and P = ⊕nk=1Pk, where n ≤ ∞ and for each k, Pk ∈ B(Vk) such that σ(Pk) is an interval.

Proof. Given T on H1, there exist unitary operators U and V and a positive semidefinite
operator P such that UTV is of one of the following form:

(a) P , if dim kerT = dim kerT ∗.

(b)
[
P
0

]
, if dim kerT < dim kerT ∗.

(c)
[
P 0

]
, if dim kerT > dim kerT ∗.

Since kerT ∗ = (range(T ))⊥, (a) follows from the polar decomposition. (b) and (c) follow from
(a). Applying this to (1.1), we have (2.1).

Let λ0 = min{λ : λ ∈ σ(P )} and λ1 = max{λ : λ ∈ σ(P )}. Then λ0, λ1 ∈ σ(P ). If µ 6∈ σ(P )
for some λ0 < µ < λ1, then P = Q ⊕ R, where σ(Q) ⊆ [λ0, µ) and σ(R) ⊆ (µ, λ1]. Therefore,
we can decompose P as P = ⊕∞k=1Pk, where σ(Pk) is an interval for each k. �

By the above theorem, we can focus on an operator A with an operator matrix of the form
(2.1) with cdP 6= 0. In the following discussion, we will always identify the subspaces H1⊕0⊕0
and 0⊕H1 ⊕ 0 with H1. Also, the family of matrices

(2.2) Ap =
[
a cp
dp b

]
, p ≥ 0,

will be very useful in our discussion.

Theorem 2.2. Suppose A ∈ B(H) has an operator matrix of the form (2.1) as in Theorem 2.1
and Ap is defined as in (2.2). Then

σ(A) = ∪p∈σ(P )σ(Ap) ∪ S = ∪p∈σ(P )

{
1
2

[
(a+ b)±

√
(a− b)2 + 4cdp2

]}
∪ S ,

where S = {γ} if γIs is non-trivial and S = ∅ otherwise.

Proof. For simplicity, we may assume that γIs is vacuous. If α = (a+b)
2 and β = (a−b)

2 , then

A− αI =
[
βI cP
dP −βI

]
.

By direct computation, we have (A− αI)2 = (β2I + cdP 2)⊕ (β2I + cdP 2) and[
0 cI
−dI 0

]
(A− αI)

[
0 cI
−dI 0

]−1

= −(A− αI).

Thus, µ ∈ σ(A − αI) if and only if µ2 ∈ σ(β2I + cdP 2); µ ∈ σ(A − αI) if and only if −µ ∈
σ(A− αI). So the result follows. �
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3. Numerical range, dilation, matricial range, and operator inequalities

Recall that the numerical range of A ∈ B(H) is defined by

W (A) = {〈Ax, x〉 : x ∈ H, 〈x, x〉 = 1};

see [15, 16, 17]. The numerical range is useful in studying matrices and operators. One of the
basic properties of the numerical range is that W (A) is always convex; for example, see [16]. In
particular, we have the following result, e.g., see [18] and [17, Theorem 1.3.6].

Elliptical Range Theorem If A ∈M2 has eigenvalues µ1 and µ2, then W (A) is an elliptical

disk with µ1, µ2 as foci and
√

tr (A∗A)− |µ1|2 − |µ2|2 as the length of minor axis. Furthermore,

if Â = A− (trA)I/2, then the lengths of minor and major axis of W (A) are, respectively,

{tr (Â∗Â)− 2|det Â|}1/2 and {tr (Â∗Â) + 2| det Â|}1/2.

Using this theorem, one can deduce the convexity of the numerical range of a general operator;
e.g., see [18]. It turns out that for an operator A of the form (2.1), W (A) is also an elliptical
disk with all the boundary points, two boundary points, or none of its boundary points as shown
in the following.

Theorem 3.1. Suppose A ∈ B(H) has an operator matrix of the form (2.1) described in Theorem

2.1. Let p̃ = ‖P‖, Ã =
[
a cp̃
dp̃ b

]
so that Ã has eigenvalues µ± = 1

2 [(a+ b)±
√

(a− b)2 + 4cdp̃2]

and W (Ã) is the elliptical disk with foci µ+, µ− and minor axis of length√
|a|2 + |b|2 + p̃2(|c|2 + |d|2)− |µ+|2 − |µ−|2.

If ‖Px‖ = ‖P‖ for some unit vector x ∈ H1, then

W (A) = W (Ã).

Otherwise, W (A) = int(W (Ã)) ∪ {a, b}; more precisely, one of the following holds.

(1) |c| = |d| and d̄(a− b) = c(ā− b̄), both A and Ã are normal, and

W (A) = W (Ã) \ σ(Ã) = conv{µ+, µ−} \ {µ+, µ−}.

(2) |c| = |d| and there is ζ ∈ (0, π) such that d̄(a − b) = ei2ζc(ā − b̄) 6= 0, both numbers a, b
lie on the boundary ∂W (A) of W (A), and

W (A) = int(W (Ã)) ∪ {a, b}.

(3) |c| 6= |d|, and W (A) = int(W (Ã)).

To prove Theorem 3.1, we need the following lemma, which will also be useful for later
discussion.

Lemma 3.2. Let Ap =
[
a cp
dp b

]
for p ≥ 0 so that W (Ap) is the closed elliptical disk E(p) with

foci µ± = 1
2 [(a+ b)±

√
(a− b)2 + 4cdp2] and minor axis of length√
|a|2 + |b|2 + p2(|c|2 + |d|2)− |µ+|2 − |µ−|2.
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Suppose p < q. Then W (Ap) ⊆W (Aq).

(1) If |c| = |d| and d̄(a− b) = c(ā− b̄), then W (Ap) = convσ(Ap) and W (Aq) = convσ(Aq)
are line segments such that W (Ap) is a subset of the relative interior of W (Aq).

(2) If |c| = |d| and there is ζ ∈ (0, π) such that d̄(a − b) = ei2ζc(ā − b̄) 6= 0, then {a, b} =
∂W (Ap) ∩ ∂W (Aq), and W (Ap) ⊆ int(W (Aq)) ∪ {a, b}.

(3) If |c| 6= |d|, then W (Ap) ⊆ intW (Aq).

Proof. Let E(p) = W (Ap). Then all E(p) has the same center α = (a + b)/2. Suppose
β = (a− b)/2. Denote by λ1(X) the largest eigenvalue of a self-adjoint matrix X. Then

W (Ap) =
⋂

ξ∈[0,2π)

Πξ(Ap),

where
Πξ(Ap) = {µ ∈ C : eiξµ+ e−iξµ̄ ≤ λ1(eiξAp + e−iξA∗p)}

is a half space in C. Since

λ1(eiξAp + e−iξA∗p) = eiξα+ e−iξᾱ+
√
|eiξβ + e−iξβ̄|2 + p2|eiξc+ e−iξd|2

is an increasing function of p, we see that Πξ(Ap) ⊆ Πξ(Aq) and hence W (Ap) ⊆W (Aq) if p ≤ q.
Case 1. Suppose a, b, c, d satisfy condition (1). Then Ap is normal and Ap = αI2 +Bp, where

W (Bp) = conv{±
√
−det(Bp)} is a line segment of length 2

√
|β|2 + p2|c|2 = 2

√
|β|2 + p2|d|2.

Thus, the conclusion of (1) holds.
Case 2. Suppose a, b, c, d satisfy condition (2). Then Ap = αI2 + βBp with

eiζBp =
[
eiζ δp

δp −eiζ
]

δ = eiζ
2c
a− b

= e−iζ
2d
ā− b̄

.

Using the Elliptical Range Theorem, one readily checks that W (eiζBp) is a nondegenerate ellip-

tical disk. Since Bp =
[

1 δpe−iζ

δpe−iζ −1

]
,

eiξBp + e−iξB∗p = 2
[

cos ξ δp cos(ξ − ζ)
δp cos(ξ − ζ) − cos ξ

]
,

we have

λ1(eiξBp + e−iξB∗p) = 2
√

cos2 ξ + |δ|2p2 cos2(ξ − ζ) ≥ ±2 cos ξ = ±
(
eiξ + e−iξ

)
,

where equality holds only for ξ = ζ ± π/2. Therefore, 1 and −1 are on the boundary of W (Bp)

and λ1(eiξBp + e−iξB∗p) is a strictly increasing function for p ≥ 0, except for ξ = ζ ± π/2. From

this, we get the conclusion of (2).
Case 3. Suppose a, b, c, d do not satisfy the conditions in (1) or (2). Since |c| 6= |d|, for every

ξ ∈ [0, 2π),

λ1(eiξAp + e−iξA∗p) = eiξα+ e−iξᾱ+
√
|eiξβ + e−iξβ̄|2 + p2|eiξc+ e−iξd̄|2

is a strictly increasing function for p ≥ 0. Thus, condition (3) holds. �
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Proof of Theorem 3.1
Since W (X ⊕ Y ) = conv{W (X) ∪W (Y )} = W (X) if W (Y ) ⊆ W (X), we may assume that

γIs is vacuous.

