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Abstract. LetH be an infinite dimensional complex Hilbert space and let B(H) be the algebra
of all bounded linear operators on H. For A ∈ B(H), the k-numerical range of A is the set

Wk(A) =

{
k∑

j=1

〈Axj , xj〉 : {xj , . . . , xk} is an orthonormal set in H

}
.

In this note, we show that the closure of Wk(A) can be written as the convex hull of sets
involving the essential numerical range of A and W`(A) for ` ≤ k. We also show that if Wk(A)
is closed, then W`(A) is also closed for ` ≤ k.

Numerical range, k-numerical range, essential numerical range

1. Introduction

Let H be an infinite dimensional complex Hilbert space and let B(H) be the algebra of all
bounded linear operators on H. For A ∈ B(H), the numerical range of A is the set

W (A) = {〈Ax, x〉 : x is a unit vector in H}.
It is a bounded and convex subset of the complex plane C, but is in general not closed. Let
cl (W (A)) denote the closure of W (A). In [5, Theorem 1], Lancaster proved that

cl (W (A)) = conv(W (A) ∪Wess(A)),

where Wess(A) is the essential numerical range of A and conv(W (A) ∪ Wess(A)) is the the
convex hull of W (A) and Wess(A). There are several equivalent definitions of Wess(A), see [2].
For our purpose, a point µ ∈ C belongs to Wess(A) if and only if there is a weakly null sequence
of unit vectors (or, a sequence of orthonormal vectors) {vk} in H such that 〈Avk, vk〉 → µ. A
consequence of Lancaster’s theorem is that W (A) is closed if and only if Wess(A) ⊆W (A). This
is an extension of an earlier result of Halmos [3, Problem 213], who showed that if A is compact,
W (A) is closed if and only if 0 ∈W (A). Note that for any compact operator A, Wess(A) = {0}.

There are different extensions of the notion of the numerical range. One of them is to define
for each positive integer k the k-numerical range of A ∈ B(H) by

Wk(A) =


k∑

j=1

〈Axj , xj〉 : {x1, . . . , xk} is an orthonormal set in H

 .

When k = 1, Wk(A) reduces to the usual numerical range W (A). It is well-known that Wk(A)
is always convex ([3, Problem 211]). But just like W (A), Wk(A) is not always closed. In [6] Li
and Poon showed that, when A ∈ B(H) is compact, Wk(A) is closed if and only if

(∗) 0 ∈Wk(A) and W`(A) ⊆Wk(A) for all ` = 1, . . . , k − 1.

Actually their results are about the more general c-numerical range, but we shall confine our
discussion to the k-numerical range.

In the next section, we give a description of cl (Wk(A)) when A is not necessarily compact.
More precisely, we express the closure as the convex hull of sets involving Wess(A) and W`(A)
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for ` ≤ k. Another question stemming from the condition (∗) is whether there are inclusion
relations between the other W`(A)’s when Wk(A) is closed. It turns out that if Wk(A) is closed,
W`(A) is also closed for ` ≤ k. Consequently, (∗) can be written as

{0} ⊆W1(A) ⊆W2(A) ⊆ · · · ⊆Wk(A).

This is discussed in the last section.

2. Closure of Wk(A)

In this section we prove

Theorem 2.1. Let A ∈ B(H) and k be a positive integer. Set W0(A) = {0}. Then

(1) cl (Wk(A)) = conv
k⋃

`=0

[W`(A) + (k − `)Wess(A)].

Consequently, Wk(A) is closed if and only if

(2) W`(A) + (k − `)Wess(A) ⊆Wk(A), ` = 0, . . . , k.

Proof. To prove (1), note that when k = 1, it is just [5, Theorem 1]. So, assume that k > 1.

“⊇” The inclusion can be deduced from [4, Theorem 3] by putting βk−`,k = k−`
k and βjk = 0

for j 6= k − `. We include a short proof for the sake of completeness. It suffices to show that
W`(A) + (k − `)Wess(A) ⊆ cl (Wk(A)) for 0 ≤ ` ≤ k. Let

