Joint matricial range and joint congruence matricial range of operators

Pan-Shun Lau \cdot Chi-Kwong Li \cdot Yiu-Tung Poon \cdot Nung-Sing Sze

Dedicated to Professor Rajendra Bhatia.

Received: date / Accepted: date

Abstract Let $\mathbf{A}=(A_1,\ldots,A_m)$, where A_1,\ldots,A_m are $n\times n$ real matrices. The real joint (p,q)-matricial range of \mathbf{A} , $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$, is the set of m-tuple of $q\times q$ real matrices (B_1,\ldots,B_m) such that $(X^*A_1X,\ldots,X^*A_mX)=(I_p\otimes B_1,\ldots,I_p\otimes B_m)$ for some real $n\times pq$ matrix X satisfying $X^*X=I_{pq}$. It is shown that if n is sufficiently large, then the set $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space \mathcal{H} , and used to show that the joint essential (p,q)-matricial range of \mathbf{A} is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.

Keywords Congruence numerical range \cdot star-shaped \cdot convex \cdot compact perturbation

Mathematics Subject Classification (2010) 15A60 · 47A20 · 47A55

1 Introduction

Let \mathbb{F} be the field \mathbb{R} of real numbers and the field \mathbb{C} of complex numbers. Denote by $\mathbf{M}_n(\mathbb{F})$ the set of $n \times n$ matrices with elements in \mathbb{F} and $\mathbf{M}_n^m(\mathbb{F})$ the set of m-tuple of matrices in $\mathbf{M}_n(\mathbb{F})$. The joint numerical range of $\mathbf{A} = (A_1, ..., A_m) \in \mathbf{M}_n^m(\mathbb{C})$ is defined by

$$W(\mathbf{A}) = \{ (x^* A_1 x, \dots, x^* A_m x) : x \in \mathbb{C}^n, \ x^* x = 1 \}.$$
 (1.1)

The joint numerical range is useful in studying problems involving a collection of matrices that arise naturally in pure and applied areas, see [9,16,30] and

Pan-Shun Lau

Department of Mathematics & Statistics, University of Nevada, Reno, NV 89557, USA. E-mail: panlau@connect.hku.hk

Chi-Kwong Li

Department of Mathematics, College of William & Mary, Williamsburg, VA 23185, USA. E-mail: ckli@math.wm.edu

Yiu-Tung Poon

Department of Mathematics, Iowa State University, Ames, IA 50011, USA;

Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518055, China.

E-mail: ytpoon@iastate.edu

Nung-Sing Sze

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

E-mail: raymond.sze@polyu.edu.hk

their references. When m=1, $W(\mathbf{A})=W(A_1)$ reduces to the classical numerical range of $A_1 \in \mathbf{M}_n(\mathbb{C})$, and the joint numerical range is one of its many generalizations, see [12, Chapter 1]. In particular, researchers also consider the real joint numerical range $W^{\mathbb{R}}(\mathbf{A})$ for $\mathbf{A}=(A_1,\ldots,A_m)\in \mathbf{M}_n^m(\mathbb{R})$, which is defined analogous to (1.1) using real vectors and real matrices; see [2,4,5,8, 20,21,23]. In this case, the conjugate transpose X^* is just the transpose X^t for any $X \in \mathbf{M}_n(\mathbb{R})$.

In theories as well as applications, it is useful to study the geometric properties of the joint numerical ranges such as the convexity and the star-shapedness. The results on the complex case and the real case could be similar or very different. We elaborate this comment in the following.

For complex matrices $A_1, ..., A_m \in \mathbf{M}_n(\mathbb{C})$, by the Hermitian decomposition, $W(A_1, \ldots, A_m) \subseteq \mathbb{C}^m$ can be identified by $W(H_1, K_1, \ldots, H_m, K_m) \subseteq \mathbb{R}^{2m}$, where $A_j = H_j + iK_j$ with $(H_j, K_j) = (H_j^*, K_j^*)$ for j = 1, ..., m. Therefore, one can focus on m-tuple of Hermitian matrices in the study of the geometric properties of $W(\mathbf{A})$. The Toeplitz-Hausdorff Theorem asserts that $W(A_1, A_2)$ is always convex for any Hermitian matrices A_1, A_2 , see [10, 28]. Au-Yeung and Poon [3] showed that $W(A_1, A_2, A_3)$ is always convex for Hermitian matrices $A_1, A_2, A_3 \in \mathbf{M}_n(\mathbb{C})$ if $n \geq 3$. In general, $W(A_1, \ldots, A_m)$ may fail to be convex if $m \geq 4$, for example, see [16]. In fact, it is possible to construct examples such that no three points in $W(\mathbf{A})$ are collinear. For example, one may let $\{A_1, \ldots, A_m\}$ be such that $\{I/\sqrt{n}, A_1, \ldots, A_m\}$ is an orthonormal basis of $\mathbf{M}_n(\mathbb{C})$ under the usual inner product $(A, B) = \operatorname{tr}(AB^*)$. Then one can verify that every element $(\mu_1, \ldots, \mu_m) \in W(\mathbf{A})$ satisfies $\sum_{j=1}^n |\mu_j|^2 = 1 - 1/n$. Thus, no three points in $W(\mathbf{A})$ are collinear. In [15], the authors obtained the unexpected result that if n is sufficiently large, then $W(A_1, \ldots, A_m)$ is always star-shaped.

For real matrices $A_1, ..., A_m \in \mathbf{M}_n(\mathbb{R})$, one can decompose $A_j = S_j + G_j$, where S_j is real symmetric and G_j is real skew-symmetric for j = 1, ..., m. Since $v^t G_j v = 0$ for all real vectors $v \in \mathbb{R}^n$, we see that $W^{\mathbb{R}}(A_1, ..., A_m) = W^{\mathbb{R}}(S_1, ..., S_m)$. Brickman [5] showed that $W^{\mathbb{R}}(S_1, S_2)$ is always convex for symmetric matrices $S_1, S_2 \in \mathbf{M}_n(\mathbb{R})$ if $n \geq 3$. However, $W^{\mathbb{R}}(S_1, S_2, S_3)$ may fail to be convex in general. There are examples for which no three points in $W^{\mathbb{R}}(S_1, ..., S_m)$ are collinear. One may wonder if $W^{\mathbb{R}}(S_1, ..., S_m)$ is starshaped when n is sufficiently large. We will answer this question in the affirmative by proving more general results.

Let $\mathbf{A} = (A_1, ..., A_m) \in \mathbf{M}_n^m(\mathbb{R})$ be an *m*-tuple of real matrices. The real joint (p, q)-matricial range of \mathbf{A} is defined by

$$\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A}) = \{ (B_1, \dots, B_m) \in \mathbf{M}_q^m(\mathbb{R}) : X^t A_j X = I_p \otimes B_j, X^t X = I_{pq}, j = 1, \dots, m \}.$$

In other words, $I_p \otimes B_1, \ldots, I_p \otimes B_m$ are compressions of A_1, \ldots, A_m to a pq-dimensional subspace of \mathbb{R}^n . When $p=q=1, \Lambda_{1,1}^{\mathbb{R}}(\mathbf{A})$ reduces to the real joint numerical range $W^{\mathbb{R}}(A_1, \ldots, A_m)$. The set $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ is the real analog of the joint (complex) (p,q)-matricial range of $\mathbf{A} \in \mathbf{M}_n^m(\mathbb{C})$ defined as

$$\Lambda_{p,q}(\mathbf{A}) = \{ (B_1, \dots, B_m) \in \mathbf{M}_q^m(\mathbb{C}) : X^* A_j X = I_p \otimes B_j, X^* X = I_{pq}, j = 1, \dots, m \}.$$

The study of $\Lambda_{p,q}(\mathbf{A})$ was motivated by the search of quantum error correction code for a given quantum channel, for example, see [13,17]. In [13] it was shown that if the dimension n is sufficiently large, then the complex joint (p,q)-matricial range is non-empty and star-shaped. Consequently, if the underlying Hilbert space of a quantum system has sufficiently high dimension, one can

always find a correctable subsystem for a quantum channel; see [6] and [17] more details.