Suppose x ∈ H = H1 ⊕H1 is a unit vector and µ = 〈Ax, x〉 ∈ W (A). Let x =
[
cos θx1

sin θx2

]
for

some unit vectors x1, x2 ∈ H1. Let 〈Px1, x2〉 = peiφ with p ∈ [0, p̃] and φ ∈ [0, 2π). Then

µ = [cos θ, e−iφ sin θ]Ap

[
cos θ
eiφ sin θ

]
∈W (Ap) ⊆W (Ã)

by Lemma 3.2.
If there is a unit vector x ∈ H1 such that ‖P‖ = ‖Px‖, then

‖P‖2 = 〈P 2x, x〉 ≤ ‖P 2x‖‖x‖ ≤ ‖P 2‖ = ‖P‖2 .

Thus, P 2x = ‖P‖2x and hence Px = ‖P‖x as P is positive semi-definite. Then the operator
matrix of A with respect to H = H0 ⊕H⊥0 , where

H0 = span
{[
x
0

]
,

[
0
x

]}
has the form Ã⊕ Â ∈ B(H). Thus, W (Ã) ⊆W (A), and the equality holds.

Suppose there is no unit vector z ∈ H1 such that ‖P‖ = ‖Pz‖. Then for any unit vector

x ∈ H, let x =
[
cos θx1

sin θx2

]
for some unit vectors x1, x2 ∈ H1. If 〈Px1, x2〉 = peiφ with p ∈ [0, p̃]

and φ ∈ [0, 2π), then p < p̃. By Lemma 3.2, we see that µ ∈ int(W (Ã)) if (a) or (c) holds, and

µ ∈ int(W (Ã)) ∪ {a, b} if (b) holds.
To prove the reverse set equalities, note that there is a sequence of unit vectors {xm} in H1

such that 〈Pxm, xm〉 = pm converges to p̃. Then the compression of A on the subspace

Vm = span
{[
xm
0

]
,

[
0
xm

]}
⊆ H = H1 ⊕H1

has the form Apm . Since W (Apm) → W (Ã), we see that int(W (Ã)) ⊆ W (A). It is also clear
that {a, b} ⊆W (A). Thus, the set equalities in (1) – (3) hold. �

By Theorem 3.1 and [7, Theorem 2.1], we have the following corollary.

Corollary 3.3. Suppose A and Ã satisfy the condition in Theorem 3.1. Then A has a dilation
of the form I ⊗ Ã.

The n-th matricial range Wn(L) of L is the set of n × n matrices of the form φ(L), where
φ : B(H)→Mn is a unital completely positive map.

Theorem 3.4. Suppose A ∈ B(H) and Ã ∈ M2 satisfy the hypothesis of Theorem 3.1. Then

for every n ≥ 1, Wn(A) consists of all n× n matrices B with W (B) ⊆W (A) = W (Ã).

Proof. By [7, Theorem 2.1], an n× n matrix B ∈ Wn(Ã) if and only if W (B) ⊆ W (Ã). The
proof of the result is similar to the proof of Theorem 3.1 in [29]. �



GENERALIZED QUADRATIC OPERATORS 7

We will consider the other kinds of numerical ranges for generalized quadratic operators in
Section 4. We consider some operator inequalities in the following.

Denote by ρ(A) = max{|µ| : µ ∈ σ(A)} and w(A) = sup{|µ| : µ ∈ W (A)} the spectral radius
and numerical radius of A ∈ B(H). It follows readily from Theorems 2.2 and 3.1, that

ρ(A) = ρ(Ã) and w(A) = w(Ã)

if A and Ã are defined as in Theorem 3.1. Since A has a dilation of the form I ⊗ Ã by Corollary
3.3, we have ‖A‖ ≤ ‖Ã‖. As shown in the proof of Theorem 3.1, there is a sequence of two
dimensional subspaces {Vm} such that the compression of A on Vm is Apm , which converges

to Ã. Thus, we have ‖A‖ = ‖Ã‖. Suppose Ã has singular values s1 ≥ s2. Then ‖Ã‖ = s1,

tr (Ã∗Ã) = s21 + s22 and | det(Ã)| = s1s2. Hence, for p̃ = ‖P‖,

‖Ã‖ =
1
2

{√
tr (Ã∗Ã) + 2|det(Ã)|+

√
tr (Ã∗Ã)− 2|det(Ã)|

}
=

1
2

{√
|a|2 + |b|2 + (|c|2 + |d|2)p̃2 + 2|ab− cdp̃2|

+
√
|a|2 + |b|2 + (|c|2 + |d|2)p̃2 − 2|ab− cdp̃2|

}
.

By the fact that s21 is the larger zero of det(λI − Ã∗Ã) and that det(Ã∗Ã) = |det(Ã)|2, we have

‖Ã‖ =
1√
2

{√
tr (Ã∗Ã) +

√
[tr (Ã∗Ã)]2 − 4| det(Ã)|2

}

=
1√
2

√
|a|2 + |b|2 + (|c|2 + |d|2)p̃2 +

√
(|a|2 + |b|2 + (|d|2 + |c|2)p̃2)2 − 4|ab− cdp̃2|2

=
1√
2

√
|a|2 + |b|2 + (|c|2 + |d|2)p̃2 +

√
(|a|2 − |b|2 + (|d|2 − |c|2)p̃2)2 + 4|ac+ bd|2p̃2.

We summarize the above discussion in the following corollary, which also covers the result of
Furuta [13] on w(A) for A of the form (1.1) for a, b, c, d ≥ 0.

Corollary 3.5. Suppose A and Ã satisfy the hypothesis of Theorem 3.1. Then ρ(A) = ρ(Ã),

w(A) = w(Ã), and ‖A‖ = ‖Ã‖. In particular, if a, b ∈ R and c, d ∈ C satisfy cd ≥ 0, then

cl (W (A)) = W (Ã) is symmetric about the real axis, and

w(A) = w((A+A∗)/2) = w(Ã) = w((Ã+ Ã∗)/2) = ρ((Ã+ Ã∗)/2)

=
1
2

{
|a+ b|+

√
(a− b)2 + (|c|+ |d|)2‖P‖2

}
and

‖A‖ = ‖Ã‖ =
1
2

{√
(a+ b)2 + (|b| − |c|)2‖P‖2 +

√
(a− b)2 + (|b|+ |c|)2‖P‖2

}
.

Proof. The first assertion follows readily from Theorem 3.1. Suppose a, b ∈ R and c, d ∈ C
with cd ≥ 0. Then there is a diagonal unitary matrix D = diag (1, µ) such that D∗ÃD =[

a |c|‖P‖
|d|‖P‖ b

]
. It is then easy to get the equalities. �
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Corollary 3.6. Let Ai be self-adjoint operators on Hi with σ(Ai) ⊆ [m,M ] for i = 1, 2, and let
T be an operator from H2 to H1. Then

(3.1) w

([
A1 T
T ∗ −A2

])
≤ 1

2
(M −m) +

1
2

√
(M +m)2 + 4‖T‖2.

Proof. For two self-adjoint operators X,Y ∈ B(H), we write X ≤ Y if Y − X is positive
semidefinite. Since mI ≤ Ai ≤MI for i = 1, 2, we have[

mI T
T ∗ −MI

]
≤
[
A1 T
T ∗ −A2

]
≤
[
MI T
T ∗ −mI

]
.

By Theorem 3.1,∥∥∥∥[mI T
T ∗ −MI

]∥∥∥∥ =
∥∥∥∥[MI T

T ∗ −mI

]∥∥∥∥ =
1
2

(M −m) +
1
2

√
(M +m)2 + 4‖T‖2.

The desired inequality (3.1) holds. �

Note that if X,Y ∈ B(H), then we have the unitary similarity relations[
S + iY 0

0 X − iY

]
=

1√
2

[
I iI
iI I

] [
X −Y
Y X

] [
I −iI
−iI I

]
1√
2

=
1√
2

[
I I
−I I

] [
X iY
iY X

] [
I −I
I I

]
1√
2
.

Thus,

max{‖X + iY ‖, ‖X − iY ‖} =
∥∥∥∥[X −Y
Y X

]∥∥∥∥ =
∥∥∥∥[X iY
iY X

]∥∥∥∥ .
Consequently, if X,Y ∈ B(H) are self-adjoint with σ(X) ⊆ [m,M ], then using Corollary 3.6, we
have

‖X + iY ‖ = ‖X − iY ‖ =
∥∥∥∥[X iY
iY X

]∥∥∥∥ =
∥∥∥∥[X −Y
Y X

]∥∥∥∥ =
∥∥∥∥[ X Y
−Y X

]∥∥∥∥
≤ 1

2
(M −m) +

1
2

√
(M +m)2 + 4‖Y ‖2.

This covers a result in [14]. Of course, one can deduce the optimal norm bounds of the sum of
normal operators using the results in [7], and the bounds of the sum of two general operators
using the results in [8].

