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Abstract. It is shown that for n ≤ 3 the joint numerical range of a
family of commuting n×n complex matrices is always convex; for n ≥ 4
there are two commuting matrices whose joint numerical range is not
convex.

1. Introduction

Let Mm,n be the set of m × n complex matrices. For A ∈ Mm,n, A
∗

(At) stands for the conjugate transpose (transpose) of A; for example, see

[9, 10]. Denote by Cn (Rn) the set of column vectors with n complex (real)

entries. Let Mn = Mn,n and Mm
n be the set of all m-tuples of n×n matrices.

We identify Cn with Mn,1. For notation convenience, we will also say that

z ∈ Cn for a complex row vector z = (z1, . . . , zn). The joint numerical range

of A = (A1, . . . , Am) ∈ Mm
n is defined by

W (A) = {(x∗A1x, . . . ,x
∗Amx) : x ∈ Cn, x∗x = 1} ⊆ Cm.

When m = 1, it reduces to the classical numerical range W (A1) of A1 ∈ Mn,

which is a useful tool for studying matrices and operators; for example,

see [10, Chapter 1]. The joint numerical range of m matrices is useful in

studying the behavior of the family of matrices {A1, . . . , Am} ⊆ Mn, and

has applications in many pure and applied areas. We refer the readers to

the excellent survey [14] and the paper [15] on this subject.

When m = 1, the Toeplitz-Hausdorff theorem asserts that W (A1) is

always convex. However, for m ≥ 2, W (A1, . . . , Am) may fail to be convex;

see [11]. Many researchers have studied matrices with certain commutativity

properties that have convex joint numerical ranges, e.g., see [3, 4, 5, 6, 11,

12, 13]. In particular, Dash [5, Proposition 2.4] proved that W (A1, . . . , Am)

is always convex for any commuting family {A1, . . . , Am} ⊆ M2 and raised

the question on the same result for {A1, . . . , Am} ⊆ Mn, with n > 2. In

[13], the author gave a simple example, which was incorporated in [15] with
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some improvements, of a commuting family {A1, A2, A3} ⊆ M4 such that

W (A1, A2, A3) is not convex, and raised the question of whether W (A1, A2)

is convex if A1A2 = A2A1; see [13, Problem 2]. We will show that the answer

is negative if A1, A2 is a commuting pair of matrices (or infinite dimensional

operators) with dimension at least 4. However, for a commuting pair of

matrices A1, A2 ∈ M3, W (A1, A2) is always convex. We can then deduce

from the results that W (A1, . . . , Am) is always convex for any commuting

family {A1, . . . , Am} ⊆ M3.

Our paper is organized as follows. In Section 2, we present some prelim-

inary results including a short proof on the convexity of W (A1, . . . , Am) for

every commuting family {A1, . . . , Am} ⊆ M2. In Section 3, we present ex-

amples of commuting matrices (or infinite dimensional operators) A1, A2 of

dimension at least 4 such that W (A1, A2) is not convex. We then state our

main result that W (A1, A2) is convex if A1, A2 ∈ M3 commute, and deduce

that W (A1, . . . , Am) is convex for any commuting family {A1, . . . , Am} ⊆
M3. The rather involved proof of the main theorem on the convexity of

W (A1, A2) for commuting pair A1, A2 ∈ M3 will be given in Section 4.

2. Preliminaries and commuting families in M2

Let Hn = {A ∈ Mn : A = A∗} be the real space of all n × n Hermitian

matrices and In be the n× n identity matrix. We summarize some proper-

ties of joint numerical ranges which are useful for the sequel. We refer the

interested readers to [1, 8, 11].

Proposition 2.1. Let F = {A1, . . . , Am} ⊆ Mn. Suppose the complex space

spanned by {A1, . . . , Am} has a basis {C1, . . . , Cs}. Let Aj = Hj+iGj, where

Hj, Gj ∈ Hn for j = 1, . . . ,m. Then

(a) W (A1, . . . , Am) = W (U∗A1U, . . . , U
∗AmU) for any unitary U ∈ Mn.

(b) W (A1, . . . , Am) = W (At
1, . . . , A

t
m).

(c) W (A1, . . . , Am) is convex if and only if W (C1, . . . , Cs) is convex.

(d) The family F is commuting if and only if {C1, . . . , Cs} is commuting.

(e) W (A1, . . . , Am) ⊆ Cm can be identified with W (H1, G1, . . . , Hm, Gm)

⊆ R2m.

(f) For n = 2 and H1, . . . , Hm ∈ H2, W (H1, . . . , Hm) is convex if and

only if span {I2, H1, . . . , Hm} ≠ H2.

(g) Suppose n ≥ 3 and H1, . . . , Hm ∈ Hn. If span {In, H1, . . . , Hm} has

dimension at most 4, then W (H1, . . . , Hm) is convex.
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Note that (c) and (f) are given in [8, Corollary 2.4 and Example 1]

and (g) is given in [1, Corollary 1]. By (e), the study of convexity of

W (A1, . . . , Am) can be reduced to W (H1, G1, . . . , Hm, Gm) for Hermitian

matrices H1, G1, . . . , Hm, Gm. However, it is clear that the commutativity

of A1, . . . , Am does not imply the commutativity of H1, G1, . . . , Hm, Gm. In

fact, if {H1, G1, . . . , Hm, Gm} is a commuting family, then {A1, . . . , Am} is a

commuting family of normal matrices, and W (A1, . . . , Am) will be polyhe-

dral, i.e., a convex hull of finitely many points in Cm; see [5, Theorem 2.5]. It

is clear that (µ1, . . . , µm) ∈ W (A1, . . . , Am) if and only if (1, µ1, . . . , µm) ∈
W (In, A1, . . . , Am) for any (A1, . . . , Am) ∈ Mm

n . By Proposition 2.1, to study

the convexity of W (A1, . . . , Am), one may focus on W (C1, . . . , Cs) where

{In, C1, . . . , Cs} is a basis for the span of {In, A1, . . . , Am}. It is well-known
that if {A1, . . . , Am} is a commuting family of matrices then there is a uni-

tary U such that U∗AjU are in upper triangular form for all j = 1, . . . ,m;

see [16]. Our proofs often use this property.

Denote by convS and ∂S the convex hull and the boundary of a set

S in Rm or Cm, respectively. The next result describes the intersection of

support planes of convW (A1, . . . , Am) with W (A1, . . . , Am).