In this paper, we establish the non-emptyness and the star-shapedness result for $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ when n is sufficiently large. Similar results are obtained for the joint congruence (p,q)-matricial range of $\mathbf{A} \in \mathbf{M}_n^m(\mathbb{C})$ defined by

$$\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A}) = \{ (B_1, \dots, B_m) \in \mathbf{M}_q^m(\mathbb{C}) : X^t A_j X = I_p \otimes B_j, X^* X = I_{pq}, j = 1, \dots, m \}.$$

When p=q=m=1, $\Lambda^{p,q}(A_1)$ reduces the congruence numerical range considered in [7,11,18,19,25–27]; the study is related to the action of unitary congruence $A \mapsto U^t A U$ on complex matrices A. Furthermore, we extend the results to infinite dimensional operators.

Our paper is organized as follows. In Section 2, we obtain lower bounds on the dimension n for which $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ is non-empty and star-shaped. In Section 3, we obtain similar results for the joint congruence (p,q)-matricial range of $\mathbf{A} \in \mathbf{M}_n^m(\mathbb{C})$. In Section 4, we extend the results in Sections 2 and 3 to bounded linear operators acting on infinite dimensional Hilbert space \mathcal{H} over \mathbb{F} . In particular, we define the joint (p,q)-matricial range and the joint congruence (p,q)-matricial range for bounded linear operators, respectively, depending on $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . In addition, we use the results to show that the joint essential (p,q)-matricial for real operators and the joint essential congruence (p,q)-matricial range of complex operators are always compact, convex, and non-empty.

2 The Real Joint (p,q)-Matricial Range

Denote by $\mathbf{M}_{n,r}(\mathbb{R})$ the set of all $n \times r$ real matrices and denote by $\mathcal{P}_{n,r}$ the set of $n \times r$ real matrices X such that $X^t X = I_r$. We abbreviate $\mathbf{M}_{n,n}(\mathbb{R})$ and $\mathcal{P}_{n,n}$ to $\mathbf{M}_n(\mathbb{R})$ and \mathcal{P}_n respectively. Note that \mathcal{P}_n is the group of all orthogonal matrices. Recall that for $\mathbf{A} = (A_1, \ldots, A_m) \in \mathbf{M}_n^m(\mathbb{R})$, its real joint (p,q)-matricial range is defined by

$$\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A}) = \{ (B_1, \dots, B_m) : X^t A_j X = I_p \otimes B_j, \ X \in \mathcal{P}_{n,pq} \}.$$

Let $A_j = S_j + G_j$, S_j be real symmetric and G_j be real skew-symmetric, j = 1, ..., m. Then $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ has the same structure as $\Lambda_{p,q}^{\mathbb{R}}(S_1, ..., S_m, G_1, ..., G_m)$. Suppose that $\{\tilde{S}_1, ..., \tilde{S}_u\}$, $\{\tilde{G}_1, ..., \tilde{G}_v\}$ are bases of span $\{S_1, ..., S_m\}$ and span $\{G_1, ..., G_m\}$, respectively. Then there are $(t_{ij}) \in \mathbf{M}_{u,m}(\mathbb{R})$ and $(s_{ij}) \in \mathbf{M}_{v,m}(\mathbb{R})$ such that $S_j = \sum_{i=1}^u t_{ij} \tilde{S}_i$ and $G_j = \sum_{i=1}^v s_{ij} \tilde{G}_i$ for j = 1, ..., m. It is clear that $(B_1, ..., B_m, C_1, ..., C_m) \in \Lambda_{p,q}^{\mathbb{R}}(S_1, ..., S_m, G_1, ..., G_m)$ if and only if $B_j = \sum_{i=1}^u t_{ij} \tilde{B}_i$ and $C_j = \sum_{i=1}^v s_{ij} \tilde{C}_i$, j = 1, ..., m, for some $(\tilde{B}_1, ..., \tilde{B}_u, \tilde{C}_1, ..., \tilde{C}_v) \in \Lambda_{p,q}^{\mathbb{R}}(\tilde{S}_1, ..., \tilde{S}_u, \tilde{G}_1, ..., \tilde{G}_v)$. Therefore, in order to study the geometrical properties of $\Lambda_{p,q}(S_1, ..., S_m, G_1, ..., G_m)$, we may focus on $\Lambda_{p,q}^{\mathbb{R}}(\tilde{S}_1, ..., \tilde{S}_u, \tilde{G}_1, ..., \tilde{S}_v)$ where $\{\tilde{S}_1, ..., \tilde{S}_u, \tilde{G}_1, ..., \tilde{G}_v\}$ forms a linearly independent set.

For real symmetric matrices, one can adapt the proof in [15, Proposition 2.4] to deduce the following. It is clear that for $\mathbf{A} \in \mathbf{M}_n^m(\mathbb{R})$, $(s_1 I_q, \dots, s_m I_q) \in \Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ if and only if $(s_1, \dots, s_m) \in \Lambda_{pq,1}^{\mathbb{R}}(\mathbf{A})$.

Proposition 2.1 Let $S_1, \ldots, S_m \in \mathbf{M}_n(\mathbb{R})$ be real symmetric matrices. If $n \ge (m+1)^2(pq-1)$, then there are real numbers s_1, \ldots, s_m such that

$$(s_1,\ldots,s_m)\in\Lambda_{pq,1}^{\mathbb{R}}(S_1,\ldots,S_m).$$

Clearly, if $G_1, ..., G_m \in \mathbf{M}_n(\mathbb{R})$ are skew-symmetric, then $\Lambda_{p,1}^{\mathbb{R}}(G_1, ..., G_m) \subseteq \{(0, ..., 0)\}$. In general, we have the following proposition. In its proof, we will denote by $0_{n,r}$ the $n \times r$ zero matrix and 0_n the $n \times n$ zero matrix.

Proposition 2.2 Let $G_1, \ldots, G_m \in \mathbf{M}_n(\mathbb{R})$ be real skew-symmetric matrices. If $n \geq 2^m pq$, then

 $\Lambda_{pq,1}^{\mathbb{R}}(G_1,\ldots,G_m) = \{(0,\ldots,0)\}.$

Proof. " \subseteq " is clear. Now consider " \supseteq ". We first assume m=1. It suffices to consider the case n=2pq. By spectral decomposition of real skew-symmetric matrices, there is an orthogonal matrix $W \in \mathcal{P}_n$ such that $W^tG_1W = B_1 \oplus B_2 \oplus \cdots \oplus B_{pq}$ where $B_j = \begin{bmatrix} 0 & \lambda_j \\ -\lambda_j & 0 \end{bmatrix}$, $\lambda_j \in \mathbb{R}$ and j=1,...,pq. Then 0_{pq} is the principal submatrix of W^tG_1W lying in the rows and the columns indexed by $1,3,\ldots,2pq-1$. Hence $0 \in A^{\mathbb{R}}_{pq-1}(G_1)$.

 $1,3,\ldots,2pq-1$. Hence $0\in A^{\mathbb{R}}_{pq,1}(G_1)$. Let m>1 and $n\geq 2^mpq$. We apply an inductive argument. First, there is an orthogonal $U\in \mathcal{P}_n$ such that U^tG_mU has $0_{2^{m-1}pq}$ as the leading principal submatrix. Replace G_j by U^tG_jU for all $j=1,\ldots,m$. Let $\hat{G}_j\in \mathbf{M}_{2^{m-1}pq}(\mathbb{R})$ be the leading principal submatrix of G_j for $j=1,\ldots,m$. Then $\hat{G}_m=0_{2^{m-1}pq}$. By induction, there is an orthogonal matrix $V\in \mathcal{P}_{2^{m-1}pq}$ such that $V^t\hat{G}_jV$ has leading principal submatrix 0_{pq} for $j=1,\ldots,m-1$. Thus, if $W=V\oplus I\in \mathcal{P}_{2^mpq}$, then W^tG_jW has leading principal submatrix 0_{pq} for $j=1,\ldots,m$. It follows that $(0,\ldots,0)\in A^{\mathbb{R}}_{pq,1}(G_1,\ldots,G_m)$

For $\mathbf{A} \in \mathbf{M}_n^m(\mathbb{R})$, it is clear that $(a_1,...,a_m) \in \Lambda_{pq,1}^{\mathbb{R}}(\mathbf{A})$ for real $a_1,...,a_m$ if and only if $(a_1I_q,...,a_mI_q) \in \Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$. Combining Proposition 2.1 and Proposition 2.2, we have the following.