4. Generalized numerical ranges

Motivated by theoretical study and applications, there has been many generalizations of the
numerical range such as the the q-numerical range, k-numerical range, the c-numerical range, and
the essential numerical range; for example, see [2, 10, 11, 16, 17, 19, 24, 30] and their references.
Recently, researchers have studied the higher rank numerical range in connection to quantum
error correction; see [4, 5, 6, 21, 23] and Section 2.1. Each of these generalizations encodes
certain specific information of the operator that leads to interesting applications. To advance
the study of these generalized numerical ranges, it is useful to have concrete descriptions of the
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numerical ranges of certain operators. In most cases, it is relatively easy to solve the problem
for self-adjoint or normal operators. The task is more challenging for general operators. In the
following, we consider A of the form (2.1). Note that some of the proofs are modifications of
those in [22], but some other require different treatments. Moreover, some of the results actually
are different. We will include remarks indicating these different situations.

4.1. q-numerical range. For q ∈ [0, 1], the q-numerical range of A is the set

Wq(A) = {〈Ax, y〉 : x, y ∈ H, 〈x, x〉 = 〈y, y〉 = 1, 〈x, y〉 = q} .

It is known [19, 28] that

(4.1) Wq(A) =
{
q〈Ax, x〉+

√
1− q2〈Ax, y〉 : ∃ orthonormal {x, y} ⊆ H

}
,

and also

(4.2) Wq(A) =
{
qµ+

√
1− q2ν : ∃ x ∈ H with ‖x‖ = 1, µ = 〈Ax, x〉, |µ|2 + |ν|2 ≤ ‖Ax‖2

}
.

If q = 1, Wq(A) = W (A). For 0 ≤ q < 1, we have the following description of Wq(A) for a
generalized quadratic operator A ∈ B(H). In particular, Wq(A) will always be an open or closed
elliptical disk, which may degenerate to a line segment or a point.

Theorem 4.1. Suppose A and Ã satisfy the condition in Theorem 3.1. For any q ∈ [0, 1),

if there is a unit vector z ∈ H1 such that ‖Pz‖ = ‖P‖, then Wq(A) = Wq(Ã); otherwise

Wq(A) = int
(
Wq(Ã)

)
.

We need the following lemma.

Lemma 4.2. Let Ap be defined as in (2.2). If p < q, then for any unit vector x ∈ C2 there is a
unit vector y ∈ C2 such that 〈Apx, x〉 = 〈Aqy, y〉 and ‖Apx‖ < ‖Aqy‖.

Proof. Choose a unit vector y orthogonal to x such that Apx = µ1x + ν1y. Let U = [x|y].
Then U∗ApU has the form

Âp =
[
µ1 µ2

ν1 ν2

]
with 〈Apx, x〉 = µ1 and ‖Apx‖2 = |µ1|2 + |ν1|2. Since W (Ap) ⊆ W (Aq) by Lemma 3.2 and
trAp = trAq, we see that Aq is unitarily similar to a matrix of the form

Âq =
[
µ1 µ̂2

ν̂1 ν2

]
.

Since X ∈M2 is unitarily similar to Xt, we may assume that |ν̂1| ≥ |µ̂2|. Note that

(4.3)
|ν̂1|2 + |µ̂2|2 − |ν1|2 − |µ2|2 = tr (Â∗qÂq − Â∗pÂp)

= tr (A∗qAq −A∗pAp) = (|c|2 + |d|2)(|q|2 − |p|2) ≥ 0,
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and

| |ν̂1µ̂2| − |ν1µ2| | ≤ |ν̂1µ̂2 − ν1µ2| = |det(Âp)− det(Âq)|

= | det(Ap)− det(Aq)| = |cd|(|q|2 − |p|2).

Consequently,

(|ν̂1|+ |µ̂2|)2 − (|ν1|+ |µ2|)2 ≥ (|c| − |d|)2(|q|2 − |p|2) ≥ 0

and

(|ν̂1| − |µ̂2|)2 − (|ν1| − |µ2|)2 ≥ (|c| − |d|)2(|q|2 − |p|2) ≥ 0 .

So we have

|ν̂1|+ |µ̂2| ≥ |ν1|+ |µ2| and |ν̂1| − |µ̂2| ≥ ||ν1| − |µ2|| ≥ |ν1| − |µ2|

which implies that |ν̂1| ≥ |ν1|. From the proof, we can see that if |ν̂1| = |ν1|, then we must have
|c| = |d| and |µ̂2| = |µ2|. Then the left hand side of (4.3) is 0, a contradiction.

Therefore, we must have |ν̂1| > |ν1| and the result follows. �

Proof of Theorem 4.1
By Corollary 3.3, A has a dilation of the form I ⊗ Ã. It is then easy to check that

Wq(A) ⊆Wq(I ⊗ Ã) = Wq(Ã).

Let {zm} be a sequence of unit vectors in H1 such that 〈Pzm, zm〉 = pm → ‖P‖. Then the

compression of A on the subspace Vm = span
{[
zm
0

]
,

[
0
zm

]}
equals Apm as defined in (2.2).

Thus, Wq(Apm) ⊆W (A) for all m. Since Apm → Ã, we see that int(Wq(Ã)) ⊆Wq(A). Suppose
there is a unit vector z ∈ H1 such that ‖Pz‖ = ‖P‖. We may assume that zm = z for each m

so that Wq(A) = Wq(Ã).
Suppose there is no unit vector z ∈ H1 such that ‖Pz‖ = ‖P‖. For any unit vectors x, y ∈ H

with 〈x, y〉 = q, we show that ζ = 〈Ax, y〉 ∈ int(Wq(Ã)) in the following. To prove our claim,

let x =

α1u1

α2u2

α3u3

 , y =

β1u1 + γ1v1
β2u1 + γ2v2
β3u3 + γ3v3

 ∈ H1 ⊕H1 ⊕H2 such that u1, u2, v1, v2 ∈ H1, u3, v3 ∈ H2

are unit vectors, ui ⊥ vi for i = 1, 2, 3, and (α1, α2, α3)t, (β1, β2, β3)t, (γ1, γ2, γ3)t ∈ C3. Then
the compression of A on

V = span


u1

0
0

 ,
 0
u2

0

 ,
 0

0
u3

 ,
v10

0

 ,
 0
v2
0

 ,
 0

0
v3


has the form

B =

 aI2 cP0 0
dP ∗0 bI2 0

0 0 γI2

 ,
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where P0 ∈ M2 satisfies ‖P0‖ < ‖P‖. Here note that the (3, 3) entry may be vacuous. Then B

is unitarily similar to

B̃ =

 aI2 cD0 0
dD0 bI2 0

0 0 γI2

 , where D0 =
[
d1 0
0 d2

]
with d2 ≤ d1 < ‖P‖

Since W (B̃) ⊆W (Ad1), B̃ has a dilation I ⊗Ad1 . Therefore, Wq(B̃) ⊆Wq(I ⊗Ad1) = Wq(Ad1)

Since ζ ∈Wq(B̃) ⊆Wq(Ad1), Ad1 is unitarily similar to a matrix of the form

Â =
[
µ1 µ2

ν1 ν2

]
such that ζ = qµ1 +

√
1− q2ν1, where µ1 = 〈Ad1x′, x′〉 and |ν1|2 ≤ ‖Ad1x1‖2 − |µ1|2 for some

unit vector x′ ∈ C2. By Lemma 4.2, there is a unit vector y′ ∈ C2 such that 〈Ãy′, y′〉 = µ1 and

‖Ãy′‖ > ‖Ad1x′‖. Hence, by (4.1) and (4.2),

ζ ∈ {qµ1 +
√

1− q2ν : |µ1|2 + |ν|2 < ‖Ãy′‖2} ⊆ int(Wq(Ã)). �

4.2. Rank-k numerical ranges and essential numerical ranges. For a positive integer k,
define the rank-k numerical range of A ∈ B(H) by

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P}.

This generalized numerical range is motivated by the study of quantum error correction; see
[4, 5, 6].

To describe some basic results of Λk(A), we need the following notation. Let H ∈ B(H) be a
self-adjoint operator. If dimH = n, denote by λ1(H) ≥ · · · ≥ λn(H) the eigenvalues of H. If H
is infinite dimensional, define

λm(H) = sup{λm(X∗HX) : X is an isometry from Cm to H}.

It is known (see [26]) and not hard to verify that λm(H) of an infinite dimensional operator H
can be determined as follows. Let

σe(A) = ∩{σ(A+ F ) : F ∈ B(H) has finite rank}

be the essential spectrum of A ∈ B(H), and let

λ∞(H) = supσe(H),

which also equals the supremum of the set

σ(H) \ {µ ∈ C : H − µI has a non-trivial finite dimensional null space}.