Proposition 2.2. Let B1, . . . , Br ∈ Hn be Hermitian matrices. For every

unit vector, ννν = (ν1, . . . , νr) ∈ Rr, let

Pννν = {b ∈ Rr : b∗ννν ≤ λ1(ν1B1 + · · ·+ νrBr)} ,

where λ1(H) denotes the largest eigenvalue of H ∈ Hn and b∗ννν =
∑r

i=1 biνi

for b = (b1, . . . , br) ∈ Rr. Then

convW (B1, . . . , Br) =
⋂

{Pννν : ννν = (ν1, . . . , νr) ∈ Rr, ννν∗ννν = 1}.

Consequently,

∂Pννν ∩W (B1, . . . , Br)

= {(x∗B1x, . . . ,x
∗Brx) : x ∈ Cn, x∗x = 1, Bνννx = λ1(Bννν)x} ,

where Bννν =
∑r

j=1 νjBj. Moreover, ∂Pννν ∩ W (B1, . . . , Br) is convex if and

only if

W (X∗B1X, . . . , X∗BrX)

is convex, where the columns of X form an orthonormal basis for the null

space of Bννν − λ1(Bννν)In.
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Proof. If x ∈ Cn is a unit vector and b = (x∗B1x, . . . ,x
∗Brx) ∈ W (B1, . . . , Br),

then for any unit vector ννν = (ν1, . . . , νr) ∈ Rr we have

b∗ννν = x∗

(
r∑

j=1

νjBj

)
x ≤ λ1

(
r∑

j=1

νjBj

)
.

Thus, W (B1, . . . , Br) ⊆ Pννν . As Pννν is convex, convW (B1, . . . , Br) ⊆ Pννν .

Conversely, suppose b = (b1, . . . , br) /∈ convW (B1, . . . , Br) ⊆ Rr. By the

separation theorem, there exists a real unit vector ννν = (ν1, . . . , νr) ∈ Rr

such that
∑r

j=1 bjνj >
∑r

j=1 qjνj for all (q1, . . . , qr) ∈ W (B1, . . . , Br), i.e.,

for every unit vector x ∈ Cn

r∑
j=1

bjνj >

r∑
j=1

νj(x
∗Bjx) = x∗

(
r∑

j=1

νjBj

)
x.

So,
∑r

j=1 bjνj > λ1(
∑r

j=1 νjBj).

The last two assertions are clear.

The following result is proven in [5, Proposition 2.4]. Recently, it is also

given in [2, Theorem 2.2]. We give a short proof here for completeness.

Proposition 2.3. For any commuting family F = {A1, . . . , Am} ⊆ M2,

W (A1, . . . , Am) is convex.

Proof. To avoid trivial considerations, suppose F contains a non-scalar

matrix X ∈ M2. Applying a unitary similarity, we may assume that all ma-

trices in F are in upper triangular form. Let X0 = X− trX
2
I2 =

(
x1 x2

0 −x1

)
.

We claim that for every Y ∈ F , Y0 = Y − trY
2
I2 =

(
y1 y2
0 −y1

)
is a multiple

of X0 as shown in [7, Theorem II]. Thus every Aj is a linear combination

of I2, H1 = (X0 +X∗
0 )/2 and H2 = (X0 −X∗

0 )/(2i). By Proposition 2.1 (f),

W (A1, . . . , Am) is convex.

To prove our claim, note that X0 commutes with Y0, i.e., x1y2 = x2y1.

Since X is non-scalar, either x1 or x2 ̸= 0.

If x1 = 0, then x2 ̸= 0 and x2y1 = 0. Thus y1 = 0 and Y0 = (y2/x2)X0.

Our claim follows.

If x1 ̸= 0, then x1y2 = x2y1 implies Y0 = (y1/x1)X0. Again, our claim

follows.
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3. Convexity of commuting family of dimension at least 3

In [13], the author gave an elegant example of a commuting family

{A1, A2, A3} ⊆ M4 with non-convex W (A1, A2, A3). The following exam-

ple illustrates that W (A1, A2) may not be convex for a commuting pair

A1, A2 ∈ M4.

Example 3.1. Let A1 = H1+iG1 and A2 = A1+A2
1−A3

1−12I4 = H2+iG2

with

H1 = diag (2, 2, 1, 0), G1 =


1 0 2− i −i
0 0 −1 + i 1− i

2 + i −1− i 0 0
i 1 + i 0 0

 ,

H2 =


14 −9− 7i 8− 4i −3i

−9 + 7i 0 0 0
8 + 4i 0 10 −2− 4i
3i 0 −2 + 4i −9


and

G2 =


6 −2− 2i 12− 4i −4− 6i

−2 + 2i 0 −3 + 7i 5− i
12 + 4i −3− 7i 5 1− 2i
−4 + 6i 5 + i 1 + 2i 1

 .

Then A1A2 = A2A1. Note that for the unit vector ννν = (1, 0, 0, 0), the matrix

Aννν = ν1H1 + ν2G1 + ν3H2 + ν4G1 = H1 has the largest eigenvalue 2, and

the null space of Aννν − 2I4 is spanned by the first two columns of I4. Let

X ∈ M4,2 be the matrix formed by these two columns. It is easy to check

that

span {X∗H1X,X∗G1X,X∗H2X,X∗G2X} = H2.

By Proposition 2.1 (e) and (f), W (X∗A1X,X∗A2X) is not convex. Since

W (X∗A1X,X∗A2X) = {(µ1, µ2) ∈ W (A1, A2) : Reµ1 = 2}, W (A1, A2) is

not convex. Here, Reµ1 denotes the real part of µ1.

Remark 3.2. For n > 4, one can extend the above example to Ã1 = A1⊕0N

and Ã2 = A2 ⊕ 0N , where 1 ≤ N ≤ ∞. It is clear that Ã1Ã2 = Ã2Ã1 and

W (Ã1, Ã2) is not convex.

For commuting A1, A2 ∈ M3, we have the following.

Theorem 3.3. Suppose A1, A2 ∈ M3 commute. Then W (A1, A2) is convex.

The proof of the result is quite involved and technical. We will present

it in the next section. From Theorem 3.3, we can deduce the following.
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Theorem 3.4. Let {A1, . . . , Am} ⊆ M3 be a commuting family of matrices.

Then the complex linear span of {I3, A1, . . . , Am} has dimension at most 3,

and hence W (A1, . . . , Am) is convex.

Proof. We may assume that A1, . . . , Am are in upper triangular form,

and F = {I3, A1, . . . , Am} is linearly independent. We are going to prove by

contradiction that m ≤ 2. In the following, we will use diagA ∈ Cn as the

vector of diagonal entries of A ∈ Mn.

