CLOSEDNESS OF THE k-NUMERICAL RANGE

JOR-TING CHAN, CHI-KWONG LI, YIU-TUNG POON

Abstract. Let \mathcal{H} be an infinite dimensional complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. For $A \in \mathcal{B}(\mathcal{H})$, the k-numerical range of A is the set

$$W_k(A) = \left\{ \sum_{j=1}^{k} \langle Ax_j, x_j \rangle : \{x_1, \ldots, x_k\} \text{ is an orthonormal set in } \mathcal{H} \right\}.$$

In this note, we show that the closure of $W_k(A)$ can be written as the convex hull of sets involving the essential numerical range of A and $W_\ell(A)$ for $\ell \leq k$. We also show that if $W_k(A)$ is closed, then $W_\ell(A)$ is also closed for $\ell \leq k$.

Numerical range, k-numerical range, essential numerical range

1. Introduction

Let \mathcal{H} be an infinite dimensional complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. For $A \in \mathcal{B}(\mathcal{H})$, the numerical range of A is the set

$$W(A) = \{ \langle Ax, x \rangle : x \text{ is a unit vector in } \mathcal{H} \}.$$

It is a bounded and convex subset of the complex plane \mathbb{C}, but is in general not closed. Let $\text{cl}(W(A))$ denote the closure of $W(A)$. In [5, Theorem 1], Lancaster proved that

$$\text{cl}(W(A)) = \text{conv}(W(A) \cup W_{\text{ess}}(A)),$$

where $W_{\text{ess}}(A)$ is the essential numerical range of A and $\text{conv}(W(A) \cup W_{\text{ess}}(A))$ is the the convex hull of $W(A)$ and $W_{\text{ess}}(A)$. There are several equivalent definitions of $W_{\text{ess}}(A)$, see [2]. For our purpose, a point $\mu \in \mathbb{C}$ belongs to $W_{\text{ess}}(A)$ if and only if there is a weakly null sequence of unit vectors (or, a sequence of orthonormal vectors) $\{v_k\}$ in \mathcal{H} such that $\langle Av_k, v_k \rangle \to \mu$. A consequence of Lancaster’s theorem is that $W(A)$ is closed if and only if $W_{\text{ess}}(A) \subseteq W(A)$. This is an extension of an earlier result of Halmos [3, Problem 213], who showed that if A is compact, $W(A)$ is closed if and only if $0 \in W(A)$. Note that for any compact operator A, $W_{\text{ess}}(A) = \{0\}$.

There are different extensions of the notion of the numerical range. One of them is to define for each positive integer k the k-numerical range of $A \in \mathcal{B}(\mathcal{H})$ by

$$W_k(A) = \left\{ \sum_{j=1}^{k} \langle Ax_j, x_j \rangle : \{x_1, \ldots, x_k\} \text{ is an orthonormal set in } \mathcal{H} \right\}.$$

When $k = 1$, $W_k(A)$ reduces to the usual numerical range $W(A)$. It is well-known that $W_k(A)$ is always convex ([3, Problem 211]). But just like $W(A)$, $W_k(A)$ is not always closed. In [6] Li and Poon showed that, when $A \in \mathcal{B}(\mathcal{H})$ is compact, $W_k(A)$ is closed if and only if

$$(*) \quad 0 \in W_k(A) \quad \text{and} \quad W_\ell(A) \subseteq W_k(A) \quad \text{for all } \ell = 1, \ldots, k - 1.$$

Actually their results are about the more general c-numerical range, but we shall confine our discussion to the k-numerical range.

In the next section, we give a description of $\text{cl}(W_k(A))$ when A is not necessarily compact. More precisely, we express the closure as the convex hull of sets involving $W_{\text{ess}}(A)$ and $W_\ell(A)$.
for $\ell \leq k$. Another question stemming from the condition (*) is whether there are inclusion relations between the other $W_\ell(A)$’s when $W_k(A)$ is closed. It turns out that if $W_k(A)$ is closed, $W_\ell(A)$ is also closed for $\ell \leq k$. Consequently, (*) can be written as

$$\{0\} \subseteq W_1(A) \subseteq W_2(A) \subseteq \cdots \subseteq W_k(A).$$

This is discussed in the last section.