Then S = σ(H) ∩ (λ∞(H),∞) has only isolated points, and we can arrange the elements in
descending order, say, λ1 ≥ λ2 ≥ · · · counting multiplicities, i.e., each element repeats according
to the dimension of its eigenspace. If S is infinite, then λj(H) = λj for each positive integer j.
If S has m elements, then λj(H) = λj for j = 1, . . . ,m, and λj(H) = λ∞(H) for j > m.
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Let

Ωk(A) =
⋂

ξ∈[0,2π)

{
µ ∈ C : Re (eiξµ) ≤ λk

(
Re (eiξA)

)}
,

where Re (B) = (B +B∗)/2 is the real part of B. It was shown in [20] that

int(Ωk(A)) ⊆ Λk(A) ⊆ Ωk(A) = cl (Λk(A)).

In particular, Λk(A) = Ωk(A) if A ∈Mn; see also [23].
The rank-k numerical range of a generalized quadratic operator A of the form (2.1) can be an

empty set, a singleton, a line segment or an elliptical disk with all or part of its boundary. The
following theorem gives the precise description of the set using Theorem 3.1 and Lemma 3.2.

Theorem 4.3. Suppose A ∈ B(H) satisfies the hypothesis of Theorem 3.1. Let k be a positive
integer not larger than dimH. Suppose E is the closed elliptical disk

E = W

([
a cλk(P )

dλk(P ) b

])
with foci µ± = 1

2 [(a+ b)±
√

(a− b)2 + 4cdλk(P )2] and minor axis of length√
|a|2 + |b|2 + λk(P )2(|c|2 + |d|2)− |µ+|2 − |µ−|2.

(a) If r + s < k, then Λk(A) = ∅.
(b) If r < k ≤ r + s, then Λk(A) = {γ}.
(c) Suppose k ≤ r. If P : H1 → H1 has a compression diag (p1, . . . , pk) with p1 ≥ · · · ≥ pk =

λk(P ), then Λk(A) = E. Otherwise, Λk(A) = int(E) ∪ {a, b}; more precisely, one of the
following holds.
(1) If |c| = |d| and d̄(a− b) = c(ā− b̄), then E = conv{µ+, µ−} is a line segment and

Λk(A) = E \ {µ+, µ−}.
(2) If |c| = |d| and there is ζ ∈ (0, π) such that d̄(a − b) = ei2ζc(ā − b̄) 6= 0, then

a, b ∈ ∂Λk(A) and Λk(A) = int(E) ∪ {a, b}.
(3) If |c| 6= |d|, then Λk(A) = int(E).

Remark 4.4. In (c) of Theorem 4.3, it is not hard to show that another equivalent condition
for Λk(A) = E is that

P : H1 → H1 has a compression diag (λ1(P ), . . . , λk(P )),

and therefore Λ`(A) is an elliptical disk with foci µ± = 1
2 [(a+ b)±

√
(a− b)2 + 4cdλ`(P )2] and

minor axis of length √
|a|2 + |b|2 + λ`(P )2(|c|2 + |d|2)− |µ+|2 − |µ−|2.

for any ` ∈ {1, . . . , k}. Also if λk(P ) = 0, then E becomes the line segment joining a and b, i.e.,
E = conv{a, b}. In this case, Λk(A) equals conv{a, b}.

The proof of Theorem 4.3 is very similar to Theorem 2.1 in [22]. First, we state Lemma 2.4
in [22], and then prove a lemma analogous to Lemma 2.5 in [22].
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Lemma 4.5. Suppose P is a positive semidefinite operator in B(H1) with dim(H1) ≥ k. For
any ε > 0, there exist p1, . . . , pk ∈ [0,∞) with λj(P ) − ε < pj ≤ λj(P ) for j = 1, . . . , k, such
that P has a compression of the form diag (p1, . . . , pk).

Lemma 4.6. Let A ∈ B(H) be an operator of the form described in Theorem 3.1 with the
additional assumption that r = ∞. Suppose V1 is a k-dimensional subspace of H. Then there
is a (4k + `)-dimensional subspace V2 of H containing V1 with ` = min{s, k} such that the
compression of A on V2 has the form [

aI2k cP ′

dP ′ bI2k

]
⊕ γI`,

where P ′ = diag (p1, . . . , p2k) is a compression of P , with p1 ≥ · · · ≥ p2k and pi ≤ λi(P ) for
1 ≤ i ≤ 2k.

Proof. Suppose A has the form described in Theorem 3.1, with respect to the decomposition
H = H1 ⊕ H1 ⊕ H2 and dimH1 = r = ∞. Let K1 and K2 be k-dimensional subspaces of H1

such that K1⊕ 0⊕ 0 and 0⊕K2⊕ 0 contain the orthogonal projections of V1 on H1⊕ 0⊕ 0 and
0⊕H1⊕0, respectively. Also let K3 be a `-dimensional subspace of H2, with ` = min{s, k}, such
that 0⊕ 0⊕K3 contains the orthogonal projection of V1 on 0⊕ 0⊕H2. Clearly, K1 ⊕K2 ⊕K3

contains V1. Take a 2k-dimensional subspace K of H1 containing K1 +K2 and V2 = K⊕K⊕K3.
Then V2 also contains V1. Let S : V2 ↪→ H be the imbedding of V2 into H. Then S∗AS has an
operator matrix of the form [

aI2k cX∗PX
dX∗PX bI2k

]
⊕ γI`,

where X is the imbedding of K into H1. Furthermore, we can find a unitary operator U such
that

U∗X∗PXU = diag (p1, . . . , p2k) with p1 ≥ · · · ≥ p2k.

Let R = S(U ⊕ U ⊕ I`). Then R∗R = I4k+` and R∗AR has the asserted form. �

Proof of Theorem 4.3.
We first consider the finite dimensional case. Let n = dimH = 2r + s. Assume that P has

eigenvalues p1 ≥ · · · ≥ pr ≥ 0. By Theorem 2.1, A is unitarily similar to

B1 ⊕B2 ⊕ · · · ⊕Br ⊕ γIs,

where Bj = Apj , where Ap is defined as in (2.2).
We note that if a = b, then our assumption ensures that pj 6= 0. Therefore, Bj is never a

scalar matrix and Ω2 (Bj) = ∅.
By the argument in the preceding paragraph,

λ1

(
Re (eiξB1)

)
≥ · · · ≥ λ1

(
Re (eiξBr)

)
≥ Re (eiξγ) ≥ λ2

(
Re (eiξBr)

)
≥ · · · ≥ λ2

(
Re (eiξB1)

)
.
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Then λk
(
Re (eiξA)

)
equals

λ1

(
Re (eiξBk)

)
if k ≤ r,

Re (eiξγ) if r < k ≤ r + s,

λ2

(
Re (eiξBn−k+1)

)
if r + s < k ≤ n.

Recall that µ ∈ Ωk(A) if and only if Re (eiξµ) ≤ λk
(
Re (eiξA)

)
for all ξ ∈ [0, 2π). We have

Λk(A) = Ωk(A) =


Ω1(Bk) if k ≤ r,
{γ} if r < k ≤ r + s,

Ω2(Bn−k+1) = ∅ if r + s < k ≤ n .

Then the assertion holds when k > r. If k ≤ r, then

Λk(A) = Ωk(A) = Ω1(Bk) = Λ1(Bk) = E(pk).

Thus, the result holds in the finite dimensional case.

Next, suppose H is an infinite dimensional Hilbert space. If r < k, then Ωk(A) = {γ} and
hence Λk(A) = {γ}.

If r ≥ k is finite or λk(P ) = 0, then P : H1 → H1 has a compression diag (λ1(P ), . . . , λk(P )).
Let

Ã = B1 ⊕ · · · ⊕Bk ∈M2k

with Bj =
[

a cλj(P )
dλj(P ) b

]
for j = 1, . . . , k. Notice that Ã is a compression of A and

λk

(
Re
(
eiξA

))
= λk

(
Re
(
eiξÃ

))
for all ξ ∈ [0, 2π).

Hence,

Λk(Ã) ⊆ Λk(A) ⊆ Ωk(A) = Ωk(Ã) = Λk(Ã).

Thus, Λk(A) = Λk(Ã) so that the result follows from the finite dimensional case.

Suppose r is infinite and λk(P ) > 0. We prove that (c) holds with E = E(λk(P )). Let µ be an
interior point of E . Then there exists ε > 0 such that µ ∈ E(λk(P ) − ε). By Lemma 4.5, there
exist a k-dimensional subspace V of H and X : V → H1 satisfying X∗X = Ik and

λk(X∗PX) > λk(P )− ε.

Let Z =
[
X 0
0 X

]
⊕ Is. Then we have Z∗AZ =

[
aIk cX∗PX

dX∗PX bIk

]
⊕ γIs and

µ ∈ E(λk(P )− ε) ⊆ Λk(Z∗AZ) ⊆ Λk(A).