Theorem 2.1 Let $\mathbf{A} = (S_1, \dots, S_{m_1}, G_1, \dots, G_{m_2}) \in \mathbf{M}_n^{m_1+m_2}(\mathbb{R})$ where S_1, \dots, S_{m_1} are real symmetric and G_1, \dots, G_{m_2} are real skew-symmetric. If $n \geq 2^{m_2}(m_1+1)^2(pq-1)$, then there are real numbers $s_1, \dots, s_{m_1+m_2}$ with $s_{m_1+1} = \dots = s_{m_1+m_2} = 0$ such that

$$(s_1,\ldots,s_{m_1+m_2})\in \varLambda_{pq,1}^{\mathbb{R}}(\mathbf{A})$$
 and $(s_1I_q,\ldots,s_{m_1+m_2}I_q)\in \varLambda_{p,q}^{\mathbb{R}}(\mathbf{A}).$

Proof. If $n \geq 2^{m_2}(m_1+1)^2(pq-1)$, then by Proposition 2.2, there is an orthogonal matrix $U \in \mathcal{P}_n$ such that the leading principal submatrix U^tG_jU is 0_r with $r=(m_1+1)^2(pq-1)$, $j=1,...,m_2$. Let $\tilde{S}_j \in \mathbf{M}_r(\mathbb{R})$ be the leading $r \times r$ principal submatrix of U^tS_jU . By Proposition 2.1, there are real numbers s_1,\ldots,s_{m_1} and $V \in \mathcal{P}_r$ such that s_jI_{pq} is the leading principal submatrix of $V^t\tilde{S}_jV$ for $j=1,\ldots,m_1$. Let $W=U(V \oplus I_{n-r})$ and $s_{m_1+1}=\cdots s_{m_1+m_2}=0$. Then $s_1I_{pq},\ldots,s_{m_1+m_2}I_{pq}$ are the leading principal submatrices of $W^tS_1W,\ldots,W^tS_{m_1}W,W^tG_1W,\ldots,W^tG_{m_2}W$ respectively. The result follows.

Theorem 2.2 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{R})$, where A_1, \dots, A_m are real symmetric or real skew-symmetric. Suppose

$$\mathbf{C} = (C_1, ..., C_m) \in \varLambda_{p,q}^{\mathbb{R}}(Y^t A_1 Y, ..., Y^t A_m Y) \quad \textit{for all} \quad Y \in \mathcal{P}_{n,n-pq(m+1)}.$$

Then **C** is a star-center of $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$.

Proof. Suppose $\mathbf{B} = (B_1, ..., B_m) \in \varLambda_{p,q}^{\mathbb{R}}(\mathbf{A})$. Then there is an $X_1 \in \mathcal{P}_{n,pq}$ such that $X_1^t A_j X_1 = I_p \otimes B_j$ for j = 1, ..., m. Extend the X_1 to an orthogonal matrix $U_1 \in \mathcal{P}_n$. Then

$$U_1^t A_j U_1 = \begin{bmatrix} I_p \otimes B_j & R_j \\ \tilde{R}_j & * \end{bmatrix}, \text{ where } \tilde{R}_j = R_j^t \text{ or } \tilde{R}_j = -R_j^t, j = 1, \dots, m.$$

Note that there is a subspace of dimension at most pqm containing the range spaces of $\tilde{R}_1, ..., \tilde{R}_m$. Therefore, there exists an $V \in \mathcal{P}_{n-pq}$ such that $R_jV = [0_{pq,n-pq(m+1)}|S_j]$ where $S_j \in \mathbf{M}_{pq,pqm}(\mathbb{R}), j = 1,...,m$. Then

$$(I_{pq} \oplus V)^t U_1^t A_j U_1 (I_{pq} \oplus V) = \begin{bmatrix} I_p \otimes B_j & R_j V \\ V^t \tilde{R}_j & * \end{bmatrix} = \begin{bmatrix} I_p \otimes B_j & 0 & S_j \\ 0 & \hat{C}_j & * \\ \tilde{S}_j & * & * \end{bmatrix},$$

where $\tilde{S}_j = S_j^t$ or $\tilde{S}_j = -S_j^t$; and $\hat{C}_j \in \mathbf{M}_{n-pq(m+1)}(\mathbb{R})$, $j = 1, \ldots, m$. By assumption, we have $\mathbf{C} \in A_{\mathbb{P},q}^p(\hat{C}_1, ..., \hat{C}_m)$. Then there is an $X_2 \in \mathcal{P}_{n-pq(m+1),pq}$ such that $X_2^t \hat{C}_j X_2 = I_p \otimes C_j$, j = 1, ..., m. Extend X_2 to $U_2 \in \mathcal{P}_{n-pq(m+1)}$. For every $0 \le \alpha \le 1$, let $W = U_1(I_{pq} \oplus V)(I_{pq} \oplus U_2 \oplus I_{pqm})[\alpha I_{pq}|\sqrt{1-\alpha^2}I_{pq}|0] \in \mathcal{P}_{n,pq}$. Then

$$W^t A_j W = I_p \otimes (\alpha B_j + (1 - \alpha)C_j), \quad j = 1, ..., m.$$

Hence, $\alpha \mathbf{B} + (1 - \alpha) \mathbf{C} \in \Lambda_{p,q}^{\mathbb{R}}(A_1, \dots, A_m)$ for all $0 \leq \alpha \leq 1$ and \mathbf{C} is a star-center of $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$.

Theorem 2.3 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{R})$ and p, q, r be positive integers. If $1 \leq qr , then$

$$\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A}) \subseteq \bigcap \left\{ \Lambda_{p-qr,q}^{\mathbb{R}}(Y^t \mathbf{A} Y) : Y \in \mathcal{P}_{n,n-r} \right\}$$

where $Y^t \mathbf{A} Y = (Y^t A_1 Y, \dots, Y^t A_m Y)$.

Proof. We start with the case when r = 1, that is

$$\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A}) \subseteq \bigcap \left\{ \Lambda_{p-q,q}^{\mathbb{R}}(Y^t \mathbf{A} Y) : Y \in \mathcal{P}_{n,n-1} \right\}.$$

Let $Y \in \mathcal{P}_{n,n-1}$. Extend Y to an orthogonal matrix $U = [Y|y] \in \mathcal{P}_n$. Let $\mathbf{C} = (C_1, ..., C_m) \in \Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$. Then there is an $X = [X_1|...|X_p] \in \mathcal{P}_{n,pq}$ with $X_1, ..., X_p \in \mathcal{P}_{n,q}$ such that $X_\ell^t A_j X_k = \delta_{\ell,k} C_j$, j = 1, ..., m and $\ell, k = 1, ..., p$. Here $\delta_{\ell,k}$ is the Kronecker delta function. Define the $q \times p$ real matrix

$$Q = \begin{bmatrix} X_1^t y \ X_2^t y \ \cdots \ X_p^t y \end{bmatrix}.$$

Note that the nullity of Q is at least p-q. Then there exists a $W=[w_{ij}]\in \mathcal{P}_{p,p-q}$ such that QW=0. Let $V_j=\sum_{i=1}^p w_{ij}X_i,\ j=1,...,p-q$. By direct computation, we have $V_i^tV_j=\delta_{i,j}I_q$ and $V_j^ty=0;\ i,j=1,...,p-q$. Therefore, $V=[V_1|\cdots|V_{p-q}]\in \mathcal{P}_{n,(p-q)q}$ and there exists $Z\in \mathcal{P}_{n-1,(p-q)q}$ such that YZ=V. Moreover, $V_\ell^tA_jV_k=\sum_{s=1}^p\sum_{t=1}^p w_{s\ell}w_{tk}X_s^tA_jX_t=\delta_{\ell,k}C_j,\ j=1,...,m,$ and $\ell,k=1,...,p-q$. Hence,

$$Z^t Y^t A_j Y Z = V^t A_j V = I_{p-q} \otimes C_j, \quad j = 1, ..., m,$$

and hence $\mathbf{C} \in A_{p-q,q}^{\mathbb{R}}(Y^t\mathbf{A}Y)$. The general case follows by induction:

$$\bigcap_{Y_1 \in \mathcal{P}_{n,n-k}} \Lambda_{p-qk,q}^{\mathbb{R}}(Y_1^t \mathbf{A} Y_1) \subseteq \bigcap_{Y_1 \in \mathcal{P}_{n,n-k}} \bigcap_{Y_2 \in \mathcal{P}_{n-k,n-k-1}} \Lambda_{p-qk-q,q}^{\mathbb{R}}(Y_2^t Y_1^t \mathbf{A} Y_1 Y_2)$$

$$\subseteq \bigcap_{Y \in \mathcal{P}_{n,n-(k+1)}} \Lambda_{p-q(k+1),q}^{\mathbb{R}}(Y^t \mathbf{A} Y).$$

We denote by conv(S) the convex hull of the set S.