µ =
∑̀
j=1

〈Avj , vj〉+ (k − `)ξ ∈W`(A) + (k − `)Wess(A),

for orthonormal vectors v1, . . . , v` in H and ξ ∈ Wess(A). Choosing an orthonormal basis of H

with {v1, . . . , v`} as the first ` vectors, we can represent A as the matrix

(
A11 A12

A21 A22

)
, where

the ` × ` matrix A11 has (j, j) entry equal to 〈Avj , vj〉 for j = 1, . . . , `. If F is the finite rank

operator represented as

(
A11 A12

A21 0

)
, then ξ ∈ Wess(A − F ) so that there is an orthonormal

sequence of unit vector {u1, u2, . . . } ⊆ {v1, . . . , v`}⊥ such that 〈Auj , uj〉 → ξ [2, Theorem 5.1].
Thus,

µ =
∑̀
j=1

〈Avj , vj〉+ lim
m→∞

k−∑̀
j=1

〈Aum+j , um+j〉 ∈ cl (Wk(A)).

“⊆” Let µ ∈ cl (Wk(A)). There are orthonormal sets of vectors {v(n)1 , . . . , v
(n)
k } in H such

that
∑k

j=1〈Av
(n)
j , v

(n)
j 〉 → µ. As the closed unit ball is weakly sequentially compact, by passing

to subsequences, we may assume that for each j, v
(n)
j → vj weakly and 〈Av(n)j , v

(n)
j 〉 → µj , for

vj in the closed unit ball of H and µj ∈ cl (Wk(A)). There are three possibilities (see the proof
of [1, Theorem 2.1] for detail),

(i) vj = 0 and µj ∈Wess(A),

(ii) ‖vj‖ = 1, v
(n)
j → vj strongly and µj = 〈Avj , vj〉 ∈W (A),

(iii) 0 < ‖vj‖ < 1 and µj = ‖vj‖2
〈
A

vj
‖vj‖ ,

vj
‖vj‖

〉
+ (1−‖vj‖2)ξj for some ξj ∈Wess(A) so that

µj is a convex combination of points in W (A) and Wess(A).
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Taking any ξj ∈ Wess(A) in (ii), we can always write µj = 〈Avj , vj〉 + (1 − ‖vj‖2)ξj . As in

[6], consider the positive semidefinite operator H =
∑k

j=1〈 · , vj〉vj . Let d1 ≥ d2 ≥ · · · ≥ dk ≥
0 be the k largest eigenvalues of H, and {u1, . . . , uk} an orthonormal set of corresponding
eigenvectors. For each j,

dj = 〈Huj , uj〉 =

k∑
i=1

|〈uj , vi〉|2 = lim
n→∞

k∑
i=1

|〈uj , v(n)i 〉|
2 ≤ ‖uj‖2 = 1.

For each ` = 1, . . . , k, let G` =
∑`

j=1〈 · , uj〉uj . Then

H =

k∑
j=1

dj〈 · , uj〉uj = dkGk + (dk−1 − dk)Gk−1 + · · ·+ (d1 − d2)G1.

Now, trAH =
∑k

j=1 trA(〈 · , vj〉vj) =
∑k

j=1 〈Avj , vj〉, and similarly, trAG` =
∑`

j=1 〈Auj , uj〉.
In particular, trAG` ∈W`(A). We have

k∑
j=1

〈Avj , vj〉 = trAH = dktrAGk + (dk−1 − dk)trAGk−1 + · · ·+ (d1 − d2)trAG1.

Observe that d1 + · · ·+ dk = trH =
∑k

j=1 tr(〈 · , vj〉vj) =
∑k

j=1 ‖vj‖2. So,

k∑
j=1

(1− ‖vj‖2)ξj = (k − d1 − · · · − dk)

(
1− ‖v1‖2

k − d1 − · · · − dk
ξ1 + · · ·+ 1− ‖vk‖2

k − d1 − · · · − dk
ξk

)
.

As Wess(A) is convex, the number above is equal to (k − d1 − · · · − dk)ξ for some ξ ∈Wess(A).
We can write

µ =
∑k

j=1 µj =
∑k

j=1〈Avj , vj〉+
∑k

j=1(1− ‖vj‖2)ξj
= dktrGkA+ (dk−1 − dk)trGk−1A+ · · ·+ (d1 − d2)trG1A+ (k − d1 − · · · − dk)ξ

= dktrGkA+ (dk−1 − dk)(trGk−1A+ ξ) + · · ·+ (d1 − d2)(trG1A+ (k − 1)ξ)

+(1− d1)(kξ),

where, as observed above, trAG` ∈W`(A). The proof of (1) is complete. Statement (2) follows
easily from (1). �

The following example shows that one needs to check the condition in (2) for every ` to
conclude that Wk(A) is closed.