Conversely, suppose µ ∈ Λk(A). Then there exist a k-dimensional subspace V1 of H and
X : V1 → H such that X∗X = IV1 and X∗AX = µIV1 . By Lemma 4.6, there is a (4k + `)-
dimensional subspace V2 containing V1 such that the compression of A on V2 has an operator
matrix

A′ =
[
aI2k cP ′

dP ′ bI2k

]
⊕ γI` ∈M4k+`,
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where P ′ = diag (p1, . . . , p2k) is a 2k-dimensional compression of P , with p1 ≥ · · · ≥ p2k and
pi ≤ λi(P ) for 1 ≤ i ≤ 2k. By the result in the finite dimensional case, we have

µ ∈ Λk(A′) = E(λk(P ′)) ⊆ E(λk(P )).

So, we have shown that

int(E(λk(P ))) ⊆ Λk(A) ⊆ E(λk(P )).

Also, if P has a k-dimensional compression diag (p1, . . . , pk) with pk = λk(P ) and Λk(A) =
E(λk(P )). Otherwise, Λk(A) can only contain points in the relative interior of E(λk(P )) unless
(2) holds so that a, b ∈ Λk(A) ∩ ∂E(λk(P )). The proof is complete. �

For an infinite dimensional operator A, one can extend the definition of rank-k numerical
range to Λ∞(A) defined as the set of scalars λ ∈ C such that PAP = λP for an infinite rank
orthogonal projection P on H, see [20, 25]. Evidently, Λ∞(A) consists of those λ ∈ C for which
there exists an infinite orthonormal set {xi ∈ H : i ≥ 1} such that 〈Axi, xj〉 = δi jλ for all
i, j ≥ 1. It is shown in [20] that

Λ∞(A) =
⋂
k≥1

Λk(A) =
⋂
{W (A+ F ) : F ∈ B(H) has a finite rank}.

Recall that λ∞(H) is the supremum of the set

σ(H) \ {µ ∈ C : H − µI has a non-trivial finite dimensional null space}.

One can extend the definition of Ωk(A) to

Ω∞(A) =
⋂
k≥1

Ωk(A).

By Theorem 5.1 in [20] (see also [1, Theorem 4]),

Ω∞(A) =
⋂
{cl (W (A+ F )) : F ∈ B(H) has a finite rank}

is the essential numerical range We(A) of A; Ω∞(A) = cl (Λ∞(A)) if and only if Λ∞(A) is
non-empty.

By Theorem 4.3, we have the following corollary, which gives a complete description of Λ∞(A)
and the essential numerical range of a quadratic operator A. It turns out that each of them can
be a singleton, a line segment or an elliptical disk.

Corollary 4.7. Suppose A ∈ B(H) is an infinite dimensional generalized quadratic operator
with operator matrix in the form in Theorem 3.1. Suppose

E = W

([
a cλ∞(P )

dλ∞(P ) b

])
with foci µ± = 1

2 [(a+ b)±
√

(a− b)2 + 4cdλ∞(P )2] and minor axis of length√
|a|2 + |b|2 + λ∞(P )2(|c|2 + |d|2)− |µ+|2 − |µ−|2.

(a) If r <∞, then Λ∞(A) = {γ}.
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(b) Suppose r = ∞. If σ(P ) ∩ (λ∞(P ),∞) is infinite, equivalently, P − λ∞(P )I has an
infinite dimensional null space, then Λ∞(A) = E. Otherwise, Λ∞(A) = int(E) ∪ {a, b};
more precisely, one of the following holds.
(1) If |c| = |d| and d̄(a− b) = c(ā− b̄), then E = conv{µ+, µ−} is a line segment and

Λ∞(A) = E \ {µ+, µ−}.
(2) If |c| = |d| and there is ζ ∈ (0, π) such that d̄(a − b) = ei2ζc(ā − b̄) 6= 0, then

a, b ∈ ∂Λk(A) and Λ∞(A) = int(E) ∪ {a, b}.
(3) If |c| 6= |d|, then Λ∞(A) = int(E).

Consequently, We(A) = Ω∞(A) = cl (Λ∞(A)) is a singleton, a line segment or a closed elliptical
disk.

4.3. c-numerical ranges. For c = (c1, . . . , ck) with c1 ≥ · · · ≥ ck and k ≤ dimH, the c-
numerical range of A is

Wc(A) =


k∑
j=1

cj〈Axj , xj〉 : {x1, . . . , xk} ⊆ H is an orthonormal set

 .

If (c1, . . . , ck) = (1, . . . , 1), then Wc(A) reduces to the k-numerical range; see [16].
Suppose A ∈M2 has eigenvalues λ1 and λ2, and c = (c1, c2). Then

Wc(A) = (c1 − c2)W (A) + c2trA = W ((c1 − c2)A+ (c2trA)I2)

is the elliptical disk with foci c1λ1 + c2λ2 and c2λ1 + c1λ2, and the lengths of minor and major
axis of Wc(A) are, respectively,

{tr (Â∗Â)− 2|det Â|}1/2 and {tr (Â∗Â) + 2|det Â|}1/2,

where Â =
(c1 − c2)

2
(A− 2(trA)I2).

For a self-adjoint operator H ∈ B(H), we have

cl (Wc(H)) = [mc(H),Mc(H)],

where

mc(H) = inf

−∑̀
j=1

cjλj(−H) +
k−∑̀
j=1

ck−j+1λj(H) : 0 ≤ ` ≤ k


and

Mc(H) = sup

∑̀
j=1

cjλj(H)−
k−∑̀
j=1

ck−j+1λj(−H) : 0 ≤ ` ≤ k

 .

For a general operator A ∈ B(H), we have

(4.4) cl (Wc(A)) =
⋂

t∈[0,2π)

{
µ ∈ C : Re

(
eitµ

)
≤Mc

(
Re (eitA)

)}
.
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For a generalized quadratic operator A ∈ B(H), it is easy to determine λm
(
Re (eitA)

)
. Thus,

it is not hard to determine Wc(A) using (4.4). It turns out that cl (Wc(A)) can always be
expressed as the sum of a finite number of elliptical disks, namely,

cl (Wc(A)) = W (C1) + · · ·+W (Ct) + d

for some constant d ∈ C and C1, . . . , Ct ∈M2 with t ≤ k.
To simplify the statement of our results, we will impose the following assumption on the

vector c = (c1, . . . , ck):

(4.5)
c1 ≥ · · · ≥ ck with cm+1 = 0, where

dimH =∞ > k = 2m or dimH = k ∈ {2m, 2m+ 1}.

Note that it is easy to reduce the general case to the study of the special vector c with assumption
(4.5). In the infinite dimensional case, this can be achieved by adding zeros to the vector
c = (c1, . . . , ck). In the finite dimensional case, we can first assume that k = dimH by adding
zeros to the vector c, and then replace c with ĉ = c− cm+1(1, . . . , 1). One can then use the fact
that Wc(A) = Wĉ(A)+cm+1trA to determine the shape of Wc(A). Note also that the advantage
of this assumption on c is that the supremum in the definition of Mc(H) is always attained at
` = m.

For notational convenience, we assume that the generalized quadratic operator A in the form
(2.2) has (1, 2) block equal to P instead of cP in the following theorem.

Theorem 4.8. Let A ∈ B(H) be a generalized quadratic operator with an operator matrix in
the form

(4.6)
[
aIr P
dP bIr

]
⊕ γIs with dP 6= 0.

Suppose c = (c1, . . . , ck) satisfies (4.5) and t = min{m, r}. Let

E = W (C1) + · · ·+W (Ct) + γ

k−t∑
j=t+1

cj ,

where

Cj = (cj − ck−j+1)
[

a λj(P )
dλj(P ) b

]
+ ck−j+1(a+ b)I2, j = 1, . . . , t.

If P : H1 → H1 has a compression diag (λ1(P ), . . . , λt(P )), then Wc(A) = E. Otherwise,

Wc(A) = int(E) ∪ {q1,q2},

where

q1 =
t∑

j=1

(acj − bck−j+1) + γ

k−∑̀
j=t+1

cj , q2 =
t∑

j=1

(bcj − ack−j+1) + γ

k−∑̀
j=t+1

cj ;

more precisely, one of the following holds.
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(1) If |d| = 1 and d̄(a − b) = (ā − b̄), then E is a line segment and Wc(A) is the relative
interior of E.

(2) If |d| = 1 and there is ζ ∈ (0, π) such that d̄(a−b) = ei2ζ(ā− b̄) 6= 0, then Wc(A) consists
of the interior of the non-degenerate elliptical disk E and its two boundary points q1 and
q2.

(3) If |d| 6= 1, then Λk(A) = int(E).

Proof. Suppose dimH = n is finite. So we have k = n and r ≤ m. Notice that A is unitarily
similar to

B1 ⊕ · · · ⊕Br ⊕ γIs,

where Bj =
[

a λj(P )
dλj(P ) b

]
for j = 1, . . . , r. By the argument in the proof of Theorem 4.3,

we have

λj

(
Re (eiξA)

)
=



λ1

(
Re (eiξBj)

)
if j ≤ r,

Re (eiξγ) if r < j ≤ r + s,

λ2

(
Re (eiξBn−j+1)

)
if r + s < j ≤ n.