2. Closure of $W_k(A)$

In this section we prove

Theorem 2.1. Let $A \in \mathcal{B}(\mathcal{H})$ and k be a positive integer. Set $W_0(A) = \{0\}$. Then

$$(1) \quad \text{cl} (W_k(A)) = \text{conv} \bigcup_{\ell=0}^{k} [W_\ell(A) + (k-\ell)W_{\text{ess}}(A)].$$

Consequently, $W_k(A)$ is closed if and only if

$$(2) \quad W_\ell(A) + (k-\ell)W_{\text{ess}}(A) \subseteq W_k(A), \quad \ell = 0, \ldots, k.$$

Proof. To prove (1), note that when $k = 1$, it is just [5, Theorem 1]. So, assume that $k > 1$.

“⊇” The inclusion can be deduced from [4, Theorem 3] by putting $\beta_{k-\ell,k} = \frac{k-\ell}{k}$ and $\beta_{j,k} = 0$ for $j \neq k - \ell$. We include a short proof for the sake of completeness. It suffices to show that $W_\ell(A) + (k-\ell)W_{\text{ess}}(A) \subseteq \text{cl} (W_k(A))$ for $0 \leq \ell \leq k$. Let

$$\mu = \sum_{j=1}^{\ell} \langle Av_j, v_j \rangle + (k-\ell)\xi \in W_\ell(A) + (k-\ell)W_{\text{ess}}(A),$$

for orthonormal vectors v_1, \ldots, v_ℓ in \mathcal{H} and $\xi \in W_{\text{ess}}(A)$. Choosing an orthonormal basis of \mathcal{H} with $\{v_1, \ldots, v_\ell\}$ as the first ℓ vectors, we can represent A as the matrix

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

where the $\ell \times \ell$ matrix A_{11} has (j,j) entry equal to $\langle Av_j, v_j \rangle$ for $j = 1, \ldots, \ell$. If F is the finite rank operator represented as

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{pmatrix},$$

then $\xi \in W_{\text{ess}}(A - F)$ so that there is an orthonormal sequence of unit vector $\{u_1, u_2, \ldots\} \subseteq \{v_1, \ldots, v_\ell\}$ such that $\langle Au_j, u_j \rangle \to \xi$ [2, Theorem 5.1]. Thus,

$$\mu = \sum_{j=1}^{\ell} \langle Av_j, v_j \rangle + \lim_{m \to \infty} \sum_{j=1}^{k-\ell} \langle Au_{m+j}, u_{m+j} \rangle \in \text{cl} (W_k(A)).$$

“⊆” Let $\mu \in \text{cl} (W_k(A))$. There are orthonormal sets of vectors $\{v_1^{(n)}, \ldots, v_k^{(n)}\}$ in \mathcal{H} such that $\sum_{j=1}^{k} \langle Av_j^{(n)}, v_j^{(n)} \rangle \to \mu$. As the closed unit ball is weakly sequentially compact, by passing to subsequences, we may assume that for each j, $v_j^{(n)} \to v_j$ weakly and $\langle Av_j^{(n)}, v_j^{(n)} \rangle \to \mu_j$, for v_j in the closed unit ball of \mathcal{H} and $\mu_j \in \text{cl} (W_k(A))$. There are three possibilities (see the proof of [1, Theorem 2.1] for detail),

(i) $v_j = 0$ and $\mu_j \in W_{\text{ess}}(A),$

(ii) $\|v_j\| = 1$, \ $v_j^{(n)} \to v_j$ strongly and $\mu_j = \langle Av_j, v_j \rangle \in W(A),$