Corollary 2.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{R})$. If $n \geq 2^m (m+1)^2 (pq(1+q^2(2m+1))-1)$, then

- (i) $\Lambda_{\tilde{p},q}^{\mathbb{R}}(\mathbf{A})$ is non-empty where $\tilde{p} = p(1 + q^2(2m+1))$,
- (ii) $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ is star-shaped and \mathbf{C} is a star-center of $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ for all $\mathbf{C} \in \operatorname{conv}(\Lambda_{\tilde{p},q}^{\mathbb{R}}(\mathbf{A}))$.

Proof. (i) This follows from Theorem 2.1 by setting $m_1 = m_2 = m$ and identifying $\Lambda_{\tilde{p},q}^{\mathbb{R}}(\mathbf{A})$ with $\Lambda_{\tilde{p},q}^{\mathbb{R}}(S_1,...,S_m,G_1,...,G_m)$.

(ii) By Theorem 2.3, we have

$$\Lambda_{\tilde{p},q}^{\mathbb{R}}(\mathbf{A}) \subseteq \bigcap \left\{ \Lambda_{\tilde{p}-q^2p(2m+1),q}^{\mathbb{R}}(Y^t\mathbf{A}Y) : Y \in \mathcal{P}_{n,n-pq(2m+1)} \right\}$$
$$= \bigcap \left\{ \Lambda_{p,q}^{\mathbb{R}}(Y^t\mathbf{A}Y) : Y \in \mathcal{P}_{n,n-pq(2m+1)} \right\}.$$

Note that the set of all star-centers is always convex. Then the result follows from Theorem 2.2.

3 Joint Congruence (p,q)-Matricial Range

Let $\mathbf{M}_{n,k}(\mathbb{C})$ be the set of all $n \times k$ complex matrices and let $\mathcal{U}_{n,k}$ be the set of $n \times k$ complex matrices X such that $X^*X = I_k$. We abbreviate $\mathbf{M}_{n,n}(\mathbb{C})$ and $\mathcal{U}_{n,n}$ to $\mathbf{M}_n(\mathbb{C})$ and \mathcal{U}_n respectively. Note that \mathcal{U}_n is the group of all unitary matrices. Define the joint congruence (p,q)-matricial range of $\mathbf{A} = (A_1, \ldots, A_m) \in \mathbf{M}_n^m(\mathbb{C})$ by

$$\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A}) = \{ (B_1, \dots, B_m) : X^t A_j X = I_p \otimes B_j, \ X \in \mathcal{U}_{n,pq} \}.$$

Evidently, $(B_1, \ldots, B_m) \in \Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ if and only if there is a unitary $U \in \mathcal{U}_n$ such that $I_p \otimes B_j$ is the leading principal submatrix of $U^t A_j U$ for $j = 1, \ldots, m$. The orbits of a matrix A under the group action $(U, A) \mapsto U^t A U$, where U is unitary, have been studied in [7,11,18,19,25-27]. Using the techniques in Section 2, we can obtain similar results for the joint congruence (p,q)-matricial range. To avoid repetitions of arguments, we may omit some details in the proofs unless non-trivial modifications are needed.

For $j=1,\ldots,m$, we can write $A_j=S_j+G_j$ such that $S_j=(A_j+A_j^t)/2$ is complex symmetric and $G_j=(A_j-A_j^t)/2$ is complex skew-symmetric. It is easy to see that the $A_{p,q}^{\mathbb{C}}(\mathbf{A})$ and $A_{p,q}^{\mathbb{C}}(S_1,\ldots,S_m,G_1,\ldots,G_m)$ have the same geometric structure. So we follow the idea in the previous section and consider (A_1,\ldots,A_m) where A_j is complex symmetric or complex skew-symmetric. After that we can derive similar results for general complex matrices. Moreover, we may remove A_j which is a linear combination of other components until we get a family of linearly independent matrices A_1,\ldots,A_k . We start by the following observation.

Proposition 3.1 Suppose $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{C})$. Then (C_1, \dots, C_m) is a star-center of $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ if and only if every element in the set

$$conv\{(U^tC_1U,\ldots,U^tC_mU):U\in\mathcal{U}_q\}$$

is a star-center. In particular, if $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ is star-shaped, then $(0_q,\ldots,0_q)$ is a star-center.

The proof of the following result is similar to the proof of Theorem 2.2 and will be omitted.

Theorem 3.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{C})$ where A_1, \dots, A_m are complex symmetric or complex skew-symmetric. Suppose $n \ge pq(m+1)$ and

$$\mathbf{C} \in \Lambda_{p,q}^{\mathbb{C}}(Y^t A_1 Y, ..., Y^t A_m Y)$$
 for all $Y \in \mathcal{U}_{n,n-pq(m+1)}$.

Then **C** is a star-center of $\Lambda_{n,q}^{\mathbb{C}}(\mathbf{A})$.

Theorem 3.2 Suppose $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{C})$ where A_1, \dots, A_m are complex symmetric or complex skew-symmetric.

- (i) If n ≥ 2^mpq, then **0**_q = (0_q,..., 0_q) ∈ Λ^ℂ_{p,q}(**A**).
 (ii) If n ≥ pq(2^m + m + 1), then **0**_q is a star-center of Λ^ℂ_{pq}(**A**).

Proof. (i) The proof is similar to the proof of Proposition 2.2. If one can show that for $n \geq 2pq$, there exists an $X \in \mathcal{U}_n$ such that X^*A_1X has 0_{pq} as the leading principal submatrix, then the same inductive argument in the proof of Proposition 2.2 leads to $\mathbf{0}_q \in \Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$. Therefore, we will show the existence of such X when $n \geq 2pq$. If A_1 is complex skew-symmetric, then X exists by the same construction in the proof of Proposition 2.2.

Now, let A_1 be symmetric. First, we show that A_1 is congruent to a matrix A_1 such that the first row has the form (0, *, 0, ..., 0) and the first column has the form $(0, *, 0, \dots, 0)^t$. By Autonne-Takagi factorization there is a unitary $U \in \mathcal{U}_n$ such that $U^t A_1 U = \operatorname{diag}(a_1, \dots, a_n)$ with $a_1 \ge \dots \ge a_n \ge 0$ (see [1, 12]). Multiply the second column of U by i to get V and we have $V^t A_1 V =$ $\operatorname{diag}(a_1, -a_2, a_3, a_4, \dots, a_n)$. Note that there is a real 2×2 orthogonal matrix P such that the (1,1)-th entry of $P^t \operatorname{diag}(a_1,-a_2)P$ is zero. Let $W_1 = V(P \oplus P)$ I_{n-2}). Then the first row of $\tilde{A}_1 = W_1^t A_1 W_1$ is $(0, \mu, 0, \dots, 0)$ for some μ . As \hat{A}_1 is symmetric, we see that the first column of \hat{A}_1 equals $(0, \mu, 0, \dots, 0)^t$.

We may then replace A_1 by \tilde{A}_1 . Then consider the principal submatrix of A_1 by deleting the first two rows and the first two columns of A_1 and repeat the above argument on that submatrix. Therefore, there is a unitary matrix $W_2 \in \mathcal{U}_n$ such that the first row and third row of $W_2^t A_1 W_2$ have the form (0, *, 0, ..., 0) and (0, *, 0, *, 0, ..., 0) respectively. Similar patterns hold for the transposes of the first column and the third column of $W_2^t A_1 W_2$.