Under assumption (4.5) and k = n, we have

Mc

(
Re (eiξA)

)
=

n∑
j=1

cjλj

(
Re (eiξA)

)
.

On the other hand,

Re (eiξγ)
n−r∑
j=r+1

cj =
n−r∑
j=r+1

cjλj

(
Re (eiξA)

)
and

r∑
j=1

M(cj ,cn−j+1)

(
Re (eiξBj)

)
=

r∑
j=1

[
cjλ1

(
Re (eiξBj)

)
+ cn−j+1λ2

(
Re (eiξBj)

) ]
=

r∑
j=1

cjλj

(
Re (eiξA)

)
+

n∑
j=n−r+1

cjλj

(
Re (eiξA)

)
.

Thus, Mc

(
Re (eiξA)

)
equals

r∑
j=1

M(cj ,cn−j+1)

(
Re (eiξBj)

)
+ Re (eiξγ)

n−r∑
j=r+1

cj .
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By (4.4) and the above equation, the two compact convex sets

Wc(A) and W(c1,cn)(B1) + · · ·+W(cr,cn−r+1)(Br) + γ
n−r∑
j=r+1

cj

always share the same support line in each direction. Thus, the two sets are the same. Since
W(cj ,cn−r+j)(Bj) = W (Cj) for j = 1, . . . , r, it follows that

Wc(A) = W (C1) + · · ·+W (Cr) + γ
n−r∑
j=r+1

cj .

Next, suppose dimH is infinite. Suppose r is finite or λm(P ) = 0. Let t = min{m, r}. Then
P : H1 → H1 has a compression diag (λ1(P ), . . . , λt(P )). Take

Ã = B1 ⊕ · · · ⊕Bt ⊕ γIk−2t ∈Mk

with Bj =
[

a λj(P )
dλj(P ) b

]
for j = 1, . . . , t. Then we have λj(Re (eiξA)) = λj(Re (eiξÃ)) for

each ξ ∈ [0, 2π) and j = 1, . . . ,m. Thus, Mc(Re (eiξA)) = Mc(Re (eiξÃ)) for all ξ ∈ [0, 2π) and

so Wc(A) = Wc(Ã). The result follows from the finite dimensional case.
Suppose r is infinite and λm(P ) > 0. For µ1 ≥ · · · ≥ µm > 0, let

E(µ1, . . . , µm) = W(c1,ck)

([
a µ1

dµ1 b

])
+ · · ·+W(cm,ck−m+1)

([
a µm

dµm b

])
.

Notice that E(λ1(P ), · · ·λm(P )) = W (C1) + · · ·+W (Cm).
By Lemma 4.5, there exist an m-dimensional subspace V of H and X : V → H1 satisfying

X∗X = Im and X∗PX = diag (λ1, . . . , λm) with λj(P )− ε < λj ≤ λj(P ) for j = 1, . . . ,m. Let

Z =
[
X 0
0 X

]
⊕ Is. Then Z∗AZ is unitary similar to

[
a λ1

dλ1 b

]
⊕ · · · ⊕

[
a λm

dλm b

]
⊕ γIs.

Note that Wc(B) ⊆Wc(A) if B is a compression of A. Applying the result for finite r = m, we
have

E(λ1, . . . , λm) = Wc(Z∗AZ) ⊆Wc(A).

As λj → λj(P ) and hence
[
a λj
dλj b

]
→
[

a λj(P )
dλj(P ) b

]
when ε → 0, we see that all the

interior points of E(λ1(P ), . . . , λm(P )) lie in Wc(A).
Conversely, suppose µ ∈ Wc(A). Then there exist a k-dimensional subspace V1 of H and

X : V1 → H such that X∗X = Ik and µ ∈ Wc(X∗AX). By Lemma 4.6, there are a (4k + `)-
dimensional subspace V2, containing V1 and Y : V2 → H such that Y ∗Y = IV2 and Y ∗AY has
an operator matrix [

aI2k P ′

dP ′ bI2k

]
⊕ γI` ∈M4k+`,
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where P ′ = diag (λ1, . . . , λ2k) is a 2k-dimensional compression of P , with λ1 ≥ · · · ≥ λ2k and
λi ≤ λi(P ) for 1 ≤ i ≤ 2k. Since X∗AX is a compression of Y ∗AY , we have µ ∈Wc(X∗AX) ⊆
Wc(Y ∗AY ). By the finite dimensional result, we have

µ ∈Wc(Y ∗AY ) = E(λ1, . . . , λp) ⊆ E(λ1(P ), . . . , λp(P )).

So, we have shown that

int(E(λ1(P ), . . . , λp(P ))) ⊆Wc(A) ⊆ E(λ1(P ), . . . , λp(P )).

If P has a p-dimensional compression P̃ = diag (λ1(P ), . . . , λp(P )), then A is a compression of
the form [

Ip P̃

dP̃ Ip

]
.

Thus, E(λ1(P ), . . . , λp(P )) ⊆Wc(A). Hence, Wc(A) = E .
Suppose P does not have an compression of the above form. Then the Wc(A) can only include

boundary points of E if A satisfies condition (2) in Theorem 3.1, i.e., condition (2) in Lemma
3.2. Moreover, the two boundary points of E included in Wc(A) will be the points described in
(2). �

In Theorem 4.8, if λj(P ) = 0 for some j ≤ t, then W (Cj) + · · · + W (Ct) becomes a line
segment joining

a
t∑
i=j

ci + b
k−m+1∑
i=k−t+1

ci and b
t∑
i=j

ci + a
k−m+1∑
i=k−t+1

ci.

Thus, Wc(A) is a sum of j − 1 nondegenerate elliptical disks with one line segment. Therefore,
we have the following corollary.

Corollary 4.9. Let c = (c1, . . . , ck) and A ∈ B(H) satisfy the hypotheses of Theorem 4.8. Then
the boundary of cl (Wc(A)) is differentiable. If λj(P ) = 0 for some j ≤ min{m, r}, then there are
exactly two flat portions on the boundary. Otherwise, there is no flat portion on the boundary.

Corollary 4.10. Suppose A is a generalized quadratic operator with an operator matrix in the
form described in Theorem 3.1. Let t = min{k, r} and

Bj =
[

a cλj(P )
dλj(P ) b

]
j = 1, . . . , t.

Let

E = W (B1) + · · ·+W (Bt) + (k − t)γ.

(a) Suppose k ≤ r + s. If P : H1 → H1 has a compression diag (λ1(P ), . . . , λt(P )), then
Wk(A) = E. Otherwise, Wk(A) = int(E) ∪ {ta+ (k − t)γ, tb+ (k − t)γ}.

(b) If k > r + s, then Wk(A) equals

W (B1) + · · ·+W (B2r+s−k) + (k − r − s)(a+ b) + sγ.
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4.4. Davis-Wielandt shell. Define the Davis-Wielandt shell of A by

DW (A) = {(〈Ax, x〉, 〈Ax,Ax〉) : x ∈ H, 〈x, x〉 = 1};

see [10, 11, 30]. Evidently, the projection of the set DW (A) on the first co-ordinate is W (A).
So, DW (A) captures more information about the operator A than W (A). For example, in the
finite dimensional case, normality of operators can be completely determined by the geometrical
shape of their Davis-Wielandt shells, namely, A ∈ Mn is normal if and only if DW (A) is a
polyhedron in C×R identified with R3. Suppose A ∈ B(H). It is known that if dimH ≥ 3 then

DW (A) is always convex. Suppose A =
[
a c
d b

]
∈ M2 is non-scalar and has eigenvalues λ1, λ2.

If A is normal, then DW (A) degenerates to the line segment joining the points (λ1, |λ1|2) and
(λ2, |λ2|2); otherwise, DW (A) is an DW (A) is an ellipsoid (without its interior) centered at
((λ1 + λ2)/2, tr (A∗A)/2).

Suppose dimH ≥ 3. In [22], a complete description of DW (A) for a quadratic operator A
was given. For generalized quadratic operators, we have the following.

Theorem 4.11. Suppose dimH ≥ 3 and A ∈ B(H) is a generalized quadratic operator with
operator matrix in the form in Theorem 3.1 and let Ap be defined as in (2.2). Let S = {(γ, |γ|2)}
if γIs is non-trivial and S = ∅ otherwise. Suppose σ(P ) = σ1(P ) ∪ σ2(P ), where σ1(P ) is the
set of eigenvalues of P . Then

(4.7) DW (A) = conv

 ⋃
p∈σ1(P )

DW (Ap) ∪
⋃

p∈σ2(P )

int(DW (Ap)) ∪ S

 ∪ L,
where

(i) L = {(µ, |µ|2 + η2) : µ ∈ {a, b}, η ∈ W (|c|P ⊕ |d|P )} ⊆ ∂W (A) if a, b ∈ ∂DW (A), i.e.,
condition (2) in Theorem 3.1 holds, and

(ii) L = ∅ otherwise, i.e., condition (1) or (3) in Theorem 3.1 holds.