(iii) $0 < \|v_j\| < 1$ and $\mu_j = \|v_j\|^2 \frac{\langle Av_j, v_j \rangle}{\|v_j\|^2} + (1 - \|v_j\|^2)\xi_j$ for some $\xi_j \in W_{\text{ess}}(A)$ so that μ_j is a convex combination of points in $W(A)$ and $W_{\text{ess}}(A).$
Taking any \(\xi_j \in W_{\text{ess}}(A)\) in (ii), we can always write \(\mu_j = \langle Av_j, v_j \rangle + (1 - \|v_j\|^2)\xi_j\). As in [6], consider the positive semidefinite operator \(H = \sum_{j=1}^{k} \langle \cdot, v_j \rangle v_j\). Let \(d_1 \geq d_2 \geq \cdots \geq d_k \geq 0\) be the \(k\) largest eigenvalues of \(H\), and \(\{u_1, \ldots, u_k\}\) an orthonormal set of corresponding eigenvectors. For each \(j\),

\[
d_j = \langle Hu_j, u_j \rangle = \sum_{i=1}^{k} |\langle u_j, v_i \rangle|^2 = \lim_{n \to \infty} \sum_{i=1}^{k} |\langle u_j, v_i^{(n)} \rangle|^2 \leq \|u_j\|^2 = 1.
\]

For each \(\ell = 1, \ldots, k\), let \(G_\ell = \sum_{j=1}^{\ell} \langle \cdot, u_j \rangle u_j\). Then

\[
H = \sum_{j=1}^{k} d_j \langle \cdot, u_j \rangle u_j = d_k G_k + (d_{k-1} - d_k) G_{k-1} + \cdots + (d_1 - d_2) G_1.
\]

Now, \(\text{tr}AH = \sum_{j=1}^{k} \text{tr}A(\langle \cdot, v_j \rangle v_j) = \sum_{j=1}^{k} \langle Av_j, v_j \rangle\), and similarly, \(\text{tr}AG_\ell = \sum_{j=1}^{\ell} \langle Au_j, u_j \rangle\). In particular, \(\text{tr}AG_\ell \in W_\ell(A)\). We have

\[
\sum_{j=1}^{k} \langle Av_j, v_j \rangle = \text{tr}AH = d_k \text{tr}A G_k + (d_{k-1} - d_k) \text{tr}A G_{k-1} + \cdots + (d_1 - d_2) \text{tr}A G_1.
\]

Observe that \(d_1 + \cdots + d_k = \text{tr}H = \sum_{j=1}^{k} \text{tr}(\langle \cdot, v_j \rangle v_j) = \sum_{j=1}^{k} \|v_j\|^2\). So,

\[
\sum_{j=1}^{k} (1 - \|v_j\|^2) \xi_j = (k - d_1 - \cdots - d_k) \left(\frac{1 - \|v_1\|^2}{k - d_1 - \cdots - d_k} \xi_1 + \cdots + \frac{1 - \|v_k\|^2}{k - d_1 - \cdots - d_k} \xi_k \right).
\]

As \(W_{\text{ess}}(A)\) is convex, the number above is equal to \((k - d_1 - \cdots - d_k)\xi\) for some \(\xi \in W_{\text{ess}}(A)\). We can write

\[
\mu = \sum_{j=1}^{k} \mu_j = \sum_{j=1}^{k} \langle Av_j, v_j \rangle + \sum_{j=1}^{k} (1 - \|v_j\|^2) \xi_j = d_k \text{tr}A G_k + (d_{k-1} - d_k) \text{tr}G_{k-1} A + \cdots + (d_1 - d_2) \text{tr}G_1 A + (k - d_1 - \cdots - d_k) \xi\
\]

\[
= d_k \text{tr}A G_k + (d_{k-1} - d_k) (\text{tr}G_{k-1} A + \xi) + \cdots + (d_1 - d_2) (\text{tr}G_1 A + (k - 1) \xi) + (1 - d_1) (k \xi),
\]

where, as observed above, \(\text{tr}A G_\ell \in W_\ell(A)\). The proof of (1) is complete. Statement (2) follows easily from (1).