As $n \geq 2pq$, one can repeat this argument pq times. Then the principal submatrix of the modified matrix A_1 lying in rows and columns indexed by $1, 3, \ldots, 2pq - 1$ will be 0_{pq} . The result will follow by an inductive argument similar to that in the proof of Proposition 2.2.

Theorem 3.3 Suppose $\mathbf{A} = (A_1, \dots, A_m) \in \mathbf{M}_n^m(\mathbb{C})$. If $1 \leq 2qr ,$ then

$$\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A}) \subseteq \bigcap \left\{ \Lambda_{p-2qr,q}^{\mathbb{C}}(Y^t \mathbf{A} Y) : Y \in \mathcal{U}_{n,n-r} \right\}$$

where
$$Y^t \mathbf{A} Y = (Y^t A_1 Y, \dots, Y^t A_m Y)$$
.

Proof. The proof is similar to Theorem 2.3. However, in this case, the corresponding Q will be a $2q \times p$ real matrix in the form

$$Q = \begin{bmatrix} \operatorname{Re}(X_1^* y) \cdots \operatorname{Re}(X_p^* y) \\ \operatorname{Im}(X_1^* y) \cdots \operatorname{Im}(X_p^* y) \end{bmatrix},$$

and the corresponding $W \in \mathcal{P}_{p,p-2q} \subseteq \mathcal{U}_{p,p-2q}$ with QW = 0. The result follows by similar argument in Theorem 2.3.

Identifying $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ with $\Lambda_{p,q}^{\mathbb{C}}(S_1,\ldots,S_m,G_1,\ldots,G_m)$, we can apply the preceding results to obtain the following.

Corollary 3.1 Let $\mathbf{A} = (A_1, ..., A_m) \in \mathbf{M}_n^m(\mathbb{C})$. If $n \geq 2^{2m} p(1 + 2q^2(2m + 2q^2))$ 1))q, then

- (i) $\Lambda_{\tilde{p},q}^{\mathbb{C}}(\mathbf{A})$ is non-empty where $\tilde{p} = p(1 + 2q^2(2m+1))$, and (ii) $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ is star-shaped and \mathbf{C} is a star-center of $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ for all $\mathbf{C} \in$ $\operatorname{conv}(\Lambda_{\tilde{n},a}^{\mathbb{C}}(\mathbf{A})).$

4 Infinite dimensional operators

Let $\mathcal{B}(\mathcal{H})$ be the set of bounded linear operators on the Hilbert space \mathcal{H} over \mathbb{F} $(=\mathbb{R} \text{ or } \mathbb{C})$. Evidently, when \mathcal{H} has finite dimension n, we can identify $\mathcal{B}(\mathcal{H})$ as $\mathbf{M}_n(\mathbb{F})$. In the following, we always assume that the dimension of \mathcal{H} is infinite.

We can extend the definition of symmetric matrices and skew-symmetric matrices to infinite dimensional operators. In the following, we will obtain results for infinite dimensional operators as in [13].

First, for every $T \in \mathcal{B}(\mathcal{H})$, the transpose operator of T is the linear operator $T^t: \mathcal{H} \to \mathcal{H}$ such that $\langle T^t x, y \rangle = \langle T^* x, y \rangle$ for all unit vectors $x, y \in \mathcal{H}$. We may also define the transpose of T using an arbitrary but fixed orthonormal basis. An operator $A \in \mathcal{B}(\mathcal{H})$ is symmetric if $A = A^t$; it is skew-symmetric if $A^t = -A$. Every operator can be decomposed into A = S + G, where $S = (A+A^t)/2$ is symmetric and $G = (A-A^t)/2$ is skew-symmetric. Let $\mathcal{V}_k(\mathcal{H})$ denote the set of operators $X: \mathcal{W} \to \mathcal{H}$ for some k-dimensional subspace \mathcal{W} of \mathcal{H} such that $X^*X = I_{\mathcal{W}}$. Then we can define the joint congruence (p,q)matricial range of $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{B}(\mathcal{H})^m$ as follows,

$$\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A}) = \{ (B_1, \dots, B_m) \in \mathbf{M}_q^m(\mathbb{F}) : U^t A_j U = I_p \otimes B_j, \ U \in \mathcal{V}_{pq}(\mathcal{H}) \}.$$

For simplicity, we name both $\Lambda_{p,q}^{\mathbb{R}}(\mathbf{A})$ and $\Lambda_{p,q}^{\mathbb{C}}(\mathbf{A})$ the joint congruence (p,q)matricial range. Furthermore, we may define the joint congruence (∞, q) matricial range by

$$\Lambda_{\infty,q}^{\mathbb{F}}(\mathbf{A}) = \bigcap_{p=1}^{\infty} \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A}).$$

Firstly, we have the following result which is a consequence of Corollary 2.1 and Corollary 3.1.

Proposition 4.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{B}(\mathcal{H})^m$. Then $\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})$ is always star-shaped for all positive integers p, q. Moreover, if $\mathbf{C} \in \Lambda_{\infty,q}^{\mathbb{F}}(\mathbf{A})$, then \mathbf{C} is a star-center of $\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})$.

Denote by $\mathcal{V}_k^{\perp}(\mathcal{H})$ the set of operators $Y: \mathcal{W}^{\perp} \mapsto \mathcal{H}$ such that $Y^*Y = I_{\mathcal{W}^{\perp}}$ where \mathcal{W}^{\perp} is the orthogonal complement of an k-dimensional subspace \mathcal{W} of \mathcal{H} . Moreover define $\mathcal{V}^{\perp}(\mathcal{H}) = \bigcup_{k \geq 1} \mathcal{V}_k^{\perp}(\mathcal{H})$ and denote by $\mathcal{F}(\mathcal{H})$ the set of all finite rank operators in $\mathcal{B}(\mathcal{H})$.

We can then use the techniques of [13] to prove the following.

Theorem 4.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{B}(\mathcal{H})^m$. Denote by $\mathcal{S}_{p,q}^{\mathbb{F}}(\mathbf{A})$ the set of all star-centers of $\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})$. Then

$$\Lambda_{\infty,q}^{\mathbb{F}}(\mathbf{A}) = \bigcap_{p \ge 1} \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A}) = \bigcap_{p \ge 1} \mathcal{S}_{p,q}^{\mathbb{F}}(\mathbf{A})$$
(4.2)

is a convex set. Moreover, if $Y^t \mathbf{A} Y = (Y^t A_1 Y, ..., Y^t A_m Y)$ for $Y \in \mathcal{V}^{\perp}(\mathcal{H})$, $\mathbf{A} + \mathbf{F} = (A_1 + F_1, \dots, A_m + F_m)$ for $\mathbf{F} = (F_1, \dots, F_m) \in \mathcal{F}(\mathcal{H})^m$, and p_0 is a positive integer, then

$$\Lambda_{\infty,q}^{\mathbb{F}}(\mathbf{A}) = \bigcap \{ \Lambda_{p_0,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) : Y \in \mathcal{V}^{\perp}(\mathcal{H}) \} = \bigcap \{ \Lambda_{p_0,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{F}) : \mathbf{F} \in \mathcal{F}(\mathcal{H})^m \}.$$

$$(4.3)$$

A key observation is that the set of star-centers $\mathcal{S}_{p,q}^{\mathbb{F}}(\mathbf{A})$ is always convex, and therefore $\cap_{p\geq 1}\mathcal{S}_{p,q}^{\mathbb{F}}(\mathbf{A})$ is a convex set. It is not hard to see that

$$\bigcap_{p\geq 1} \varLambda_{p,q}^{\mathbb{F}}(\mathbf{A}) \subseteq \bigcap_{p\geq 1} \mathcal{S}_{p,q}^{\mathbb{F}}(\mathbf{A}) \subseteq \bigcap_{p\geq 1} \varLambda_{p,q}^{\mathbb{F}}(\mathbf{A}).$$

One can then get the convexity and the set equality (4.2). The equality (4.3) can be established by the following lemma.

Lemma 4.1 Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{B}(\mathcal{H})^m$. Then the following hold.