Suppose to the contrary thatm > 2. Then {diag I3, diagA1, . . . , diagAm}
is linearly dependent. Therefore, spanF has a nonzero nilpotent. We may

assume that A1 is a nonzero nilpotent in spanF of the largest rank. Consider

the following cases:

Case 1. Rank A1 = 2. Then there is an invertible S such that S−1A1S = J

is the upper triangular Jordan block. Then for every 2 ≤ i ≤ m, A1Ai =

AiA1 implies that S−1AiS = aiI3 + biJ + ciJ
2 for some ai, bi, ci ∈ C. Since

{I3, A1, . . . , Am} is linearly independent, we have m ≤ 2, a contradiction.

Case 2. Rank A1 = 1. So, up to a nonzero multiple and a unitary similarity

transform, we may assume that A1 =

0 0 1
0 0 0
0 0 0

. Then for every 2 ≤ i ≤

m, the condition A1Ai = AiA1 implies that Ai is in upper triangular form

with the (1, 1) entry equal to the (3, 3) entry. We may then replace Ai by

Ai − αiI3 − βiA1 for some αi, βi ∈ C and assume that

Ai =

0 bi 0
0 ai ci
0 0 0

 for some ai, bi, ci ∈ C, i = 2, . . . ,m.

If ai = 0 for all 2 ≤ i ≤ m, then span{A2, A3} would contain a nonzero

nilpotent of rank 2, which contradicts the assumption that A1 has the largest

rank. Therefore, we may assume that a2 = 1 and a3 = 0. Then A2A3 = A3A2

implies that b3 = c3 = 0, which contradicts F being linearly independent.

This shows that m ≤ 2 and the convexity of W (A1, A2) follows from

Theorem 3.3.

4. Proof of Theorem 3.3

We divide it into two subsetions. We will always assume that A1 =

H1 + iG1 and A2 = H2 + iG2, where H1, G1, H2, G2 are Hermitian. In view

of Proposition 2.1 (g), we always assume that span {In, H1, G1, H2, G2} has

dimension 5 to avoid trivial considerations.
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4.1. span {I3, A1, A2} ⊆ M3 does not contain a nonzero nilpotent.

In this subsection, we assume that span {I3, A1, A2} ⊆ M3 does not

contain a nonzero nilpotent. Without loss of generality, by applying unitary

similarity transforms and taking linear combinations of I3, A1, A2, one can

assume that

(4.1) A1 =

1 u w1

0 0 0
0 0 0

 and A2 =

0 0 w2

0 0 v
0 0 1

 with u, v ≥ 0,
w1 + uv + w2 = 0.

The reduction can be done as follows. Since A1 and A2 commute, we as-

sume without loss of generality that both A1, A2 are in upper triangular

form. Since span {I3, A1, A2} does not contain a nonzero nilpotent matrix,

{diag I3, diagA1, diagA2} ⊆ C3 is linearly independent. Replacing Aj by

αjA1 + βjA2 + γjI3 with suitable αj, βj, γj ∈ C, j = 1, 2, we may assume

that

A1 =

1 a1 a2
0 0 a3
0 0 0

 and A2 =

0 b1 b2
0 0 b3
0 0 1

 .

Then we have

A1A2 =

0 b1 a2 + b2 + a1b3
0 0 a3
0 0 0

 = A2A1 =

0 0 a3b1
0 0 0
0 0 0

 .

Therefore, a3 = b1 = 0 = a2 + b2 + a1b3. Replacing Aj by DAjD
−1 with a

diagonal unitary matrix D, we may assume a1, b3 ≥ 0, so that we get (4.1).

By Proposition 2.1, the convexity of W (A1, A2) is equivalent to the con-

vexity of the numerical range of (A1, A2) transformed into the form (4.1).

In the following, we will show that W (A1, A2) is convex if A1, A2 ∈ M3

are of the form in (4.1).

Proposition 4.1. Let A1, A2 ∈ M3 be of the form (4.1). If (0, 0) ∈ {(u,w1),

(v, w2), (u, v)}, then W (A1, A2) is convex.

Proof. If u = w1 = 0, then set (H2, G2) = (A2 + A∗
2, i(A

∗
2 − A2))/2 and

identify W (A1, A2) with W (A1, H2, G2) ⊆ R3, which is convex by Proposi-

tion 2.1 (g).

If v = w2 = 0, then set (H1, G1) = (A1 + A∗
1, i(A

∗
1 − A1))/2 and identify

W (A1, A2) with W (H1, G1, A2) ⊆ R3, which is convex.
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If u = v = 0, then w1 + w2 = 0. By the previous argument, A1 + A2 =1 0 0
0 0 0
0 0 1

 so that W (A1 + A2, A2) is convex, and so is W (A1, A2).

Next, we treat the case where (0, 0) /∈ {(u,w1), (v, w2), (u, v)}. First, we
show that W (A1, A2) has convex boundary.

Proposition 4.2. Let A1, A2 ∈ M3 be commuting matrices of the form (4.1)

such that (0, 0) /∈ {(u,w1), (v, w2), (u, v)}. Then W (A1, A2) contains all of

the boundary points of convW (A1, A2).

Proof. Suppose A1 and A2 satisfy the hypothesis, and A1 = H1 + iG1,

A2 = H2 + iG2, where H1, H2, G1, G2 ∈ H3. For every unit vector ννν =

(ν1, ν2, ν3, ν4) ∈ R4, let

Pννν =

{
(b1, . . . , b4) ∈ R4 :

4∑
i=1

biνi ≤ λ1(ν1H1 + ν2G1 + ν3H2 + ν4G2)

}
.

By Proposition 2.2 every boundary point of convW (A1, A2) lies in ∂Pννν for

some ννν ∈ R4, and

∂Pννν ∩ convW (A1, A2) = conv (∂Pννν ∩W (A1, A2)) .

We will show that ∂Pννν ∩ convW (A1, A2) ⊆ W (A1, A2).

Case 1. Suppose one of the following conditions holds,

(i) uv = 0,

(ii) (w1 − w2)
2 = (uv)2, or

(iii) |w1|
√
1 + v2 ̸= |w2|

√
1 + u2.

In each of these cases, we will show that ∂Pννν ∩convW (A1, A2) is a singleton

lying in W (A1, A2) for any unit vector ννν.