The following example shows that one needs to check the condition in (2) for every \(\ell\) to conclude that \(W_k(A)\) is closed.

Example 2.2. Let \(\ell\) and \(k\) be nonnegative integers with \(\ell < k\), and \(A\) the compact operator \(A = -I_\ell \oplus I_k \oplus \text{diag}(1/2, 1/3, \ldots)\) acting on \(\mathcal{H} = \ell_2\). Then \(W_{\text{ess}}(A) = \{0\}\). We have

\[
W_j(A) + (k - j)W_{\text{ess}}(A) = \begin{cases} [-j, j] & \text{for } j = 0, 1, \ldots, \ell, \\ (-\ell, j) & \text{for } j = \ell + 1, \ldots, k, \end{cases}
\]

and

\[
W_k(A) = (-\ell, k).
\]

In particular, \(W_k(A)\) is not closed. In this example we have \(W_j(A) + (k - j)W_{\text{ess}}(A) \subseteq W_k(A)\) for all \(j \in \{0, 1, \ldots, k\} \setminus \{\ell\}\). \qed
Actually, if $W_k(A)$ is closed, then for every $\lambda \in W_{\text{ess}}(A)$, $k\lambda \in W_k(A)$ so that there are orthonormal vectors v_1, \ldots, v_k such that $k\lambda = \langle Av_1, v_1 \rangle + \cdots + \langle Av_k, v_k \rangle$. Then $\lambda = (1/k)(\langle Av_1, v_1 \rangle + \cdots + \langle Av_k, v_k \rangle) \in W(A)$. By [5, Corollary 1], $W(A)$ is closed. In the next section, we prove that indeed $W_\ell(A)$ is closed for all $1 \leq \ell \leq k$.

3. Closeness of $W_k(A)$ and $W_{k+1}(A)$

The main result of this section is the following.

Theorem 3.1. Let $A \in \mathcal{B}(\mathcal{H})$ and $k \geq 1$. If $W_{k+1}(A)$ is closed, then so is $W_k(A)$.

Note that the converse is not true. Let $\{e_j\}_{j=1}^\infty$ be the standard orthonormal basis of ℓ^2. If $A = \langle \cdot, e_1 \rangle e_1 - \sum_{j=2}^\infty 2^{-j} \langle \cdot, e_j \rangle e_j$, then $W(A) = [-1/4, 1]$ is closed while $W_2 = [-3/8, 1]$ is not closed.

Proof. First consider the simpler situation when $A \in \mathcal{B}(\mathcal{H})$ is self-adjoint. The set $W_k(A)$ is a line segment on \mathbb{R}, which can be computed as follows. Let $\lambda_k(A) = \inf_{\dim W = \ell - 1} \sup_{W \subseteq \mathcal{H}} \{ \langle Ax, x \rangle : x \in W^\perp \text{ and } \|x\| = 1 \}$. Then $\lambda_1(A) \geq \lambda_2(A) \geq \cdots$. Denote by $\sigma(A)$ the spectrum of A. Then $\lambda_1(A) = \sup \sigma(A)$ and one of the following holds.

1. There is an orthonormal set $\{v_1, v_2, \ldots \} \subseteq \mathcal{H}$ such that $Av_j = \lambda_j(A)v_j$ for $j = 1, 2, \ldots$.
2. There exists an orthonormal set $\{v_1, \ldots, v_\ell\} \subseteq \mathcal{H}$, $\ell \geq 0$ satisfying $Av_j = \lambda_j(A)v_j$ for $j = 1, \ldots, \ell$, and for all $j > \ell$ we have $\lambda_j(A) = \lambda_{\ell+1}(A) = \max W_{\text{ess}}(A)$, which is a limit point of $\sigma(A)$. Here, if $\ell = 0$, we have $\lambda_j(A) = \max W_{\text{ess}}(A)$ for all $j \geq 1$.