- (i) $\bigcap_{Y \in \mathcal{V}^{\perp}} \Lambda_{p,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) \subseteq \bigcap_{Y \in \mathcal{V}^{\perp}} \Lambda_{1,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) \subseteq \Lambda_{\infty,q}^{\mathbb{F}}(Y^t \mathbf{A} Y).$
- (ii) For every $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m$, there is a $Y \in \mathcal{V}^{\perp}(\mathcal{H})$ such that $\Lambda_{p,q}^{\mathbb{F}}(Y^t\mathbf{A}Y) \subseteq \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A}+\mathbf{F})$.
- (iii) For every $Y \in \mathcal{V}^{\perp}(\mathcal{H})$, there is an $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m$ such that $\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{F}) \subseteq \Lambda_{p,q}^{\mathbb{F}}(Y^t\mathbf{A}Y)$.

Proof. We may assume without loss of generality that $A_1, ..., A_m$ are either symmetric or skew-symmetric operators.

(i) The first inclusion is obvious. Now given that $\mathbf{C} = (C_1, ..., C_m) \in \bigcap_{Y \in \mathcal{V}^{\perp}} A_{1,q}^{\mathbb{F}}(Y^t \mathbf{A}Y)$, we claim that there exists an infinite sequence of operators $\{X_r\}_{r=1}^{\infty} \subseteq \mathcal{V}_q(\mathcal{H})$ with $X_r : \mathcal{H}_r \to \mathcal{H}$ for some q-dimensional subspace \mathcal{H}_r of \mathcal{H} such that for $r \neq s$, \mathcal{H}_r and \mathcal{H}_s are orthogonal and

$$X_r^* X_s = \begin{cases} I_q & r = s, \\ 0_q & r \neq s, \end{cases} \quad \text{and} \quad X_r^t A_j X_s = \begin{cases} C_j & r = s, \\ 0_q & r \neq s. \end{cases}$$

Once the claim holds, since $\{\mathcal{H}_r\}_{r=1}^{\infty}$ is an infinite sequence of mutually orthogonal q-dimensional subspaces of \mathcal{H} , one can extend $\bigoplus_{r=1}^{\infty} X_r$ to a unitary operator $U: \mathcal{H} \to \mathcal{H}$ such that $U|_{\mathcal{H}_r} = X_r$ for all r. Then the operator matrix of $U^t A_j U$ with respect to the decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \mathcal{H}_3 \oplus \cdots$ has the form

$$\begin{bmatrix} C_j & 0 & 0 & \cdots \\ 0 & C_j & 0 & \cdots \\ 0 & 0 & C_j & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

Thus, $\mathbf{C} \in \Lambda_{\infty,q}^{\mathbb{F}}(\mathbf{A})$. Now it remains to prove the claim, which will be done by induction.

Assume $\mathbf{C} = (C_1, ..., C_m) \in \bigcap_{Y \in \mathcal{V}^{\perp}} \Lambda_{1,q}^{\mathbb{F}}(Y^t \mathbf{A} Y)$. Then $\mathbf{C} = (C_1, ..., C_m) \in \Lambda_{1,q}^{\mathbb{F}}(\mathbf{A})$ and there exists $X_1 \in \mathcal{V}_q(\mathcal{H})$ such that $X_1 : \mathcal{H}_1 \to \mathcal{H}$ with $X_1^* X_1 = I_{\mathcal{H}_1}$ for some q-dimensional subspace \mathcal{H}_1 of \mathcal{H} so that $X_1^t A_j X_1 = C_j$ for j = 1, ..., m. The claim holds for $\{X_1\}$.

Assume the operators $\{X_1, \ldots, X_n\}$ already satisfy the claim. Then \mathcal{H}_r and \mathcal{H}_s are orthogonal for all $1 \leq r < s \leq n$. Since $X_r^*X_s = 0_q$ for $1 \leq r < s \leq n$, $X_r(\mathcal{H}_r)$ is orthogonal to $X_r(\mathcal{H}_s)$ for $r \neq s$. Then one can extend $X_1 \oplus \cdots \oplus X_n$ to a unitary operator $U: \mathcal{H} \to \mathcal{H}$ such that $U|_{\mathcal{H}_r} = X_r$ for $1 \leq r \leq n$, and the operator matrix of U^tA_jU with respect to the decomposition $\mathcal{H} = (\bigoplus_{r=1}^n \mathcal{H}_r) \oplus (\bigoplus_{r=1}^n \mathcal{H}_r)^{\perp}$ has the form

$$\begin{bmatrix} I_n \otimes C_j * \\ * * \end{bmatrix}.$$

Let \mathcal{L} be the subspace spanned by

$$\{\left(\bigoplus_{r=1}^{n}\mathcal{H}_{r}\right),\ U^{t}A_{1}U\left(\bigoplus_{r=1}^{n}\mathcal{H}_{r}\right),\ \ldots,\ U^{t}A_{m}U\left(\bigoplus_{r=1}^{n}\mathcal{H}_{r}\right)\}.$$

Then \mathcal{L} has dimension at most qn(m+1). Take $Y = U|_{\mathcal{L}^{\perp}}$. Then $Y \in \mathcal{V}^{\perp}(\mathcal{H})$. By the above assumption, we have $\mathbf{C} \in \Lambda^{\mathbb{F}}_{1,q}(Y^t\mathbf{A}Y)$ and there exists $X : \mathcal{H}_{n+1} \to \mathcal{L}^{\perp}$ with $X^*X = I_{\mathcal{H}_{n+1}}$ for some q-dimensional subspace \mathcal{H}_{n+1} of \mathcal{L}^{\perp} such that

$$X^t(Y^tA_iY)X = C_i, \quad j = 1, \dots, m.$$

Let $X_{n+1} = YX : \mathcal{H}_{n+1} \to \mathcal{H}$. Clearly, $X_{n+1}^* X_{n+1} = I_q$ and $X_{n+1}^t A_j X_{n+1} = C_j$ for all $j = 1, \ldots, m$. Now fix $1 \le r \le n$. For every $u \in \mathcal{H}_{n+1}$ and $v \in \mathcal{H}_r \subseteq \mathcal{L}$, $Xu \in \mathcal{L}^{\perp}$ and $U^t A_j Uv \in \mathcal{L}$. Then

$$\langle u, X_{n+1}^* X_r v \rangle = \langle X_{n+1} u, X_r v \rangle = \langle Y X u, U v \rangle = \langle U X u, U v \rangle = \langle X u, v \rangle = 0$$

and

$$\langle u, X_{n+1}^t A_j X_r v \rangle = \overline{\langle X_{n+1} u, A_j X_r v \rangle} = \overline{\langle Y X u, A_j U v \rangle} = \langle X u, U^t A_j U v \rangle = 0.$$

Thus, $X_{n+1}^*X_r=0$ and $X_{n+1}^tA_jX_r=0$ for all $1\leq j\leq m$ and $1\leq r\leq n$. As A_j is symmetric or skew-symmetric, we have $X_r^tA_jX_{n+1}=0$ for all $1\leq j\leq m$ and $1\leq r\leq n$. Thus, the operators $\{X_1,\ldots,X_{n+1}\}$ satisfy the claim. By induction, the claim holds.

