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ABSTRACT. Let H be an infinite dimensional complex Hilbert space and let B(#) be the algebra
of all bounded linear operators on H. For A € B(#), the k-numerical range of A is the set

k
Wi(A4) = {Z(Aasj,mj> :{xj,...,zx} is an orthonormal set in ’H} .
j=1
In this note, we show that the closure of Wj(A) can be written as the convex hull of sets

involving the essential numerical range of A and W;(A) for £ < k. We also show that if W (A)
is closed, then W;(A) is also closed for £ < k.

Numerical range, k-numerical range, essential numerical range

1. INTRODUCTION

Let H be an infinite dimensional complex Hilbert space and let B(#H) be the algebra of all
bounded linear operators on H. For A € B(#), the numerical range of A is the set

W(A) = {(Ax,x) : x is a unit vector in H}.

It is a bounded and convex subset of the complex plane C, but is in general not closed. Let
cl (W(A)) denote the closure of W(A). In [5, Theorem 1], Lancaster proved that

cl(W(A)) = conv(W(A) UWes(A)),

where Wegs(A) is the essential numerical range of A and conv(W (A) U Wess(A)) is the the
convex hull of W(A) and Wess(A). There are several equivalent definitions of Wegs(A), see [2].
For our purpose, a point p € C belongs to Wegs(A) if and only if there is a weakly null sequence
of unit vectors (or, a sequence of orthonormal vectors) {vx} in H such that (Avg,vg) — p. A
consequence of Lancaster’s theorem is that W(A) is closed if and only if Wess(A) € W(A). This
is an extension of an earlier result of Halmos [3, Problem 213], who showed that if A is compact,
W (A) is closed if and only if 0 € W(A). Note that for any compact operator A, Wess(A4) = {0}.

There are different extensions of the notion of the numerical range. One of them is to define
for each positive integer k the k-numerical range of A € B(H) by

k
Wi(A) = Z(ij, xj) : {x1,..., 21} is an orthonormal set in H
j=1
When k = 1, Wi (A) reduces to the usual numerical range W (A). It is well-known that Wy (A)
is always convex ([3, Problem 211]). But just like W (A), Wy(A) is not always closed. In [6] Li
and Poon showed that, when A € B(H) is compact, Wy (A) is closed if and only if

(*) 0€Wr(A) and Wy(A) C Wi(A) forall ¢=1,...,k—1.
Actually their results are about the more general c-numerical range, but we shall confine our
discussion to the k-numerical range.

In the next section, we give a description of ¢l (Wy(A)) when A is not necessarily compact.
More precisely, we express the closure as the convex hull of sets involving Wess(A) and Wy (A)
1
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for ¢ < k. Another question stemming from the condition (*) is whether there are inclusion
relations between the other Wy (A)’s when Wi (A) is closed. It turns out that if Wy (A) is closed,
Wi(A) is also closed for ¢ < k. Consequently, () can be written as

{0} € Wi(A) € Wa(A) € --- C Wi(A).

This is discussed in the last section.

2. CLOSURE OF Wi (A)
In this section we prove

Theorem 2.1. Let A € B(H) and k be a positive integer. Set Wy(A) = {0}. Then

k
(1) cl (Wi(A)) = conv | J[Wi(A) + (k — £)Wess(A)].
=0

Consequently, Wi (A) is closed if and only if
(2) Wie(A) 4+ (k — )Wess(A) C Wi(A), £=0,...,k.

Proof. To prove (1), note that when k = 1, it is just [5, Theorem 1]. So, assume that k& > 1.