Let ννν = (ν1, ν2, ν3, ν4) ∈ R4 be a unit vector. The matrix Bννν = ν1H1 +

ν2G1 + ν3H2 + ν4G2 has the form
ν1

u(ν1 − iν2)

2

w1(ν1 − iν2) + w2(ν3 − iν4)

2
u(ν1 + iν2)

2
0

v(ν3 − iν4)

2
w1(ν1 + iν2) + w2(ν3 + iν4)

2

v(ν3 + iν4)

2
ν3

 .

Let r be the multiplicity of λ1(Bννν). Since {I3, H1, G1, H2, G2} is linearly

independent, r ≤ 2.

By Proposition 2.2, if r = 1, then ∂Pννν ∩ W (A1, A2) is singleton and

equals ∂Pννν ∩ convW (A1, A2).
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We show that r = 2 is impossible under any one of the assumptions (i),

(ii) or (iii). Assume to the contrary that r = 2. As (0, 0) /∈ {(u, v), (u,w1),

(v, w2)}, we see that λ1(Bννν) ̸= 0. Since the (2,2) entry of Bννν is 0, we

have λ1(Bννν) = λ2(Bννν) > 0 ≥ λ3(Bννν). Thus, there is a nonzero real vec-

tor (a, b, c, d) such that

(4.2) R = I3 + aH1 + bG1 + cH2 + dG2 = zz∗

for some nonzero z ∈ C3, so that R is a rank one positive semidefinite

matrix. Let S be the set of all nonzero real vectors (a, b, c, d) such that R is

a rank one positive semi-definite matrix. We are going to show that S = ∅,
thus arriving at a contradiction. In such a case, we may assume that

z = (z1, z2, z3) =
(√

a+ 1eiθ1 , 1,
√
c+ 1eiθ2

)
with

√
a+ 1eiθ1 = z1 = z1z̄2 =

u

2
(a− ib),

√
c+ 1e−iθ2 = z̄3 = z2z̄3 =

v

2
(c− id),

and

uv(a− ib)(c− id)

4
=
√

(a+ 1)(c+ 1)ei(θ1−θ2) = z1z̄3 =
w1(a− ib) + w2(c− id)

2
.

The matrix R given by (4.2) then has the form

(4.3) R =

 a+ 1 u(a− ib)/2 uv(a− ib)(c− id)/4
u(a+ ib)/2 1 v(c− id)/2

uv(a+ ib)(c+ id)/4 v(c+ id)/2 c+ 1

 .

Since R has rank 1, we have (a, b) ̸= (0, 0) and (c, d) ̸= (0, 0). If any

one of the assumptions (i), (ii) or (iii), holds, we are going to derive a

contradiction.

Suppose that (i) holds, i.e., uv = 0. Recall from (4.1) that u and v are

nonnegative. Since (u, v) ̸= (0, 0), we assume u = 0 < v or v = 0 < u.

Let u = 0 and v > 0. Since (u,w1) ̸= (0, 0), we may replace (A1, A2) by

(D∗A1D,D∗A2D) for some suitable diagonal unitary matrix D and assume

that −w2 = w1 > 0. Suppose there is a real vector (a, b, c, d) such that R

given by (4.2) is a rank one positive semi-definite matrix of the form (4.3).

Since the (1, 2)-entry is zero, we see that a = −1. Now, −w2 = w1 > 0

and the (1, 3)-entry of R is w1((a − ib) − (c − id)) = 0. Thus c = a = −1

and b = d. As a result, the (3, 3)-entry of R is zero and so must be the

(2, 3)-entry. Hence, v = 0, which is contradiction. Similarly, we can show

that for u > 0 and v = 0, S = ∅.
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Suppose now that u, v > 0. As the matrix R in (4.3) is rank one, we have

4(a+ 1)/u2 = (a2 + b2) and 4(c+ 1)/v2 = (c2 + d2). Therefore,

(4.4) a+ ib ∈ Eu := {x+ iy : (x− 2/u2)2 + y2 = 4(1/u2 + 1/u4)}

and

(4.5) c+ id ∈ Ev := {x+ iy : (x− 2/v2)2 + y2 = 4(1/v2 + 1/v4)}.

Since w1+uv+w2 = 0, we may let w1 = −uv(1−ξ)/2, w2 = −uv(1+ξ)/2 for

some ξ ∈ C. As ξ = (w1 −w2)/uv, assumption (ii) holds, i.e., (w1 −w2)
2 =

(uv)2, if and only if ξ = ±1. Now the (1, 3) entry of R becomes

uv(a− ib)(c− id)/4 = [w1(a− ib) + w2(c− id)]/2

= −[uv(a− ib)(1− ξ) + uv(c− id)(1 + ξ)]/4.

Thus, we have

(4.6) (a− ib)(c− id) = (ξ − 1)(a− ib)− (ξ + 1)(c− id).

If ξ = 1, then we have (a− ib)(c− id) = −2(c− id) so that a− ib = −2.

Thus, the (1, 1) entry of R is −1, which is impossible. Similarly, if ξ = −1,

then the (3, 3) entry of R is −1, which is impossible.

Suppose ξ ̸= ±1 and (iii) holds. Substituting w1 = −uv(1 − ξ)/2, w2 =

−uv(1 + ξ)/2, we have

(4.7) |1− ξ|
√
1 + v2 ̸= |1 + ξ|

√
1 + u2.

Since (a− ib), (c− id) ̸= 0, (4.6) is equivalent to

(4.8)
1 + ξ

a− ib
+

1− ξ

c− id
+ 1 = 0.

Note that µ ∈ C lies on a circle with center µ0 ≥ 0 and radius r > µ0 if and

only if

0 = (µ− µ0)(µ̄− µ0)− r2 = µµ̄− (µ0µ̄+ µ0µ) + (µ2
0 − r2).

Dividing by µµ̄(µ2
0 − r2), we have

(µµ̄)−1 −
(

µ0

µ2
0 − r2

µ−1 +
µ0

µ2
0 − r2

µ̄−1

)
= − 1

µ2
0 − r2

,

equivalently, (
µ−1 − µ0

µ2
0 − r2

)(
µ̄−1 − µ0

µ2
0 − r2

)
=

µ2
0

(µ2
0 − r2)2

− 1

µ2
0 − r2

=
r2

(µ2
0 − r2)2

.

Applying this to the circles Eu and Ev, we see that

E−1
u = {1/µ : µ ∈ Eu} = {−1/2 + 1/2

√
1 + u2eiθ : t ∈ [0, 2π)},
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and

E−1
v = {1/µ : µ ∈ Ev} = {−1/2 + 1/2

√
1 + v2eiθ : t ∈ [0, 2π)}.