(ii) For every $\mathbf{F} \in \mathcal{F}(\mathcal{H})^m$, there exists $Y \in \mathcal{V}^{\perp}$ such that $Y^t \mathbf{F} Y = \mathbf{0} = (0, \dots, 0)$. Then

$$\varLambda_{p,q}^{\mathbb{F}}(Y^{t}\mathbf{A}Y)=\varLambda_{p,q}^{\mathbb{F}}(Y^{t}(\mathbf{A}+\mathbf{F})Y)\subseteq \varLambda_{p,q}^{\mathbb{F}}(\mathbf{A}+\mathbf{F}).$$

(iii) Suppose $Y \in \mathcal{V}_r^{\perp}$ for some r. Then $Y : \mathcal{L}_1^{\perp} \to \mathcal{H}$ is such that $Y^*Y = I_{\mathcal{L}_1^{\perp}}$ for some r-dimensional subspace \mathcal{L}_1 of \mathcal{H} . Since \mathcal{L}_1^{\perp} is infinite dimensional, by Proposition 4.1, $\Lambda_{pq,1}^{\mathbb{F}}(Y^t\mathbf{A}Y)$ is non-empty. Pick $(b_1,...,b_m) \in \Lambda_{pq,1}^{\mathbb{F}}(Y^t\mathbf{A}Y)$. Then there exist a pq-dimensional subspace \mathcal{H}_1 of \mathcal{L}_1^{\perp} and $X : \mathcal{H}_1 \to \mathcal{L}_1^{\perp}$ with $X^*X = I_{\mathcal{H}_1}$ such that $X^t(Y^tA_jY)X = b_jI_{pq}$ for j = 1,...,m. Extend the operator $YX : \mathcal{H}_1 \to \mathcal{H}$ to a unitary operator $U : \mathcal{H} \to \mathcal{H}$ so that $U|_{\mathcal{H}_1} = YX$. Let \mathcal{L}_2 be the subspace spanned by

$$\{\mathcal{L}_1, \mathcal{H}_1, U^t A_1 U(\mathcal{H}_1), \dots, U^t A_m U(\mathcal{H}_1)\}.$$

Then \mathcal{L}_2 has dimension at most pqm+r. Set $W=U|_{\mathcal{L}_2^{\perp}}$. Then the operator matrix of U^tA_jU with respect to the decomposition $\mathcal{H}=\mathcal{K}_1\oplus\mathcal{L}_2^{\perp}\oplus(\mathcal{K}_1\oplus\mathcal{L}_2^{\perp})^{\perp}$ has the form

$$\begin{bmatrix} b_j I_{\mathcal{H}_1} & 0 & * \\ 0 & W^t A_j W & * \\ * & * & * \end{bmatrix}.$$

Let B_j be the operator such that the operator matrix of U^tB_jU with respect to the same decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{L}_2^{\perp} \oplus (\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp})^{\perp}$ has the form

$$\begin{bmatrix} b_{j}I_{\mathcal{H}_{1}} & 0 & 0 \\ 0 & W^{t}A_{j}W & 0 \\ 0 & 0 & b_{j}I_{(\mathcal{H}_{1}\oplus\mathcal{L}_{2}^{\perp})^{\perp}} \end{bmatrix} \quad \text{and} \quad F_{j} = B_{j} - A_{j}.$$

Notice that $\mathcal{H}_1 \oplus (\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp})^{\perp} = \mathcal{L}_2$ is finite dimensional and $U^t F_j U$ has the

form
$$\begin{bmatrix} 0 & 0 & * \\ 0 & 0 & * \\ * & * & * \end{bmatrix}$$
. Thus, F_j is a finite rank operator. Now denote $\mathbf{F} = (F_1, \dots, F_m)$ $\in \mathcal{F}(\mathcal{H})^m$ and suppose

$$\mathbf{C} = (C_1, ..., C_m) \in \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{F}) = \Lambda_{p,q}^{\mathbb{F}}(\mathbf{B}) = \Lambda_{p,q}^{\mathbb{F}}(U^t \mathbf{B} U).$$

Then there exists $Z:\mathcal{H}_2\to\mathcal{H}$ with $Z^*Z=I_{\mathcal{H}_2}$ for some pq-dimensional subspace \mathcal{H}_2 of \mathcal{H} such that $Z^t(U^tB_jU)Z=I_p\otimes C_j$ for $j=1,\ldots,m$. Write

$$Z = \begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \end{bmatrix} \text{ according to the same decomposition } \mathcal{H} = \mathcal{H}_1 \oplus \mathcal{L}_2^{\perp} \oplus (\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp})^{\perp}.$$

Then

$$b_j \cdot Z_1^t Z_1 + Z_2^t (W^t A_j W) Z_2 + b_j \cdot Z_3^t Z_3 = Z^t (U^t B_j U) Z = I_p \otimes C_j.$$

Since dim $\mathcal{H}_2 = pq = \dim \mathcal{H}_1$, one can always find an operator $\hat{Z}_1 : \mathcal{H}_1 \to \mathcal{H}_1$ such that $\hat{Z}_1^* \hat{Z}_1 = Z_1^* Z_1 + Z_3^* Z_3$. Define $\hat{Z} : \mathcal{H}_2 \to \mathcal{H}_1 \oplus \mathcal{L}_2^{\perp}$ by $\hat{Z} = \begin{bmatrix} \hat{Z}_1 \\ Z_2 \end{bmatrix}$ with respect to the decomposition $\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp}$. Then $\hat{Z}^* \hat{Z} = I_{\mathcal{H}_2}$ and hence, $\hat{Z} \in \mathcal{V}_{pq}(\mathcal{H})$. Furthermore,

$$\begin{split} \hat{Z}^t \begin{bmatrix} b_j I_{\mathcal{H}_1} & 0 \\ 0 & W^t A_j W \end{bmatrix} \hat{Z} &= b_j \cdot \hat{Z}_1^t \hat{Z}_1 + Z_2^t (W^t A_j W) Z_2 \\ &= b_j \cdot (Z_1^t Z_1 + Z_3^t Z_3) + Z_2^t (W^t A_j W) Z_2 \\ &= Z^t (U^t B_j U) Z = I_p \otimes C_j. \end{split}$$

Recall that $\mathcal{H}_1 \subseteq \mathcal{L}_1^{\perp}$ and $\mathcal{L}_2^{\perp} \subseteq \mathcal{L}_1^{\perp}$, and hence, $\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp} \subseteq \mathcal{L}_1^{\perp}$. Thus, the operator $b_j I_{\mathcal{H}_1} \oplus W^t A_j W$ is a compression of $Y^t A_j Y$ to $\mathcal{H}_1 \oplus \mathcal{L}_2^{\perp}$. Thus,

$$\mathbf{C} \in \Lambda_{p,q}^{\mathbb{F}} \left(b_1 I_{\mathcal{H}_1} \oplus W^t A_1 W, \dots, b_m I_{\mathcal{H}_1} \oplus W^t A_m W \right) \subseteq \Lambda_{p,q}^{\mathbb{F}} (Y^t \mathbf{A} Y).$$

Hence, the proof is complete.

Proof of Theorem 4.1. By Theorem 2.3, Theorem 3.3, Proposition 4.1 and Lemma 4.1 (i),

$$\begin{split} \varLambda_{\infty,q}^{\mathbb{F}}(\mathbf{A}) &\subseteq \bigcap_{p \geq 1} S_{p,q}^{\mathbb{F}}(\mathbf{A}) \subseteq \bigcap_{p \geq 1} \varLambda_{p,q}^{\mathbb{F}}(\mathbf{A}) \subseteq \bigcap_{p \geq 1} \varLambda_{p_0+2pq,q}^{\mathbb{F}}(\mathbf{A}) \\ &\subseteq \bigcap_{p \geq 1} \left(\bigcap_{Y \in \mathcal{V}_p^{\perp}(\mathcal{H})} \varLambda_{p_0,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) \right) = \bigcap \{ \varLambda_{p_0,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) : Y \in \mathcal{V}^{\perp}(\mathcal{H}) \} \\ &\subseteq \varLambda_{\infty,q}^{\mathbb{F}}(\mathbf{A}). \end{split}$$

Moreover, by Lemma 4.1 (ii) and (iii), we have

$$\bigcap\{\varLambda_{p_0,q}^{\mathbb{F}}(Y^t\mathbf{A}Y):Y\in\mathcal{V}^{\perp}(\mathcal{H})\}=\bigcap\{\varLambda_{p_0,q}^{\mathbb{F}}(\mathbf{A}+\mathbf{F}):\mathbf{F}\in\mathcal{F}(\mathcal{H})^m\}.$$

Note that $S_{p,q}^{\mathbb{F}}(\mathbf{A})$ is convex for all positive integer p. Hence, the result follows.

Let $\mathbf{A} = (A_1, \dots, A_m) \in \mathcal{B}(\mathcal{H})^m$. Define the joint essential congruence (p,q)-matricial range of \mathbf{A} by

$$\varLambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \bigcap \{\mathbf{cl}(\varLambda_{p,q}^{\mathbb{F}}(\mathbf{A}+\mathbf{F})): \mathbf{F} \in \mathcal{F}(\mathcal{H})^m\}.$$

One will see later that $\mathcal{F}(\mathcal{H})$ can be replaced by the set of compact operators $\mathcal{C}(\mathcal{H})$. The set $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A})$ can be viewed as the "core" of the joint (p,q)-matricial range of \mathbf{A} under compact perturbation. The definition is motivated from the study of the Calkin algebra, see [14,22,24]. We have the following.