“2” The inclusion can be deduced from [4, Theorem 3] by putting Br_s, = % and B, =0
for j # k — £. We include a short proof for the sake of completeness. It suffices to show that
Wi(A) 4+ (k — 0)Wess(A) C el (Wg(A)) for 0 < £ < k. Let

l
p=> (Avj,v5) + (k= 0)& € Wy(A) + (k — £)Wess(A),
Jj=1

for orthonormal vectors vy,...,vy in H and £ € Wegs(A). Choosing an orthonormal basis of H

A9 A
the ¢ x ¢ matrix Ay has (j,j) entry equal to (Avj,v;) for j =1,...,¢. If F is the finite rank
A A
operator represented as Ay 0

sequence of unit vector {uy,us,...} C {v1,..., v} such that (Au;,u;) — £ [2, Theorem 5.1].
Thus,

. . (A A
with {v1,...,vs} as the first £ vectors, we can represent A as the matrix < 1 12>, where

>, then & € Wegs(A — F) so that there is an orthonormal

L k—{
= Z (Avj,v;) + n}gnoo Z (A, Um+j) € cl(Wi(A)).
7j=1 7j=1
“C” Let p € cl(Wy(A)). There are orthonormal sets of vectors {vgn),. (n) } in H such
that Z?zl (Av](-n) (n)> — . As the closed unit ball is weakly sequentially compact by passing

' Uj
to subsequences, we may assume that for each j, v](- m v; weakly and <AUJ(- n) , J(n)) — uj, for

vj in the closed unit ball of H and p; € cl (Wj(A)). There are three possibilities (see the proof
of [1, Theorem 2.1] for detail),

(i) v; =0 and p; € Wess(A),
(ii) ||v;]| =1, (n) — v; strongly and p; = (Avj,v;) € W(A),
(iii) 0 < |lvj]| < 1 and p; = ||vj| <A”v 0 To ”>—|— (1 — |lv;][?)&; for some &; € Wegs(A) so that
pj is a convex combination of points in W(A) and Wess(A).
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Taking any &; € Wess(A) in (ii), we can always write u; = (Avj,v;) + (1 — [Jv||?)&;. As in
[6], consider the positive semidefinite operator H = E§:1< S vj)v;. Let dy > dy > -+ > dj >
0 be the k largest eigenvalues of H, and {uj,...,u;} an orthonormal set of corresponding
eigenvectors. For each 7,

k

dj = (Huj,uj) = Y [{uj,0;)]> = lim Z\ ug o) < | =

i=1

Foreach ¢ =1,...,k, let Gy = Z] 1(+,uj)uj. Then

k
H = Zdj =di.Gp + (dk 1— dk)Gk 1+ (d1 - dQ)Gl.
7=1

Now, trAH = Z§:1 trA((-,vj)v;) = Z; 1 (Avj,v;), and similarly, trAG, = Z§:1 (Auj, u;).
In particular, trAG, € Wy(A). We have

k
Z A'U], 1)] =trAH = dptrAGy + (dk 1 — dk)tI‘AGk 1+ (d1 — dg)tI‘AGl.
7j=1

Observe that dy + -+ +dp = trH = Z o tr((-v)v) = Z§:1 |vi]|2. So,

k
1 — JJog? 1 — Jlvg]®
17 k—di—---—d .
EZ [0 1)& = ( 1 k)<k—d1—---—dk€1+ +k:—d1—---—dk§k

As Wess(A) is convex, the number above is equal to (k —dy — -+ - — dj)§ for some £ € Wegs(A).
We can write

H= Z?:l Hj = Z§:1<Avj’vj> + Z?:l(l — llvil1*);
= dptrGrA + (dg—1 — di)trGr—1 A+ -+ (dy — do)trG1 A+ (k —dy — -+ — dg)§
= dptrGrA + (dg—1 — di) (trGr_1 A+ &) + - + (d1 — d2) (trG1 A + (k — 1)§)
+(1 = di)(k),
where, as observed above, trAGy; € Wy(A). The proof of (1) is complete. Statement (2) follows
easily from (1). O

The following example shows that one needs to check the condition in (2) for every ¢ to
conclude that Wy (A) is closed.

Example 2.2. Let ¢ and k be nonnegative integers with £ < k, and A the compact operator
A=—-1;® I, ®diag (1/2,1/3,...) acting on H = lo. Then Wes(A) = {0}. We have

—j,j] forj=0,1,....¢
W;(A) + (k — j)Wess(4) =
(—4,j] forj=04+1,... k,
and
Wi(A) = (—4, K.