Let $a_k = -\sum_{j=1}^k \lambda_j(-A)$ and $b_k = \sum_{j=1}^k \lambda_j(A)$. Then $(a_k, b_k) \subseteq W_k(A) \subseteq [a_k, b_k]$. If $W_{k+1}(A)$ is closed, then $W_{k+1}(A) = [a_{k+1}, b_{k+1}]$ and there is an orthonormal set of vectors $\{v_1, \ldots, v_{k+1}\}$ such that $Av_j = \lambda_j(A)v_j$. It follows that the right hand endpoint $b_k = \sum_{j=1}^k \lambda_j(A) = \sum_{j=1}^k \langle Av_j, v_j \rangle$ of $\text{cl}(W_k(A))$ lies in $W_k(A)$. Similarly, the left hand endpoint $a_k = -\sum_{j=1}^k \lambda_j(-A)$ of $\text{cl}(W_k(A))$ also lies in $W_k(A)$. Thus, $W_k(A) = [a_k, b_k]$ is closed.

Now, we turn to the case of a general operator $A \in \mathcal{B}(\mathcal{H})$. If for some $\mu \in \mathbb{C}$ and $t \in [0, 2\pi)$, $e^{it}(A - \mu I)$ is self-adjoint, then the result follows from the discussion above. So, assume that it is not the case. We prove the contra-positive, i.e., if $W_k(A)$ is not closed, then $W_{k+1}(A)$ is also not closed.

Under the assumption, there is an extreme point μ of $\text{cl}(W_k(A))$ that does not belong to $W_k(A)$. Replacing A by $e^{it}(A - \mu I)$ for a suitable $t \in [0, 2\pi)$, we may assume that $\mu = 0$ and $W_k(A)$ lies on the left half of the complex plane and the right support line of $\text{cl}(W_k(A))$ is the imaginary axis $L = \{iy : y \in \mathbb{R}\}$. Considering A^* instead of A if necessary, we may further assume that 0 is the upper endpoint of the line segment $\text{cl}(W_k(A)) \cap L$.

By Theorem 2.1, $0 \in W_\ell(A) + (k - \ell)W_{\text{ess}}(A)$ for some $\ell \in \{0, \ldots, k\}$. That is,

$$0 = \sum_{j=1}^\ell \langle Av_j, v_j \rangle + (k - \ell)(h + ig),$$

for orthonormal vectors v_1, \ldots, v_ℓ and $h + ig \in W_{\text{ess}}(A)$. We shall assume that

(3) ℓ is the largest integer such that $0 \in W_\ell(A) + (k - \ell)W_{\text{ess}}(A)$.

As $0 \notin W_k(A)$, $\ell < k$. If we write $A = H + iG$ for self-adjoint H and G, then

$$0 = \left(\sum_{j=1}^{\ell} \langle Hv_j, v_j \rangle + (k - \ell)h \right) + i \left(\sum_{j=1}^{\ell} \langle Gv_j, v_j \rangle + (k - \ell)g \right).$$

If $\ell = 0$, then $0 = k(h + ig)$, or, $h + ig = 0$. So, $0 = (k + 1)(h + ig) \in \cl(W_{k+1}(A))$. We will show that $0 \notin W_{k+1}(A)$ to conclude that $W_{k+1}(A)$ is not closed. Suppose on the contrary that

$$0 = \sum_{j=1}^{k+1} \langle Au_j, u_j \rangle = \sum_{j=1}^{k+1} \langle Hu_j, u_j \rangle + i \sum_{j=1}^{k+1} \langle Gu_j, u_j \rangle \in W_{k+1}(A)$$