Example 2.2. Let ` and k be nonnegative integers with ` < k, and A the compact operator
A = −I` ⊕ Ik ⊕ diag (1/2, 1/3, . . . ) acting on H = `2. Then Wess(A) = {0}. We have

Wj(A) + (k − j)Wess(A) =


[−j, j] for j = 0, 1, . . . , `,

(−`, j] for j = `+ 1, . . . , k,

and

Wk(A) = (−`, k].

In particular, Wk(A) is not closed. In this example we have Wj(A)+(k−j)Wess(A) ⊆Wk(A)
for all j ∈ {0, 1, . . . , k} \ {`}. �



4 JOR-TING CHAN, CHI-KWONG LI, YIU-TUNG POON

Actually, if Wk(A) is closed, then for every λ ∈ Wess(A), kλ ∈ Wk(A) so that there
are orthonormal vectors v1, . . . , vk such that kλ = 〈Av1, v1〉 + · · · + 〈Avk, vk〉. Then λ =
(1/k)(〈Av1, v1〉 + · · · + 〈Avk, vk〉) ∈ W (A). By [5, Corollary 1], W (A) is closed. In the next
section, we prove that indeed W`(A) is closed for all 1 ≤ ` ≤ k.

3. Closedness of Wk(A) and Wk+1(A)

The main result of this section is the following.

Theorem 3.1. Let A ∈ B(H) and k ≥ 1. If Wk+1(A) is closed, then so is Wk(A).

Note that the converse is not true. Let {ej}∞j=1 be the standard orthonormal basis of `2. If

A = 〈 · , e1〉e1−
∑∞

j=2 2−j〈 · , ej〉ej , then W (A) = [−1/4, 1] is closed while W2 = [−3/8, 1) is not
closed.

Proof. First consider the simpler situation when A ∈ B(H) is self-adjoint. The set Wk(A) is a
line segment on R, which can be computed as follows. Let

λ`(A) = inf
W ≤ H

dimW = `− 1

sup{〈Ax, x〉 : x ∈W⊥ and ‖x‖ = 1}.

Then λ1(A) ≥ λ2(A) ≥ · · · . Denote by σ(A) the spectrum of A. Then λ1(A) = supσ(A) and
one of the following holds.

(1) There is an orthonormal set {v1, v2, . . . } ⊆ H such that Avj = λj(A)vj for j = 1, 2, . . . .

(2) There exists an orthonormal set {v1, . . . , v`} ⊆ H, ` ≥ 0 satisfying Avj = λj(A)vj for
j = 1, . . . , `, and for all j > ` we have λj(A) = λ`+1(A) = maxWess(A), which is a limit
point of σ(A). Here, if ` = 0, we have λj(A) = maxWess(A) for all j ≥ 1.

Let ak = −
∑k

j=1 λj(−A) and bk =
∑k

j=1 λj(A). Then (ak, bk) ⊆ Wk(A) ⊆ [ak, bk]. If

Wk+1(A) is closed, then Wk+1(A) = [ak+1, bk+1] and there is an orthonormal set of vec-
tors {v1, . . . , vk+1} such that Avj = λj(A)vj . It follows that the right hand endpoint bk =∑k

j=1 λj(A) =
∑k

j=1 〈Avj , vj〉 of cl (Wk(A)) lies in Wk(A). Similarly, the left hand endpoint

ak = −
∑k

j=1 λ(−A) of cl (Wk(A)) also lies in Wk(A). Thus, Wk(A) = [ak, bk] is closed.

Now, we turn to the case of a general operator A ∈ B(H). If for some µ ∈ C and t ∈ [0, 2π),
eit(A−µI) is self-adjoint, then the result follows from the discussion above. So, assume that it
is not the case. We prove the contra-positive, i.e., if Wk(A) is not closed, then Wk+1(A) is also
not closed.

Under the assumption, there is an extreme point µ of cl (Wk(A)) that does not belong to
Wk(A). Replacing A by eit(A − µI) for a suitable t ∈ [0, 2π), we may assume that µ = 0 and
Wk(A) lies on the left half of the complex plane and the right support line of cl (Wk(A)) is the
imaginary axis L = {iy : y ∈ R}. Considering A∗ instead of A if necessary, we may further
assume that 0 is the upper endpoint of the line segment cl (Wk(A)) ∩ L.