In particular, Wj(A) is not closed. In this example we have W;(A)+ (k—j)Wess(A) € Wi (A)
for all j € {0,1,...,k}\ {¢}. O
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Actually, if Wj(A) is closed, then for every A\ € Wes(A), kA € Wi(A) so that there
are orthonormal vectors vy,...,v; such that kA = (Avi,v1) + - + (Avg,vk). Then A =
(1/k)((Avy,v1) + -+ - + (Avg, v)) € W(A). By [5, Corollary 1], W(A) is closed. In the next
section, we prove that indeed Wy(A) is closed for all 1 < /¢ < k.

3. CLOSEDNESS OF Wy, (A) AND Wi 1(A)
The main result of this section is the following.

Theorem 3.1. Let A € B(H) and k> 1. If Wi11(A) is closed, then so is Wi (A).

Note that the converse is not true. Let {e; }3”;1 be the standard orthonormal basis of 2. If

A= (- er)er =352 277(  ej)e;, then W(A) = [-1/4,1] is closed while W5 = [-3/8,1) is not
closed.

Proof. First consider the simpler situation when A € B(H) is self-adjoint. The set Wi (A) is a
line segment on R, which can be computed as follows. Let

A= inf Az, z) : + =1}
Ae(A) omf - sup{{Az,z) oz € W and [laf| = 1}
dimW = £ —1
Then A\ (A) > Aa(A) > ---. Denote by (A) the spectrum of A. Then A;(A) = supo(A) and
one of the following holds.
(1) There is an orthonormal set {vi,v2,...} C H such that Av; = \j(A)v; for j =1,2,....

(2) There exists an orthonormal set {vq,...,v} € H, £ > 0 satisfying Av; = \j(A)v; for
j=1,...,¢, and for all j > ¢ we have \;(A) = Apy1(A) = max Wess(A), which is a limit
point of o(A). Here, if £ = 0, we have \;(A) = max Wees(A) for all j > 1.

Let a = —> 'y Aj(—A) and by = Y% Aj(A). Then (ag,br) € Wi(A) C [ap,bp]. If
Wi+1(A) is closed, then Wii1(A) = [ak+1,br+1] and there is an orthonormal set of vec-

tors {vi,...,vg41} such that Av; = X\j(A)v;. It follows that the right hand endpoint b, =
Z?:l Ni(A) = Z?:l (Avj,v;) of cl(Wj(A)) lies in Wy (A). Similarly, the left hand endpoint
ar = — Z?:l A(—A) of cl (Wi(A)) also lies in Wy (A). Thus, Wi(A) = [ag, b] is closed.

Now, we turn to the case of a general operator A € B(H). If for some p € C and ¢ € [0, 27),
e(A — pI) is self-adjoint, then the result follows from the discussion above. So, assume that it
is not the case. We prove the contra-positive, i.e., if Wj(A) is not closed, then Wy 1(A) is also
not closed.

Under the assumption, there is an extreme point p of ¢l (Wj(A)) that does not belong to
Wi(A). Replacing A by e?(A — ul) for a suitable t € [0,27), we may assume that p = 0 and
Wi (A) lies on the left half of the complex plane and the right support line of ¢l (W} (A)) is the
imaginary axis L = {iy : y € R}. Considering A* instead of A if necessary, we may further
assume that 0 is the upper endpoint of the line segment cl (W} (A)) N L.

By Theorem 2.1, 0 € Wy(A) + (k — £)Wess(A) for some £ € {0,...,k}. That is,

l
0=""(Avj,v;) + (k — £)(h +ig),

j=1
for orthonormal vectors vy, ...,vy and h + ig € Wegs(A). We shall assume that
(3) ¢ is the largest integer such that 0 € Wy(A) + (k — £)Wess(A).