for orthonormal vectors u_1, \ldots, u_{k+1}. As $W_k(A)$ lies on the left half of the complex plane, the sum of any k terms of $\langle Hu_1, u_1 \rangle, \ldots, \langle Hu_{k+1}, u_{k+1} \rangle$ is less than or equal to zero. The sum of all $k + 1$ of them is zero implies that the sum of any k terms is indeed zero. We must have $\langle Hu_j, u_j \rangle = 0$ for all j. Thus, the sum of any k terms of $\langle Au_1, u_1 \rangle, \ldots, \langle Au_{k+1}, u_{k+1} \rangle$ belongs to $\cl(W_k(A)) \cap L$. As 0 is the upper endpoint of this line segment, the sum of any k terms of $\langle Gu_1, u_1 \rangle, \ldots, \langle Gu_{k+1}, u_{k+1} \rangle$ is less than or equal to zero. An argument as above yields that $\langle Gu_j, u_j \rangle = 0$ for all j. In particular, we have $0 = \sum_{j=1}^{k} \langle Au_j, u_j \rangle \in W_k(A)$, a contradiction.

So, assume in the rest of the proof that $\ell > 0$. Since $0 = \max \cl(W_k(H))$, we must have $\sum_{j=1}^{\ell} \langle Hv_j, v_j \rangle = \max W_{\ell}(H)$. Otherwise we can find orthonormal vectors u_1, \ldots, u_{ℓ} such that $\sum_{j=1}^{\ell} \langle Hu_j, u_j \rangle > \sum_{j=1}^{\ell} \langle Hv_j, v_j \rangle$ to get the point

$$\sum_{j=1}^{\ell} \langle Au_j, u_j \rangle + (k - \ell)(h + ig) \in \cl(W_k(A))$$

with real part $\sum_{j=1}^{\ell} \langle Hu_j, u_j \rangle + (k - \ell)h > 0$. Thus, $\sum_{j=1}^{\ell} \langle Hv_j, v_j \rangle = \sum_{j=1}^{\ell} \lambda_j(H)$. Without loss of generality, we can assume that $\langle Hv_j, v_j \rangle = \lambda_j(H)$ for each $1 \leq j \leq \ell$, so that they are the ℓ largest eigenvalues of H, counting multiplicities, with each v_j as an eigenvector corresponding to $\lambda_j(H)$. Again, it follows from $0 = \max \cl(W_k(H))$ that

$$\lambda_1(H) \geq \cdots \geq \lambda_{\ell}(H) \geq h \quad \text{and} \quad \lambda_j(H) = h \quad \text{for} \quad j > \ell.$$

There may be $j \leq \ell$ such that $\lambda_j(H) = h$. So, let r be the smallest integer such that $\lambda_j(H) = h$ if $j > r$. We have $0 \leq r \leq \ell$.

Consider the action of G on the eigenspaces of H. If $r > 0$, let $H_1 = \text{span} \{v_1, \ldots, v_r\}$ be the direct sum of the eigenspaces of H corresponding to $\lambda_1(H), \ldots, \lambda_r(H)$. If $r = 0$, let $H_1 = \{0\}$. On the finite dimensional subspace H_1, we have

$$\sum_{j=1}^{r} \langle Hv_j, v_j \rangle = \sum_{j=1}^{r} \langle Hw_j, w_j \rangle \quad \text{and} \quad \sum_{j=1}^{r} \langle Gv_j, v_j \rangle = \sum_{j=1}^{r} \langle Gw_j, w_j \rangle$$

for any orthonormal basis $\{w_1, \ldots, w_r\}$ of H_1.

Let H_2 be the eigenspace of H corresponding to h. Then H_2 has dimension at least $\ell - r$ and may even be infinite dimensional. Also, let \hat{G} be the compression of G onto H_2. It follows from the fact $0 = \sum_{j=1}^{\ell} \langle Gv_j, v_j \rangle + (k - \ell)g$ is the largest imaginary part of points in $\cl(W_k(A)) \cap L$ that

$$\sum_{j=r+1}^{\ell} \langle Gv_j, v_j \rangle = \sum_{j=1}^{\ell-r} \lambda_j(\hat{G}).$$

Another observation is that if $u_1, \ldots, u_{\ell-r}$ are orthonormal vectors in H_2 satisfying
We shall show that h have maximum imaginary part. Then \hat{h}