Consequently,

(4.8) cl (DW (A)) = cl

conv

 ⋃
p∈σ(P )

DW (Ap) ∪ S

 .

As pointed out by the referee, for a generalized quadratic operator A, the q-numerical range
is just an elliptical disk (with all or without any boundary points), see Theorem 4.1, whereas the
description of the Davis Wielandt shell is more involved. This shows the subtlety of the study.

To prove Theorem 4.11, we need the following lemmas.

Lemma 4.12. Let Ap be defined as in (2.2). If T ∈ B(H) such that W (T ) ⊆ W (Ap), then
for any unit vector x ∈ H there is a unit vector y ∈ C2 such that 〈Tx, x〉 = 〈Apy, y〉 and
‖Tx‖ ≤ ‖Apy‖.
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Proof. Suppose W (T ) ⊆ W (Ap). By Corollary 3.3, there exists an isometry U such that
T = U∗(I ⊗ Ap)U . For any unit vector x ∈ H, if z = Ux, then µ = 〈Tx, x〉 = 〈(I ⊗ Ap)z, z〉
and ‖Tx‖2 ≤ ‖(I ⊗ Ap)z‖2 = ν. Since (µ, ν) ∈ DW (I ⊗ Ap) ⊆ convDW (Ap) and DW (A) is
either a line segment or an ellipsoid (without its interior), there exists (µ, ν̂) ∈ DW (Ap) such
that ν̂ ≥ ν. The result follows. �

Lemma 4.13. Suppose

(4.9) Bk =
[
aI cPk
dPk bI

]
∈ B(Vk ⊕ Vk),

where Pk is one of the summand in P = ⊕nk=1Pk described in Theorem 2.1. Then

(4.10) DW (Bk) ⊆ conv
[
∪p∈σ(Pk)DW (Ap)

]
.

Furthermore, if (µ, ν) ∈ DW (Bk) is an extreme point of DW (Bk), then (µ, ν) ∈ DW (Ap) for
some eigenvalue p of Pk.

Proof. First, we prove (4.10). The result is clear if Pk is a singleton. So, we assume that Pk
is a non-degenerate interval. Hence, Vk is infinite dimensional.

Suppose (µ, ν) ∈ DW (Bk). Then there exists a unit vector x ∈ Vk ⊕ Vk, such that (µ, ν) =

(〈Bkx, x〉, ‖Bkx‖2). Let x =
[
cos θx1

sin θx2

]
for some unit vectors, x1, x2 ∈ Vk. Let {u1, u2} ∈ Vk be

an orthogonal normal family such that x1, x2 ∈ span {u1, u2}. Let

U = [u1 u2] : C2 → Vk and X =
[
U 0
0 U

]
: C4 → Vk ⊕ Vk.

Then X∗X = I4 and

Ck = X∗BkX =
[

aI2 cU∗PkU
dU∗PkU bI2

]
∈M4

is a compression of A. Clearly, σ(U∗PkU) ⊆ σ(Pk). Now, suppose v1, v2 ∈ C2 are unit vectors

such that x1 = Uv1 and x2 = Uv2. Then for v =
[
cos θv1
sin θv2

]
, we have

〈Ckv, v〉 = 〈Bkx, x〉 = µ.

Furthermore, if ν̃ = ‖Ckv‖2, then (µ, ν) ∈ DW (Ck) with

ν − ν̃ = 〈B∗kBkx, x〉 − 〈C∗kCkx, x〉

= |d|2(v∗1U
∗P 2

kUv1 − v∗1(U∗PkU)2v1) + |c|2(v∗2U
∗P 2

kUv2 − v∗2(U∗PkU)2v2)

= |d|2(‖Pkx1‖2 − ‖U∗Pkx1‖2) + |c|2(‖Pkx2‖2 − ‖U∗Pkx2‖2)

≥ 0.

Let p = maxσ(Pk). Then by Lemma 3.2, W (Bk) ⊆ W (Ap). By Lemma 4.12, there is η ≥ ν

such that (µ, η) ∈ DW (Ap). Since Ck is unitarily similar to Aq1 ⊕Aq2 for some q1, q2 ∈ σ(Pk),
it follows that (µ, η) ∈ DW (Ap), (µ, ν̃) ∈ conv [DW (Aq1) ∪DW (Aq2)], and

(µ, ν) ∈ conv{(µ, η), (µ, ν̃)} ⊆ conv
[
∪q∈σ(Pk)DW (Aq)

]
.
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Suppose (µ, ν) ∈ DW (Bk) is an extreme point of DW (Bk). Following the argument in the
previous paragraph, we see that

(1) ν = ν̃, or (2) η = ν and p ∈ {q1, q2}.

Suppose (1) holds. Let S be the subspace spanned by {u1, u2}. Analyzing the equality
condition for ν − ν̃ ≥ 0, we see that both Pkx1 and Pkx2 lie in S. So S is a reducing subspace
of Pk, and consequently, a reducing subspace of P . We can choose u1 and u2 to be eigenvectors
of P corresponding to eigenvalues p1 and p2 respectively. Then Ck is a direct summand of A
and unitarily similar to Ap1 ⊕ Ap2 . Since (µ, ν) is an extreme point of cl (DW (A)), it must lie
in DW (Api) for some i = 1, 2.

Suppose (2) holds, and assume that p = q1. In particular, we may assume that Ap =
[
a cp
dp b

]
is a principal submatrix of Ck, and P is unitarily similar to [p]⊕ P̂ . Thus, p is an eigenvalue of
P and (µ, ν) ∈ DW (Ap). �

Proof of Theorem 4.11.
We will first prove the equality (4.8) and then use the result to prove (4.7).

Step 1. We prove the inclusion “⊇” of (4.8). Suppose (µ, ν) ∈ DW (Ap), with p ∈ σ(P ).
Then there is a sequence of unit vectors {xm} in H1 such that ‖Pxm − pxm‖ → 0 so that
〈Pxm, xm〉 = pm → p. Thus, for each m, P is unitarily similar to

Pm =

pm δm 0
δm ∗ ∗
0 ∗ ∗

 ,
where δm ≥ 0 and δm → 0. Hence, A is untarily similar to

Tm =
[
aIr cPm
dPm bIr

]
⊕ γIs.

Then, for any unit vector u =
[
u1

u2

]
∈ C2, we can extend it to ũ1 =

[
u1

0

]
, ũ2 =

[
u2

0

]
∈ H1 so

that for ũ =

ũ1

ũ2

0

 ∈ H1 ⊕H1 ⊕H2. It follows that

(〈Tmũ, ũ〉, ‖Tmũ‖2)→ (〈Apu, u〉, ‖Au‖2).

Thus, clDW (A) ⊇ DW (Ap). By convexity of DW (A), we get the inclusion “⊇” of (4.8).

Step 2. We prove the inclusion “⊆” of (4.8). Since DW (X⊕Y ) = conv{DW (X)∪DW (Y )},
we may assume that γIs is vacuous. So, it suffices to show that

DW (Bk) ⊆ conv
[
∪p∈σ(Pk)DW (Ap)

]
,

which follows from Lemma 4.13.

By Step 1 and Step 2, we get the equality (4.8). Next, we turn to the equality (4.7).
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Step 3. We prove the inclusion “⊇” of (4.7). By the description of cl (DW (A)) and the fact
that DW (A) has non-empty relative interior as cdP 6= 0, we see that

DW (A) ⊇ conv

 ⋃
p∈σ1(P )

DW (Ap) ∪
⋃

p∈σ2(P )

int(DW (Ap)) ∪ S

 .
Suppose condition (2) of Theorem 3.1 holds. We will show that L ⊆ DW (A). Note that one
can apply the construction in Step 1 to get the sequence of operators {Tm} so that

{pm} → p̂ ∈ {maxσ(P ),minσ(P )}.

Let e1 =
[
1
0

]
∈ H1. Then for v1 =

e10
0

 , v2 =

 0
e1
0

 ∈ H1 ⊕H1 ⊕H2, we have

(〈Tmv1, v1〉, ‖Tmv1‖2)→ (a, |a|2 + |dp̂|2) and (〈Tmv2, v2〉, ‖Tmv2‖2)→ (b, |b|2 + |cp̂|2).

Note that there is a unitary U = (uij) ∈M2 such that

U

[
a cpm
dpm b

]
U∗ =

[
b cpm

dpm a

]
.

Extend U to

V =


u11 0 u12 0
0 Ir−1 0 0
u21 0 u22 0
0 0 0 Ir−1

⊕ Is ∈ B(H1 ⊕H1 ⊕H2).

Then

T̂m = V TmV
∗ =


b du12δm 0 cpm cu11δm 0

cū12δm a 0 cu22δm ∗ ∗
0 0 aIr−2 0 ∗ ∗
dpm du22δm 0 a cu21δm 0

dū11δm ∗ ∗ dū21δm b 0
0 ∗ ∗ 0 0 bIr−2

⊕ γIs.