CLOSEDNESS OF THE k-NUMERICAL RANGE 5

As 0 ¢ Wi(A), £ < k. If we write A = H + iG for self-adjoint H and G, then

L L
ZHUJ,% (k= Oh | +i | > (Guj,v;) + (k=g
7=1 7j=1

If =0, then 0 = k(h +ig), or, h+ig = 0. So, 0 = (k+ 1)(h +1ig) € cl (Wi41(A)). We will
show that 0 ¢ Wy11(A) to conclude that Wi 1(A) is not closed. Suppose on the contrary that

k+1 k+1 k+1

0="> (Auj,u;) => (Huj,uj)+i»_(Guj,uj) € Wep1(A)
j=1 j=1 j=1
for orthonormal vectors i, ..., ugs1. As Wi(A) lies on the left half of the complex plane, the
sum of any k terms of (Huj,u1),...,(Hugst1,urt1) is less than or equal to zero. The sum of

all £k 4+ 1 of them is zero implies that the sum of any k terms is indeed zero. We must have
(Huj,uj) = 0 for all j. Thus, the sum of any k terms of (Auy,u1), ..., (Aury1, ugt1) belongs
to cl (Wi(A)) N L. As 0 is the upper endpoint of this line segment, the sum of any k terms of
(Guy,uy), ..., (Gugs1, ugs1) is less than or equal to zero. An argument as above yields that
(Guj,uj;) = 0 for all j. In particular, we have 0 = Z?Zl (Auj,uj) € Wi(A), a contradiction.
So, assume in the rest of the proof that £ > 0. Since 0 = maxcl(Wy(H)), we must have

Zf’:1 (Hvj,v;) = max W, (H). Otherwise we can find orthonormal vectors w1, ..., uy such that
Zle (Huj,uj) > Z§:1 (Hvj,v;) to get the point

L
™ (Aujoug) + (k= O)(h + ig) € el (Wi(4))
j=1
with real part Z§:1 (Huj,uj) + (k —€)h > 0. Thus, Z | (Hvj,vj) = Z§:1 Aj(H). Without
loss of generality, we can assume that (Hvj,v;) = X\;j(H) for each 1 < j </, so that they are the
{ largest eigenvalues of H, counting multiplicities, With each v; as an eigenvector corresponding

to Aj(H). Again, it follows from 0 = maxcl (Wj(H)) that

MH)>-->N(H)>h and /\j(H)thOI"j>£.
There may be j < £ such that Aj(H) = h. So, let r be the smallest integer such that A\;(H) = h
if 7 > r. We have 0 < r < /.

Consider the action of G on the eigenspaces of H. If r > 0, let H1 = span {vy,...,v,} be the
direct sum of the eigenspaces of H corresponding to A1 (H),..., \.(H). If r =0, let H; = {0}.
On the finite dimensional subspace H1, we have

Y (Hwjwj) =Y (Hvj,vj) and Y (Gujwy) =Y (Goj,vj)
j=1 j=1 j=1 j=1
for any orthonormal basis {wi, ..., w,} of H;.

Let H3 be the eigenspace of H corresponding to h. Then Hy has dimension at least £ —r and
may even be infinite dimensional. Also, let G be the compression of G onto Ho. It follows from
the fact 0 = Z§:1 (Gvj,v;) + (k —£)g is the largest imaginary part of points in ¢l (Wj(A)) N L

that ,
Z (Gvj,vj) Z)\ é

j=r+1
Another observation is that if uq,...,us_, are orthonormal vectors in Ho satisfying
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l—r l L—r
D (Gujug) = > (Gujvp) =D M(G)
j=1 j=r+1 j=1
and w is a unit vector in Ha orthogonal to uq,...,us_,, then (Gw,w) < g. This is because if
(Gw,w) > g, then
r l—r
(4) D (Avjvp) + > (Aug,ug) + (Aw,w) + (k= €= 1)(h + ig)
j=1 j=1

will be a point in ¢l (Wj(A)) N L with imaginary part
¢

(Gvj,v5) + (Gw,w) + (k—£¢—1)g > 0;

<.
—_

and if (Gw,w) = g, (Aw,w) = h +ig so that the sum in (4) is zero, contradicting (3).
Now consider Wj1(A). Note that
k41 k
D ONH) =D N(H) 4+ Apa(H) = h.
J=1 J=1