Assume the contrary that h and if w are unit vectors

Therefore, $\langle w, w\rangle = 1$ and if $h \in \{y : y \in \mathbb{R}\}$ is the right support line of $\text{cl}(W_{k+1}(A))$. Let $h + ig \in \text{cl}(W_{k+1}(A)) \cap \hat{L}$ have maximum imaginary part. Then $\hat{g} \geq g$ as by Theorem 2.1,

We shall show that $h + ig$ does not belong to $W_{k+1}(A)$ and therefore $W_{k+1}(A)$ is not closed. Assume the contrary that $h + ig \in W_{k+1}(A)$. Then $h + ig = \sum_{j=1}^{k+1} \langle Aw_j, w_j\rangle$ for orthonormal vectors w_1, \ldots, w_{k+1}. Recall that r is the smallest integer such that $\lambda_j(H) = h$ if $j > r$. We have

Therefore,

where H_2 is the eigenspace of H corresponding to h. Without loss of generality, we may assume that $w_j = v_j$ for $j = 1, \ldots, r$. Therefore, $w_{r+1}, \ldots, w_{k+1} \in H_2$. As $h + ig$ has the maximum imaginary part, we must have

where $\lambda_j(\hat{G})$ are the $k - r + 1$ largest eigenvalues of the compression of G onto H_2. Again we can assume that

Therefore,

$\langle Gw_{\ell+1}, w_{\ell+1}\rangle, \ldots, \langle Gw_{k+1}, w_{k+1}\rangle < g$.
Hence
\[
\hat{g} = \sum_{j=1}^{k+1} (Gw_j, w_j) = \sum_{j=1}^{\ell} (Gw_j, w_j) + \sum_{j=\ell+1}^{k+1} (Gw_j, w_j) < \sum_{j=1}^{\ell} (Gw_j, w_j) + (k - \ell + 1)g = g,
\]
which is a contradiction. \(\square\)

Combining Theorems 2.1 and 3.1, we get the following criterion for the closedness of \(W_k(A)\).

Corollary 3.2. The \(k\)-numerical range \(W_k(A)\) is closed if and only if
\[
kW_{\text{ess}}(A) \subseteq W_1(A) + (k - 1)W_{\text{ess}}(A) \subseteq \cdots \subseteq W_{k-1}(A) + W_{\text{ess}}(A) \subseteq W_k(A).
\]
In particular, if \(A\) is compact, then \(W_k(A)\) is closed if and only if
\[
\{0\} \subseteq W_1(A) \subseteq \cdots \subseteq W_{k-1}(A) \subseteq W_k(A).
\]

Proof. By Theorem 2.1, \(W_k(A)\) is closed if and only if
\[
W_j(A) + (k - j)W_{\text{ess}}(A) \subseteq W_k(A) \quad \text{for} \quad j = 0, \ldots, k.
\]
The implication “\(\Rightarrow\)” is clear.

For the converse, if \(W_k(A)\) is closed, then by Theorem 3.1, \(W_{k-1}(A)\) is also closed and hence \(W_{k-2}(A) + W_{\text{ess}}(A) \subseteq W_{k-1}(A)\). It follows that
\[
W_{k-2}(A) + 2W_{\text{ess}}(A) \subseteq W_{k-1}(A) + W_{\text{ess}}(A).
\]
The other inclusions can be obtained similarly. \(\square\)

Acknowledgement

Li is an affiliate member of the Institute for Quantum Computing, University of Waterloo; his research was partially supported by the Simons Foundation Grant 351047.

References

(Chan) DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM, HONG KONG.
Email address: jchan@hku.hk

(Li) DEPARTMENT OF MATHEMATICS, THE COLLEGE OF WILLIAM & MARY, WILLIAMSBURG, VA 13185, USA.
Email address: ckli@math.wm.edu

(Poon) DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IA 50011, USA.
CENTER FOR QUANTUM COMPUTING, PENG CHENG LABORATORY, SHENZHEN, 518055, CHINA.
Email address: ytpoon@iastate.edu