By Theorem 2.1, 0 ∈W`(A) + (k − `)Wess(A) for some ` ∈ {0, . . . , k}. That is,

0 =
∑̀
j=1

〈Avj , vj〉+ (k − `)(h+ ig),

for orthonormal vectors v1, . . . , v` and h+ ig ∈Wess(A). We shall assume that

(3) ` is the largest integer such that 0 ∈W`(A) + (k − `)Wess(A).
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As 0 /∈Wk(A), ` < k. If we write A = H + iG for self-adjoint H and G, then

0 =

∑̀
j=1

〈Hvj , vj〉+ (k − `)h

+ i

∑̀
j=1

〈Gvj , vj〉+ (k − `)g

 .

If ` = 0, then 0 = k(h+ ig), or, h+ ig = 0. So, 0 = (k + 1)(h+ ig) ∈ cl (Wk+1(A)). We will
show that 0 /∈Wk+1(A) to conclude that Wk+1(A) is not closed. Suppose on the contrary that

0 =
k+1∑
j=1

〈Auj , uj〉 =
k+1∑
j=1

〈Huj , uj〉+ i
k+1∑
j=1

〈Guj , uj〉 ∈Wk+1(A)

for orthonormal vectors u1, . . . , uk+1. As Wk(A) lies on the left half of the complex plane, the
sum of any k terms of 〈Hu1, u1〉, . . . , 〈Huk+1, uk+1〉 is less than or equal to zero. The sum of
all k + 1 of them is zero implies that the sum of any k terms is indeed zero. We must have
〈Huj , uj〉 = 0 for all j. Thus, the sum of any k terms of 〈Au1, u1〉, . . . , 〈Auk+1, uk+1〉 belongs
to cl (Wk(A)) ∩ L. As 0 is the upper endpoint of this line segment, the sum of any k terms of
〈Gu1, u1〉, . . . , 〈Guk+1, uk+1〉 is less than or equal to zero. An argument as above yields that

〈Guj , uj〉 = 0 for all j. In particular, we have 0 =
∑k

j=1 〈Auj , uj〉 ∈Wk(A), a contradiction.

So, assume in the rest of the proof that ` > 0. Since 0 = max cl (Wk(H)), we must have∑`
j=1 〈Hvj , vj〉 = maxW`(H). Otherwise we can find orthonormal vectors u1, . . . , u` such that∑`
j=1 〈Huj , uj〉 >

∑`
j=1 〈Hvj , vj〉 to get the point

∑̀
j=1

〈Auj , uj〉+ (k − `)(h+ ig) ∈ cl (Wk(A))

with real part
∑`

j=1 〈Huj , uj〉 + (k − `)h > 0. Thus,
∑`

j=1 〈Hvj , vj〉 =
∑`

j=1 λj(H). Without

loss of generality, we can assume that 〈Hvj , vj〉 = λj(H) for each 1 ≤ j ≤ `, so that they are the
` largest eigenvalues of H, counting multiplicities, with each vj as an eigenvector corresponding
to λj(H). Again, it follows from 0 = max cl (Wk(H)) that

λ1(H) ≥ · · · ≥ λ`(H) ≥ h and λj(H) = h for j > `.

There may be j ≤ ` such that λj(H) = h. So, let r be the smallest integer such that λj(H) = h
if j > r. We have 0 ≤ r ≤ `.

Consider the action of G on the eigenspaces of H. If r > 0, let H1 = span {v1, . . . , vr} be the
direct sum of the eigenspaces of H corresponding to λ1(H), . . . , λr(H). If r = 0, let H1 = {0}.
On the finite dimensional subspace H1, we have

r∑
j=1

〈Hwj , wj〉 =

r∑
j=1

〈Hvj , vj〉 and

r∑
j=1

〈Gwj , wj〉 =

r∑
j=1

〈Gvj , vj〉

for any orthonormal basis {w1, . . . , wr} of H1.

Let H2 be the eigenspace of H corresponding to h. Then H2 has dimension at least `−r and
may even be infinite dimensional. Also, let Ĝ be the compression of G onto H2. It follows from

the fact 0 =
∑`

j=1 〈Gvj , vj〉+ (k− `)g is the largest imaginary part of points in cl (Wk(A))∩L
that ∑̀

j=r+1

〈Gvj , vj〉 =

`−r∑
j=1

λj(Ĝ).