Since c− id ∈ Ev is nonzero, (4.8) yields

(4.9)
1

c− id
=

1

ξ − 1
+

ξ + 1

(ξ − 1)(a− ib)
∈ Ẽu ∩ E−1

v ,

where

Ẽu =

{
1

ξ − 1
+

(ξ + 1)

2(ξ − 1)
(−1 +

√
1 + u2eiθ) : θ ∈ [0, 2π)

}
=

{
−1

2
+

(ξ + 1)

2(ξ − 1)

√
1 + u2eiθ : θ ∈ [0, 2π)

}
.

By (4.7), Ẽu ∩ E−1
v = ∅, a contradiction to (4.9). Thus the proof in Case 1

is complete.

Case 2. Suppose conditions (i), (ii) and (iii) in Case 1 do not hold.

Then |w1|
√
1 + v2 = |w2|

√
1 + u2. If m ∈ N, then Bm = A1 + E13/m and

Cm = A2−E13/m are commuting matrices inM3 with (1, 3)-entries w1+1/m

and w2 − 1/m, respectively. We are going to show that

(4.10) |w1 + 1/m|
√
1 + v2 = |w2 − 1/m|

√
1 + u2

for at most one m.

Note that (4.10) holds if and only if

(4.11)
(mw1 + 1)(mw1 + 1)(1 + v2) = (mw2 − 1)(mw2 − 1)(1 + u2)

⇔ 2 (Re (w1)(1 + v2) + Re (w2)(1 + u2))m+ (v2 − u2) = 0

If (4.11) holds for more than one m, then v2 = u2 and Re (w1) = −Re (w2).

Then it follows from u, v ≥ 0 and w1 + uv + w2 = 0 in (4.1) that uv = 0

and (i) holds, a contradiction.

So there exists m0 such that |w1 + 1/m|
√
1 + v2 ̸= |w2 − 1/m|

√
1 + u2

for all m ≥ m0. By Case 1, ∂convW (Bm, Cm) ⊆ W (Bm, Cm). Now, every

boundary point (µ1, µ2)∈convW (A1, A2) is the limit of a sequence of points

{(µ1(m), µ2(m)): m ≥ m0} with (µ1(m), µ2(m)) ∈ ∂(convW (Bm, Cm)) ⊆
W (Bm, Cm). Note that W (Bm, Cm) → W (A1, A2) as m → ∞ in the Haus-

dorff metric on compact subsets of R2. We have (µ1, µ2) ∈ W (A1, A2).

Hence, ∂(convW (A1, A2)) ⊆ W (A1, A2). This finishes the proof in Case

2, and thus finishes the proof of Proposition 4.2.

Let µ1 ∈ W (A1) and W (µ1, A2) = {µ : (µ1, µ) ∈ W (A1, A2)}. Now,
we know that W (A1, A2) has convex boundary if A1, A2 ∈ M3 commute.
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Therefore, to prove that W (A1, A2) is convex, we only need to show that

W (µ1, A2) is simply connected for every µ1 ∈ W (A1).

To prove the latter property, we will show that

W (µ1, A2) = {µ : (µ1, µ) ∈ convW (A1, A2)}.

To this end, using linear combinations, unitary similarity and transposition

of matrices, we note that the matrices A1 and A2 in (4.1) can be transformed

as

(4.12) A1 = E11 + aE12, A2 =

−a
1
b

 (0 1 ξ) where a > 0, b ≥ 0, ξ ∈ C.

To prove this fact, observe that if w1 = 0, then w2 = −uv we can replace

A2 with

I3 − (A1 + A2) =

0 −u uv
0 1 −v
0 0 0

 =

−u
1
0

 (0 1 − v)

If w2 = 0, then replace (A1, A2) with (TAt
2T, TA

t
1T ), where T = E13+E22+

E31. We have

TAt
2T =

1 v 0
0 0 0
0 0 0

 and TAt
1T =

0 0 −uv
0 0 u
0 0 1

 .

Then we can proceed as the above case for w1 = 0.

Suppose w1, w2 ̸= 0. Let a =
√
u2 + |w1|2 and U = (1) ⊕ 1

a

(
u w1

w1 −u

)
be unitary. Then

U∗A1U =

1 a 0
0 0 0
0 0 0

 , U∗A2U = γ

0 −a −ac
0 1 c
0 b bc

 ,

where γ = −(w1w2)/a
2, b = (u− vw1)/w2 and c = −u/w1. Let b = |b|eiθ

andD = diag (1, 1, eiθ). We replace (A1, A2) with (D∗U∗A1UD, 1
γ
D∗U∗A2UD).

Direct calculation gives

DU∗A1UD∗ =

1 a 0
0 0 0
0 0 0

 ,
1

γ
DU∗A2UD∗ =

−a
1
|b|

 (0 1 ξ),

where ξ = ceiθ. If ξ = 0 = b, then A1 + A2 = diag (1, 1, 0) is Hermitian. By

Proposition 2.1(g), W (A1, A1 + A2) is convex and hence W (A1, A2) is also

convex. So, we consider that (b, ξ) ̸= (0, 0).
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Recall that a set S in Rn or Cn is star-shaped with a star center s0 ∈ S
if ts0 + (1− t)s ∈ S for all t ∈ [0, 1] and s ∈ S. We have the following.

Proposition 4.3. Suppose that A1, A2 are as given by (4.1). For every

µ1 ∈ W (A1), the set

W (µ1, A2) = {µ : (µ1, µ) ∈ W (A1, A2)}

is star-shaped. Consequently,

W (µ1, A2) = {µ : (µ1, µ) ∈ convW (A1, A2)},

and W (A1, A2) is convex.

Proof. Without loss of generality, we may assume that A1 and A2 are of

the form (4.12). Suppose µ1 ∈ W (A1). We are going to show that W (µ1, A2)

is star-shaped with a star center 1− µ1.

Let ν ∈ C3 be a unit vector such that ννν∗A1ννν = µ1. By replacing ννν

with ν̃νν = eiθννν for some θ ∈ R, we may assume that the first entry of ννν is

non-negative. Let

S =
{(

p1, p2e
iθ, p3e

iϕ
)t

: θ, ϕ ∈ [0, 2π), p1, p2, p3 ≥ 0, p21 + p22 + p23 = 1
}
.

If ννν =
(
0, p2e

iθ, p3e
iϕ
)t ∈ S, we have µ1 = ννν∗A1ννν = 0. Moreover

ννν∗A2ννν ∈ W

((
1 ξ
b bξ

))
⊆ W (0, A2).