So, L = {h+iy : y € R} is the right support line of cl (Wj,11(A)). Let h+ij € el (Wiy1(A))NL
have maximum imaginary part. Then § > g as by Theorem 2.1,
14
h+ig=Y (Avj,v;) + (k— €+ 1)(h +ig) € cl (Wis1(A)).
j=1
We shall show that h + ig does not belong to Wj41(A) and therefore Wy.1(A) is not closed.
Assume the contrary that h +ig € Wy11(A). Then h +ig = Zkﬂ (Awj, w;) for orthonormal

vectors wi, ..., wi+1. Recall that r is the smallest integer such that Ni(H) =hifj>r. We
have

k+1 k+1 r
> (Huwj,wy) =Y N(H)) = (Hvj,vj) + (k+1—7)h.
j=1 7j=1 7j=1

Therefore,
Hy =span{vi,..., v} Cspan{wy,..., wp1} = Hz and Hi NHz C Ho,

where Ho is the eigenspace of H corresponding to h. Without loss of generality, we may assume
that w; = v; for j = 1,...,r. Therefore, wy41,...,wx4+1 € Ha. As h + ig has the maximum
imaginary part, we must have

k+1 k—r+1
E (Gwj, wj) E i (G),
j=r+1

where /\j(G’) are the k —r 4 1 largest eigenvalues of the compression of G onto Hz. Again we
can assume that

l l—r
D (Gujwy) = N(G).
j=r+1 j=1

Therefore,
(Gwesr, wetn), - - (GWgy1, W) < g
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Hence
k+1 ¢ k+1 14
§="> (Guj,w;) = (Guj,wy) + Y (Gwj,wy) <> (Guwj,wy) + (k—L+1)g =g,
j=1 j=1 j=0+1 Jj=1
which is a contradiction. O

Combining Theorems 2.1 and 3.1, we get the following criterion for the closedness of Wy (A).

Corollary 3.2. The k-numerical range Wy (A) is closed if and only if
EWess(A) € Wi(A) + (k — 1)Wess(4) € -+ € Wi_1(A) + Wess(4) C Wi(A).
In particular, if A is compact, then Wi (A) is closed if and only if
{0} CWA(A) C - CWi1(A) € Wi(A).
Proof. By Theorem 2.1, Wj(A) is closed if and only if
Wj(A) + (k — j)Wess(A) € Wi(A) for j=0,... k.
The implication “«<” is clear.

For the converse, if Wj,(A) is closed, then by Theorem 3.1, Wj_1(A) is also closed and hence
Wi—2(A) + Wess(A) C Wi_1(A). It follows that

Wk—Q(A) + 2VVess(fél) c Wk—l(A) + Wess(A)-

The other inclusions can be obtained similarly. O

ACKNOWLEDGEMENT

Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo;
his research was partially supported by the Simons Foundation Grant 351047.

REFERENCES

[1] J.T. Chan, A note on the boundary of the joint numerical range, Linear Multilinear Algebra 66 (2018),
821-826.

[2] P.A. Fillmore, J.G. Stampfli, and J.P. Williams, On the essential numerical range, the essential spectrum
and a problem of Halmos, Acta Sci. Math. (Szeged), 33 (1973), 172-192.

[3] P.R. Halmos, A Hilbert Space Problem Book, 2" ed., Graduate Texts in Mathematics, 19, Springer-Verlag,
New-York, 1982.

[4] M.S. Jones and H.P. Rogosinski, Inclusion relations involving the k-numerical range and the essential nu-
merical range, Linear Multilinear Algebra 37 (1994), 161-173.

[5] J.S. Lancaster, The boundary of the numerical range, Proc. Amer. Math. Soc. 49 (1975), 393-398.

[6] C.K. Li and Y.T. Poon, Some results on the c-numerical range, in Five decades as a mathematician and
educator, 247-258, World Sci. Publ., River Edge, NJ, 1995.

(Chan) DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM, HONG KONG.
Email address: jtchan@hku.hk

(Li) DEPARTMENT OF MATHEMATICS, THE COLLEGE OF WILLIAM & MARY, WILLIAMSBURG, VA 13185,
USA.

Email address: ckli@math.wm.edu

(Poon) DEPARTMENT OF MATHEMATICS, IowA STATE UNIVERSITY, AMES, IA 50011, USA.
CENTER FOR QUANTUM COMPUTING, PENG CHENG LABORATORY, SHENZHEN, 518055, CHINA.
Email address: ytpoon@iastate.edu