For e1 =
[
1
0

]
∈ H1, and v1 =

e10
0

 , v2 =

 0
e1
0

 ∈ H1 ⊕H1 ⊕H2, we have

(〈T̂mv1, v1〉, ‖T̂mv1‖2)→ (b, |b|2 + |dp̂|2) and (〈T̂mv2, v2〉, ‖T̂mv2‖2)→ (a, |a|2 + |cp̂|2).

Hence, (µ, |µ|2 + η2) ∈ cl (DW (A)), for µ ∈ {a, b} and η ∈ {maxσ(P ),minσ(P )}. By the con-
vexity of DW (A), the relative interior of L ⊆ DW (A). Moreover, if p̂ ∈ {maxσ(A),minσ(A)}
and p̂ ∈ W (P ), then there is a unit vector u ∈ H1 such that ‖P‖ = 〈Pu, u〉 = ‖Pu‖‖u‖ ≤ ‖P‖.
As a result, A is unitarily similar to Ap̂ ⊕ Â. In particular, DW (Ap̂) ⊆ DW (A) so that

(µ, |µ|2 + p̂2) ∈ DW (A). Thus, we see that L ⊆ DW (A).

Step 4. We prove the inclusion “⊆” of (4.7). Suppose (µ0, ν0) ∈ ∂DW (A) ∩DW (A). Then
there is a support plane P of the convex set cl (DW (A)) passing through (µ0, ν0) ⊆ C×R ∼ R3.
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So, there exist real numbers f, g, h, λ such that

λ = Re ((f + ig)µ0) + hν0 = max{Re ((f + ig)µ) + hν : (µ, ν) ∈ DW (A)}.

Now, if P is a support plane for DW (Ap), then there is a unit vector x ∈ C2 such that

λ = Re ((f + ig)(x∗Apx)) + hx∗A∗pApx ≥ Re ((f + ig)(y∗Apy)) + hy∗A∗pApy, y ∈ C2, y∗y = 1.

Thus, λ is the largest eigenvalue of

Lp = Re ((f + ig)Ap) + hA∗pAp =
[
a11 + h|d|2p2 a12p

a21p a22 + h|c|2p2

]
and hence

(4.11) 0 = det(λI − Lp) = |hcd|2p4 + t1p
2 + t2,

where t1 = −h[(λ − a11)|c|2 + (λ − a22)|d|2] − a12a21, t2 = (λ − a11)(λ − a22) ∈ R. If h 6= 0,

then p2 = [−t1 ±
√
t21 − 4t2|hcd|2]/2|hcd|2, and there are at most two distinct p ≥ 0 satisfying

(4.11). If h = 0 and t1 6= 0, then p2 = −t2/t1 and there is at most one p ≥ 0 satisfying (4.11).
If h = t1 = 0 and t2 6= 0, then there is no p ≥ 0 satisfying (4.11). Finally, if h = t1 = t2 = 0, we
see that (4.11) holds for all p ≥ 0.

Note that for any unit vector x ∈ H, we can decomposed x according to the range space
of Bk. It follows that every element (µ, ν) = (〈Ax, x〉, ‖Ax‖2) in DW (A) can be written as
(µ, ν) =

∑
k tk(µk, νk) with (µk, νk) ∈ DW (Bk), where the sum could be infinite. In any event,

if (µ0, ν0) ∈ ∂DW (A) ∩ P, where P is a support plane of DW (A), then (µ0, ν0) is a convex
combination of elements in DW (Ap)∩P for some p ∈ σ(A) such that DW (Ap)∩P 6= ∅. By the
previous discussion, we have the following three cases.

Case 1 If the support plane P of DW (A) has intersection with DW (Ap) for only one p ∈ σ(P )
and if p ∈ σ(Pk), then we have P ∩DW (Bk) = {(µ0, ν0)}. Hence, (µ0, ν0) is an extreme point
of DW (Bk). By Lemma 4.13, p is an eigenvalue of Pk.

Case 2 If the support plane P of DW (A) has intersection with DW (Ap) and DW (Aq) for two
different p, q ∈ σ(P ), then P ∩DW (A) = conv [(P ∩DW (Ap)) ∪ (P ∩DW (Aq))]. If (µ0, ν0) is
one of the two points in the set (P∩DW (Ap))∪(P∩DW (Aq)), then (µ0, ν0) is the extreme point
of DW (Bk) for some Bk defined as in Lemma 4.13. If (µ0, ν0) is a non-trivial combination of the
two points in the set (P ∩DW (Ap)) ∪ (P ∩DW (Aq)), then the two points must lie in DW (A).
Moreover, they must be extreme points of DW (Bk) and DW (B`), where Bk and B` defined as
in Lemma 4.13 such that p ∈ σ(Pk) and q ∈ σ(P`). By Lemma 4.13, p, q are eigenvalues of Pk
and P`, respectively.

In both Cases 1 and 2, we conclude that (µ0, ν0) ∈ conv
[⋃

p∈σ1(P )DW (Ap)
]
.

Case 3 If (µ0, ν0) ∈ DW (Ap) for all p ≥ 0, then h = 0 so that µ0 ∈ ∩p≥0W (Ap). It follows
that condition (2) of Lemma 3.2 holds, and µ0 ∈ {a, b}. By the argument in Step 3, we have

(µ0, ν0) ∈ L ⊆ conv
[⋃

p∈σ1(P )DW (Ap)
]
. The result follows. �
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5. Additional remarks and further research

We may extend most of our results to A ∈ B(H) of the form in (2.1) without requiring that γ ∈
{a, b}, using the simple fact that σ(X⊕Y ) = σ(X)∪σ(Y ), W (X⊕Y ) = conv{W (X)∪W (Y )},
‖X ⊕ Y ‖ = max{‖X‖, ‖Y ‖}, DW (X ⊕ Y ) = conv{DW (X) ∪DW (Y )}, etc.

We may consider A ∈ B(H) with an operator matrix of the form

(5.1)
[
aI R
S bI

]
so that RS and SR are normal. If A is a Hilbert-Schmidt operator, i.e., A∗A has a bounded
trace, then H = H1 ⊕H1 ⊕H2 and A is unitarily similar to

(5.2)
[
aIr D1

D2 bIr

]
⊕ γIs,

where D1, D2 ∈ B(H1) are commuting normal operators, and γ ∈ {a, b}.
To see this, we may first find U, V such that URV has the form (a), (b), or (c) as in the proof

of Theorem 2.1, we see that A is unitarily similar to[
aIr P
Q bIr

]
⊕ γIs

where P,Q ∈ B(H1) with γ ∈ {a, b}. We may further assume that P = P1⊕0 so that ker (P1) =
{0}. Note that P1 is compact and has discrete eigenvalues. Thus, we may assume that P1 is a
direct sum of pjIrj such that p1 > p2 > · · · . Note that PQ and QP are normal. Thus, Q = Q1⊕0
so that P1Q1 and Q1P1 are normal. Now, decompose Q1 according to the decomposition of P1.
Using the equalities P1Q1Q

∗
1P1 = Q∗1P1P1Q1 and Q1P1P1Q

∗
1 = P1Q

∗
1Q1P , we see that Q1 is also

a direct sum of Q̂j and each Q̂j is normal. We get the decomposition (5.2).
With the decomposition (5.2), we easily show that σ(A), W (A), ρ(A), w(A), ‖A‖, etc. are

completely determined by matrices of the form

A(u, v) =
[
a u
v b

]
, (u, v) ∈ σ(D1, D2),

where σ(D1, D2) is the joint spectrum of (D1, D2) defined as the collection of (u, v) ∈ C × C
such that ‖Rxm − uxm‖ + ‖Sxm − vxm‖ → 0 for a sequence of unit vectors {xm} ⊆ H1. For
instance, one has

cl (Wq(A)) = conv
[
cl
(
∪(u,v)∈σ(D1,D2)Wq(A(u, v))

)]
, q ∈ [0, 1],

and

cl (DW (A)) = conv
[
cl
(
∪(u,v)∈σ(D1,D2)DW (A(u, v))

)]
.

If there is (ũ, ṽ) ∈ σ(D1, D2) such that

W (A(u, v)) ⊆W (A(ũ, ṽ)) for all (u, v) ∈ σ(D1, D2),

then we have cl (W (A)) = W (A(ũ, ṽ)), cl (Wq(A)) = W (Aq(ũ, ṽ)), A has a dilation of the form
I ⊗ A(ũ, ṽ), ‖A‖ = ‖A(ũ, ṽ)‖, and the matricial range result holds, namely, B ∈ Wn(A) if and
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only if W (B) ⊆ W (A(ũ, ṽ)). Furthermore, if A is unitarily similar to a direct sum of A(uj , vj)

for j = 1, . . . ,m, and Â such that

W (Â) ⊆W (A(um, vm)) ⊆W (A(um−1, vm−1)) ⊆ · · · ⊆W (A(u1, v1)),

then we can obtain results for the rank-k numerical range, essential numerical range (if m =∞),
c-numerical range.

It would be nice to show that the decomposition (5.2) holds also for general operators with
an operator matrix of the form (5.1).
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