As W

((
1 ξ
b bξ

))
is convex, and it contains the point {1}, we have t+(1−

t)ννν∗A2ννν ∈ W (0, A2) for all t ∈ [0, 1]. Now assume ν ∈ S with ννν∗A1ννν = µ1

and p1 > 0. Then

µ1 = p21 + ap1p2e
iθ, i.e., p2e

iθ =
µ1 − p21
ap1

,

and

1− p23 = p21 + p22 = p21 +

∣∣∣∣µ1 − p21
ap1

∣∣∣∣2 = a2p41 + |µ1 − p21|2

a2p21

=
(a2 + 1)p41 + |µ1|2 − 2(Reµ1)p

2
1

a2p21
.

Therefore, we have

(4.13) − a2p21p
2
3 = (a2 + 1)p41 − (2Reµ1 + a2)p21 + |µ1|2 ≤ 0.

By the above calculation, ννν ∈ S with positive first entry and ννν∗A1ννν = µ1

if and only if ννν = (p1, (µ1/p1 − p1)/a, p3e
iϕ) for p1 > 0 satisfying inequality
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(4.13), ϕ ∈ [0, 2π) and p3 =
√

1− p21 − |(µ1/p1 − p1)/a|2. Now

ννν∗A2ννν = (p1 (µ̄1/p1 − p1)/a p3e
−iϕ)

0 −a −aξ
0 1 ξ
0 b bξ

 p1
(µ1/p1 − p1)/a

p3e
iϕ


=

(
− ap1 + (µ̄1/p1 − p1)/a+ bp3e

−iϕ
)(
(µ1/p1 − p1)/a+ ξp3e

iϕ
)

= p21 − µ1 + |µ1/p1 − p1|2/a2 + bξp23

+p3{(−ap1 + (µ̄1/p1 − p1)/a)ξe
iϕ + (µ1/p1 − p1)(b/a)e

−iϕ}

= 1− µ1 + (bξ − 1)p23

+p3{(−ap1 + (µ̄1/p1 − p1)/a)ξe
iϕ + (µ1/p1 − p1)(b/a)e

−iϕ}.

For a fixed p1 > 0, if we let ϕ vary in [0, 2π), we see that ν∗A2ν generates

all the points of an ellipse denoted by E(p1). Hence, E(p1) ⊆ W (µ1, A2). For

a fixed µ1 ∈ W (A1), let pu and pℓ be respectively the largest and smallest

non-negative values of p1 for which the inequality

(a2 + 1)p41 − (2Reµ1 + a2)p21 + |µ1|2 ≤ 0

in (4.13) is satisfied. Then

W (µ1, A2) =
⋃

p∈[pℓ,pu]

E(p).

Here we denote E(0) = W

((
1 ξ
b bξ

))
. We next show that every point

inside the ellipse E(p) also lies in W (µ1, A2). As µ1 ∈ W (A1) = W (A0)

with A0 =

(
1 a
0 0

)
, there is a unit vector ν̃νν = (p̃, ν2) ∈ C2 with p̃ ≥ 0

such that ν̃νν∗A0ν̃νν = µ1. Thus, with ννν = (p̃, ν2, 0) ∈ C3 we have ννν∗A1ννν = µ1.

The corresponding ellipse E(p̃) = {1 − µ1} is a singleton as p3 = 0. For

every p1 ∈ [pℓ, pu], we may let p1 change continuously to p̃. Recall that

ννν = (p1, (µ1/p1 − p1)/a, p3e
iϕ). As the entries of ννν are continuous functions

in p1 > 0, the ellipse E(p1) will deform continuously to the singleton E(p̃)
in the set W (µ1, A2). Hence, by continuity all the points inside the ellipse

E(p1) also lie in W (µ1, A2), i.e.,

(4.14) W (µ1, A2) =
⋃

p∈[pℓ,pu]

E(p) =
⋃

p∈[pℓ,pu]

Ē(p),

where E(p) is the elliptical disk with E(p) as boundary.
We will show that

⋃
p∈[pℓ,pu] Ē(p) is star-shaped with star center 1 − µ1.

Solving p3 as a function of p1 in (4.13), we see that p3 attains the maximum
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value

p̂3 =
√
1− p21 − |(µ1/p1 − p1)/a|2 =

√
a2 + 2(Reµ1 −

√
1 + a2|µ1|)

a

when p1 = p̂ =
√

|µ1|√
1+a2

. In general, for each choice of p3 ∈ [0, p̂3], there are

p−1 ∈ [pℓ, p̂] and p+1 ∈ [p̂, pu] satisfying the left-hand side of (4.13). For every

0 < r < 1 and p3 ∈ [0, p̂3], set p̃3 = rp3 and let p̃−1 ∈ [pℓ, p̂] and p̃+1 ∈ [p̂, pu]

satisfying equation (4.13) for p3. With some intricate arguments presented

in the Appendix, we will show that

(I) If |ξ|2(1 + a2) ≥ b2, then E(p−1 ) ⊆ E(p+1 ), and for every µ2 ∈ E(p+1 ),
(1− r2)(1− µ1) + r2µ2 ∈ E(p̃+1 ).

(II) If |ξ|2(1 + a2) ≤ b2, then E(p+1 ) ⊆ E(p−1 ), and for every µ2 ∈ E(p−1 ),
(1− r2)(1− µ1) + r2µ2 ∈ E(p̃−1 ).

Once (I) and (II) are proved, by (4.14) we see that W (µ1, A2) is star-shaped

with 1− µ1 as a star center, i.e., for any µ2 ∈ W (µ1, A2) and t ∈ [0, 1],

tµ2 + (1− t)(1− µ1) ∈ W (µ1, A2).

Let S = {µ : (µ1, µ) ∈ convW (A1, A2)}. We have W (µ1, A2) ⊆ S. Note that

S ⊆ C is convex and compact. By Proposition 4.2,

∂S ⊆ {µ : (µ1, µ) ∈ ∂ (convW (A1, A2))}

⊆ {µ : (µ1, µ) ∈ W (A1, A2)} = W (µ1, A2).

The star-shapedness of W (µ1, A2) implies that this set is simply connected.

Therefore, S ⊆ W (µ1, A2). Hence, S = W (µ1, A2).

Now, we can show that W (A1, A2) is convex as follows. Suppose (x1, y1),

(x2, y2) ∈ W (A1, A2), t ∈ [0, 1] and (µ1, µ2) = t(x1, y1)+(1−t)(x2, y2). Then

(µ1, µ2) ∈ convW (A1, A2). We have µ2 ∈ {µ : (µ1, µ) ∈ convW (A1, A2)} =

W (µ1, A2). Thus, (µ1, µ2) ∈ W (A1, A2). So, W (A1, A2) is convex.