Another observation is that if u1, . . . , u`−r are orthonormal vectors in H2 satisfying
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`−r∑
j=1

〈Guj , uj〉 =
∑̀

j=r+1

〈Gvj , vj〉 =
`−r∑
j=1

λj(Ĝ)

and w is a unit vector in H2 orthogonal to u1, . . . , u`−r, then 〈Gw,w〉 < g. This is because if
〈Gw,w〉 > g, then

(4)
r∑

j=1

〈Avj , vj〉+
`−r∑
j=1

〈Auj , uj〉+ 〈Aw,w〉+ (k − `− 1)(h+ ig)

will be a point in cl (Wk(A)) ∩ L with imaginary part∑̀
j=1

〈Gvj , vj〉+ 〈Gw,w〉+ (k − `− 1)g > 0;

and if 〈Gw,w〉 = g, 〈Aw,w〉 = h+ ig so that the sum in (4) is zero, contradicting (3).

Now consider Wk+1(A). Note that

k+1∑
j=1

λj(H) =

k∑
j=1

λj(H) + λk+1(H) = h.

So, L̂ = {h+ iy : y ∈ R} is the right support line of cl (Wk+1(A)). Let h+ iĝ ∈ cl (Wk+1(A))∩ L̂
have maximum imaginary part. Then ĝ ≥ g as by Theorem 2.1,

h+ ig =
∑̀
j=1

〈Avj , vj〉+ (k − `+ 1)(h+ ig) ∈ cl (Wk+1(A)).

We shall show that h + iĝ does not belong to Wk+1(A) and therefore Wk+1(A) is not closed.

Assume the contrary that h + iĝ ∈ Wk+1(A). Then h + iĝ =
∑k+1

j=1 〈Awj , wj〉 for orthonormal

vectors w1, . . . , wk+1. Recall that r is the smallest integer such that λj(H) = h if j > r. We
have

k+1∑
j=1

〈Hwj , wj〉 =

k+1∑
j=1

λj(H)〉 =

r∑
j=1

〈Hvj , vj〉+ (k + 1− r)h.

Therefore,

H1 = span {v1, . . . , vr} ⊂ span {w1, . . . , wk+1} = H3 and H⊥1 ∩H3 ⊆ H2,

where H2 is the eigenspace of H corresponding to h. Without loss of generality, we may assume
that wj = vj for j = 1, . . . , r. Therefore, wr+1, . . . , wk+1 ∈ H2. As h + iĝ has the maximum
imaginary part, we must have

k+1∑
j=r+1

〈Gwj , wj〉 =

k−r+1∑
j=1

λj(Ĝ),

where λj(Ĝ) are the k − r + 1 largest eigenvalues of the compression of G onto H2. Again we
can assume that ∑̀

j=r+1

〈Gwj , wj〉 =
`−r∑
j=1

λj(Ĝ).

Therefore,

〈Gw`+1, w`+1〉, . . . , 〈Gwk+1, wk+1〉 < g.
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Hence

ĝ =
k+1∑
j=1

〈Gwj , wj〉 =
∑̀
j=1

〈Gwj , wj〉+
k+1∑

j=`+1

〈Gwj , wj〉 <
∑̀
j=1

〈Gwj , wj〉+ (k − `+ 1)g = g,

which is a contradiction. �

Combining Theorems 2.1 and 3.1, we get the following criterion for the closedness of Wk(A).

Corollary 3.2. The k-numerical range Wk(A) is closed if and only if

kWess(A) ⊆W1(A) + (k − 1)Wess(A) ⊆ · · · ⊆Wk−1(A) +Wess(A) ⊆Wk(A).

In particular, if A is compact, then Wk(A) is closed if and only if

{0} ⊆W1(A) ⊆ · · · ⊆Wk−1(A) ⊆Wk(A).

Proof. By Theorem 2.1, Wk(A) is closed if and only if

Wj(A) + (k − j)Wess(A) ⊆Wk(A) for j = 0, . . . , k.

The implication “⇐” is clear.

For the converse, if Wk(A) is closed, then by Theorem 3.1, Wk−1(A) is also closed and hence
Wk−2(A) +Wess(A) ⊆Wk−1(A). It follows that

Wk−2(A) + 2Wess(A) ⊆Wk−1(A) +Wess(A).

The other inclusions can be obtained similarly. �
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