4.2. span {I3, A1, A2} ⊆ M3 contains a nonzero nilpotent.

Here we present the proof of Theorem 3.3 when span {I3, A1, A2} contains
a nonzero nilpotent matrix. We may assume that {I3, A1, A2} is linearly

independent and A1 is nilpotent.

Similar to the case considered in Subsection 4.1, we can apply linear

combinations and unitary similarity transforms to change A1, A2 to a sim-

pler form. First, we show that one may assume that A1 is rank 1. Sup-

pose A1 is rank 2. Then there is an invertible S such that S−1A1S = J

is the upper triangular Jordan block. Then A1A2 = A2A1 implies that
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S−1A2S = aI3 + bJ + cJ2. We may replace A2 by A2 − aI3 − bA1. Then

A2 is a rank one nilpotent. We may then interchange the roles of A1 and

A2. Now, A1 is a rank one nilpotent matrix in span {I3, A1, A2}. So, up
to a nonzero multiple and a unitary similarity transform, we may assume

that A1 = E13, where as before {Eij : i, j = 1, 2, 3} is the standard basis

of M3. The condition A1A2 = A2A1 implies that A2 is in upper triangu-

lar form with (1, 1)-entry equal to (3, 3)-entry. We may then replace A2 by

A2 − γ1I3 − γ2A1 and assume that

A1 =

0 0 1
0 0 0
0 0 0

 and A2 =

0 b 0
0 a c
0 0 0

 .

If necessary, we may also replace (A1, A2) with (DAt
1D,DAt

2D), where D =

E13 + E22 + E31, and assume that |b| ≥ |c|.

If b = 0, then we may assume that A2 = E22. By Proposition 2.1, (g)

and (e),

W (A1, A2) ∼= W

(
(E13 + E31)

2
,
i(E13 − E31)

2
, E22

)
is convex.

If b ̸= 0, let ζ = |a/b| and ξ = |c/b|. Suppose a/b = ζeiθ and c/b =

ξeiϕ, θ, ϕ ∈ [0, 2π). Let U = diag
(
1, eiθ, ei(2θ−ϕ)

)
. Replacing (A1, A2) with(

ei(ϕ−2θ)U∗A1U, e−iθU∗A2U/b
)
, we have (A1, A2) = (E13, ζE22+E12+ξE23),

where ζ ≥ 0 and ξ ∈ [0, 1].

Let Pm = E11/m and Qm = (E22 − E32)/m for m ∈ N. Then

A1 + Pm =

1/m 0 1
0 0 0
0 0 0

 , and A2 +Qm =

0 1 0
0 ζ + 1/m ξ
0 −1/m 0


commute. Moreover,

aI3 + b(A1 + Pm) + c(A2 +Qm) =

a+ b/m c b
0 a+ c(ζ + 1/m) cξ
0 −c/m a


is nilpotent if and only if

a+ b/m = 0, 2a+ c(ζ + 1/m) = 0, and a2 + ac(ζ + 1/m) + c2ξ/m = 0.

From the last two equations, if ζ + 1/m ̸= 0, then

a

c
=

−(ζ + 1/m)

2
and 0 =

(a
c

)2
+

a

c

(
ζ +

1

m

)
+

ξ

m
=

ξ

m
− 1

4

(
ζ +

1

m

)2

,

which can be true for at most two choices of m. Hence, except for finitely

many values of m, the linear span of the set {I3, A1+Pm, A2+Qm} does not
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contain nonzero nilpotent and W (A1 +Pm, A2 +Qm) is convex by Proposi-

tion 4.3 in Subsection 4.1.

Suppose L is the line segment joining (x∗A1x, x
∗A2x), (y

∗A1y, y
∗A2y) ∈

W (A1, A2). Let Lm be the line segment joining (x∗(A1+Pm)x, x
∗(A2+Qm)x)

and (y∗(A1+Pm)y, y
∗(A2+Qm)y). Clearly, the endpoints of the line segments

Lm converges to those of L. Thus, Lm → L in the Hausdorff metric as m →
∞. Note that Lm ⊆ W (A1+Pm, A2+Qm) because W (A1+Pm, A2+Qm) is

convex by Proposition 4.3 in Subsection 4.1. Since W (A1+Bm, A2+Qm) →
W (A1, A2) in the Hausdorff metric as m → ∞, we infer that Lm → L as

m → ∞, so that L ⊆ W (A1, A2), and therefore W (A1, A2) is convex.

Appendix: Proof of (I) and (II)

We use the notation introduced in Section 4.2. For every q ∈ [pℓ, pu], let

Cq =

(
0 ξ((µ̄1/q − q)/a− aq)

b(µ1/q − q)/a 0

)
.

If q ∈ [pℓ, pu] and q23 = 1− q2 − |(µ1/q − q)/a|2, then

Ē(q) = 1− µ1 + (bξ − 1)q23 + 2q3W (Cq).

It is clear that W
(
Cp−1

)
⊆ W

(
Cp+1

)
if and only if Ē(p−1 ) ⊆ Ē(p+1 ). For

every 0 < r < 1 and µ2 ∈ E(p+1 ), we have

(1− r2)(1− µ1) + r2µ2 ∈ 1− µ1 + (bξ − 1)(rq3)
2 + 2(rq3)W (rCp+1

).

Let p̃3 = rq3. Thus, to prove (I), it suffices to show that

(4.15) W
(
rCp−1

)
⊆ W

(
rCp+1

)
⊆ W

(
Cp̃+1

)
,

By Proposition 2.2, the inclusions (4.15) is equivalent to

rλ1

(
eiθCp−1

+ e−iθC∗
p−1

)
≤rλ1

(
eiθCp+1

+ e−iθC∗
p+1

)
≤λ1

(
eiθCp̃+1

+ e−iθC∗
p̃+1

)
,

for every θ ∈ [0, 2π)

Note that

λ1

(
eiθCq + e−iθC∗

q

)
=
√

| det(eiθCq + e−iθC∗
q )|.

Hence, it suffices to show that for every θ ∈ [0, 2π)

r2
∣∣∣det(eiθCp−1

+ e−iθC∗
p−1

)∣∣∣ ≤ r2
∣∣∣det(eiθCp+1

+ e−iθC∗
p+1

)∣∣∣(4.16)

≤
∣∣∣det(eiθCp̃+1

+ e−iθC∗
p̃+1

)∣∣∣ .
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For every q ∈ [pℓ, pu] and q23 = 1− q2 − |(µ1/q − q)/a|2, we have

| det(eiθCq + e−iθC∗
q )|

=
∣∣eiθξ(−aq + (µ̄1/q − q)/a) + e−iθb(µ̄1/q − q)/a

∣∣2
= |ξ|2|(µ̄1/q − q)/a− aq|2 + b2|(µ̄1/q − q)/a|2

+2Re
(
e2iθξb(−aq + (µ̄1/q − q)/a)(µ1/q − q)/a

)
= |ξ|2(|(µ̄1/q − q)/a|2 + a2q2 − 2Re (µ̄1 − q2)) + b2|(µ̄1/q − q)/a|2

+2Re
(
e2iθξb(−aq + (µ̄1/q − q)/a)(µ1/q − q)/a

)
= (|ξ|2(1 + a2)− b2)q2 + (|ξ|2 + b2)(1− q23)

−2Re (|ξ|2µ̄1 + e2iθξb(1− µ1 − q23)).

As

1− (p−1 )
2 − |(µ1/p

−
1 − p−1 )/a|2 = 1− (p+1 )

2 − |(µ1/p
+
1 − p+1 )/a|2 = p23,

the first inequality in (4.16) follows from |ξ|2(1+ a2)− b2 ≥ 0 and p+1 ≥ p−1 .

Now

det
∣∣∣eiθCp̃+1

+ e−iθC∗
p̃+1

∣∣∣− r2
∣∣∣det(eiθCp+1

+ e−iθC∗
p+1

)∣∣∣
= (|ξ|2(1 + a2)− b2)

(
(p̃+1 )

2 − r2(p+1 )
2
)
+ (1− r2)(|ξ|2 + b2)

−2(1− r2)Re
(
|ξ|2µ̄1 + e2iθξb(1− µ1)

)
≥
(
|ξ|2(1 + a2)− b2

)
(p̃+1 )

2 + (|ξ|2 + b2)− 2
(
|ξ|2Re µ̄1 + |ξb(1− µ̄1)|

)
−r2

(
(|ξ|2(1 + a2)−b2)(p̃+1 )

2 +(|ξ|2+ b2)−2
(
|ξ|2Re µ̄1 +|ξb(1− µ̄1)|

))
.

For every y ∈ [0, p̂23], let(
q+y
)2

=
2Reµ1 + a2(1− y) +

√
(2Reµ1 + a2(1− y))2 − 4(a2 + 1)|µ1|2

2(1 + a2)
.

It is not hard to see that q+y ∈ [p̂, pu] satisfies the left-hand side of (4.13)

with p3 =
√
y, i.e.,

−a2(q+y )
2y = (a2 + 1)(q+y )

4 − (2Reµ1 + a2)(q+y )
2 + |µ1|2.

Define the function M : [0, p̂23] → R by

M(y) =
(
|ξ|2(1 + a2)− b2

)
(q+y )

2+
(
|ξ|2 + b2

)
−2
(
|ξ|2Re µ̄1 + |ξb(1− µ̄1)|

)
.

For y = 0, we have (1 + a2)(q+0 )
4 − (2Reµ1 + a2)(q+0 )

2 + |µ1|2 = 0 and

M(0) =
|1− µ1|2|ξ|2

1−
(
q+0
)2 − 2b|ξ||1− µ̄1|+ b2

(
1−

(
q+0
)2) ≥ 0.
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We will show that M is concave so that∣∣∣det(eiθCp̃+1
+ e−iθC∗

p̃+1

)∣∣∣− r2
∣∣∣det(eiθCp+1

+ e−iθC∗
p+1

)∣∣∣
≥ M(r2p23)− r2M(p23) ≥ (1− r2)M(0) ≥ 0.

Noting that |ξ|2(1 + a2)− b2 ≥ 0, we have

d2M

dy2
= (|ξ|2(1 + a2)− b2)

(
(q+y )

2
)′′

=
|ξ|2(1 + a2)− b2

2(a2 + 1)

(√
(2Reµ1 + a2(1− y))2 − 4(1 + a2)|µ1|2

)′′
=

− (|ξ|2(1 + a2)− b2) (4a4 (a2 + 1)) |µ1|2

2(a2 + 1)
(
(2Reµ1 + a2 (1− y2))2 − 4(a2 + 1)|µ1|2

)3/2 ≤ 0.

Hence M is concave.

The proof of (II) is similar, and we sketch the proof in the following. It

suffices to show that for every θ ∈ [0, 2π)

r2
∣∣∣det(eiθCp+1

+ e−iθC∗
p+1

)∣∣∣ ≤ r2
∣∣∣det(eiθCp−1

+ e−iθC∗
p−1

)∣∣∣(4.17)

≤
∣∣∣det(eiθCp̃−1

+ e−iθC∗
p̃−1

)∣∣∣ .
Recall that

| det(eiθCq + e−iθC∗
q )|

=
(
|ξ|2(1 + a2)−b2

)
q2+

(
|ξ|2+b2

)(
1−q23

)
−2Re

(
|ξ|2µ̄1 + e2iθξb(1−µ1− q23)

)
.

Therefore, the first inequality in (4.17) follows from the inequalities |ξ|2(1+
a2) ≤ b2 and p−1 ≤ p+1 . The second inequality will follow from the concavity

of

M̃(y)=
(
|ξ|2(1 + a2)− b2

)
(q−y )

2 +
(
|ξ|2 + b2

)
− 2

(
|ξ|2Re µ̄1 + |ξb(1− µ̄1)|

)
,

where(
q−y
)2

=
2Reµ1 + a2(1− y)−

√
(2Reµ1 + a2(1− y))2 − 4(a2 + 1)|µ1|2

2(1 + a2)
.

Since |ξ|2(1 + a2)− b2 ≤ 0,

d2M̃

dy2
=
(
|ξ|2(1 + a2)− b2

) (
(q−y )

2
)′′

=
|ξ|2(1 + a2)− b2

2(a2 + 1)

(
−
√
(2Reµ1+a2(1− y))2−4(1 + a2)|µ1|2

)′′
≤ 0.

Thus (II) holds.
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Remark 4.4. It is worth pointing out that our proofs use some continuity

arguments and a simple idea of homotopy (in deforming ellipses inside the

numerical range of a certain matrix). In particular, intricate and involved

linear algebraic arguments are used. It will be nice if a less computational

proof can be found.
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