Theorem 4.2 Let $\mathbf{A} \in \mathcal{B}(\mathcal{H})^m$ and q be a positive integer. Then $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A})$ for every positive integer p, and they are compact, convex and equal to

$$\begin{split} \bigcap \{ \tilde{\mathcal{S}}_{r,q}^{\mathbb{F}}(\mathbf{A}) : r = 1, 2, \dots \} &= \bigcap \{ \mathbf{cl}(\varLambda_{r,q}^{\mathbb{F}}(\mathbf{A})) : r = 1, 2, \dots \} \\ &= \bigcap \{ \mathbf{cl}\left(\varLambda_{p,q}^{\mathbb{F}}(Y^t \mathbf{A} Y)\right) : Y \in \mathcal{V}^{\perp}(\mathcal{H}) \}, \end{split}$$

where $\tilde{\mathcal{S}}_{r,q}^{\mathbb{F}}(\mathbf{A})$ is the set of all star-centers of $\mathbf{cl}(\Lambda_{r,q}^{\mathbb{F}}(\mathbf{A}))$.

Proof. We first show that for every integers p_0 and p

$$\bigcap \{ \mathbf{cl}(\Lambda_{p_0,q}^{\mathbb{F}}(Y^t \mathbf{A} Y)) : Y \in \mathcal{V}^{\perp}(\mathcal{H}) \} \subseteq \bigcap \{ \mathbf{cl}(\Lambda_{1,q}^{\mathbb{F}}(Y^t \mathbf{A} Y) : Y \in \mathcal{V}^{\perp}(\mathcal{H}) \}$$
$$\subseteq \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})). \tag{4.4}$$

The first inclusion is trivial. Let $\mathbf{C} = (C_1, \dots, C_m) \in \bigcap \{\mathbf{cl}(\Lambda_{1,q}^{\mathbb{F}}(Y^t\mathbf{A}Y) : Y \in \mathcal{V}^{\perp}(\mathcal{H})\}$. Fix a positive integer n. As $\mathbf{C} \in \mathbf{cl}(\Lambda_{1,q}^{\mathbb{F}}(\mathbf{A}))$, there exists $X_1 \in \mathcal{V}_q(\mathcal{H})$ such that $X_1 : \mathcal{H}_1 \to \mathcal{H}$ with $X_1^*X_1 = I_{\mathcal{H}_1}$ so that $X_1^tA_jX_1 = B_j^{(1)}$ and $\|B_j^{(1)} - C_j\| \leq \frac{1}{n}, \ j = 1, \dots, m$. By an inductive argument similar to that in Lemma 4.1, one can construct two infinite sequences $\{X_r\}_{r=1}^{\infty}$ and $\{\mathcal{H}_r\}_{r=1}^{\infty}$ with $X_r : \mathcal{H}_r \to \mathcal{H}$ for some q-dimensional subspace \mathcal{H}_r such that any two distinct subspaces \mathcal{H}_r and \mathcal{H}_s are orthogonal,

$$X_r^*X_s = \begin{cases} I_q & r = s, \\ 0_q & r \neq s, \end{cases} \text{ and } X_r^tA_jX_s = \begin{cases} B_j^{(r)} & r = s, \\ 0_q & r \neq s, \end{cases} \text{ with } \left\| B_j^{(r)} - C_j \right\| \leq \frac{1}{n},$$

for $j=1,\ldots,m$. Take $d\geq (p-1)(2q^2m+1)+1$ and set $X=\oplus_{r=1}^d X_r:\oplus_{r=1}^d \mathcal{H}_r\to \mathcal{H}$. Then $X^*X=I_{\oplus_{r=1}^d \mathcal{H}_r}$ and

$$X^{t}A_{j}X = B_{j}^{(1)} \oplus B_{j}^{(2)} \oplus \cdots \oplus B_{j}^{(d)}$$
 and $\left\| B_{j}^{(r)} - C_{j} \right\| \leq \frac{1}{n}$,

for j = 1, ..., m and r = 1, ..., d. Denote $\mathbf{B}_r = (B_1^{(r)}, ..., B_m^{(r)})$ for r = 1, ..., d. Identifying $\mathbf{B}_1, ..., \mathbf{B}_d$ as d points in \mathbb{R}^{2q^2m} , then by Tverberg's Theorem (see [29]), one can partition $\{\mathbf{B}_r : r = 1, ..., d\}$ into p sets

$$\mathcal{B}_1 = \{\mathbf{B}_r : r \in \mathcal{I}_1\}, \quad \mathcal{B}_2 = \{\mathbf{B}_r : r \in \mathcal{I}_2\}, \quad \dots \quad \mathcal{B}_p = \{\mathbf{B}_r : r \in \mathcal{I}_p\}$$

such that $\operatorname{conv}(\mathcal{B}_1) \cap \cdots \cap \operatorname{conv}(\mathcal{B}_p) \neq \emptyset$. Pick $\mathbf{C}^{(n)} = (C_1^{(n)}, \dots, C_m^{(n)}) \in \operatorname{conv}(\mathcal{B}_1) \cap \cdots \cap \operatorname{conv}(\mathcal{B}_p)$. Then $\mathbf{C}^{(n)} \in \Lambda_{p,q}^{\mathbb{F}} (\oplus_{r \in \mathcal{I}_{\ell}} \mathbf{B}_j)$ for $\ell = 1, \dots, p$ and hence,

$$\mathbf{C}^{(n)} \in \varLambda_{p,q}^{\mathbb{F}} \left(\bigoplus_{t=1}^{p} \bigoplus_{r \in \mathcal{I}_{\ell}} \mathbf{B}_{j} \right) = \varLambda_{p,q}^{\mathbb{F}} \left(\bigoplus_{t=1}^{d} \mathbf{B}_{j} \right) = \varLambda_{p,q}^{\mathbb{F}} (X^{t} \mathbf{A} X) \subseteq \varLambda_{p,q}^{\mathbb{F}} (\mathbf{A}).$$

Now as $C_j^{(n)}$ is a convex combination of $B_j^{(r)}$'s, $\|B_j^{(r)} - C_j\| \leq \frac{1}{n}$ implies $\|C_j^{(n)} - C_j\| \leq \frac{1}{n}$. We have $\mathbf{C}^{(n)} \in \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})$ and $\|C_j^{(n)} - C_j\| < \frac{1}{n}$. Therefore, there exists a sequence $\{\mathbf{C}^{(n)}\}_{n=1}^{\infty} \subseteq \Lambda_{p,q}^{\mathbb{F}}(\mathbf{A})$ converging to \mathbf{C} . Hence, $\mathbf{C} \in \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A}))$. Note that by Lemma 4.1, we obtain

$$\begin{split} \varLambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) &= \bigcap \{\mathbf{cl}\left(\varLambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{F})\right) : \mathbf{F} \in \mathcal{F}(\mathcal{H})^m\} \\ &= \bigcap \{\mathbf{cl}\left(\varLambda_{p,q}^{\mathbb{F}}(Y^t \mathbf{A} Y)\right) : Y \in \mathcal{V}^{\perp}(\mathcal{H})\}. \end{split}$$

Now by Corollary 3.1 and Corollary 2.1,

$$\begin{split} \bigcap_{r\geq 1} \tilde{S}^{\mathbb{F}}_{r,q}(\mathbf{A}) &\subseteq \bigcap_{r\geq 1} \mathbf{cl}(\varLambda^{\mathbb{F}}_{r,q}(\mathbf{A})) \subseteq \bigcap_{r\geq 1} \mathbf{cl}(\varLambda^{\mathbb{F}}_{r(1+2q^2(2m+1)),q}(\mathbf{A})) \\ &\subseteq \bigcap_{r>1} \mathbf{cl}(S^{\mathbb{F}}_{r,q}(\mathbf{A})) \subseteq \bigcap_{r>1} \tilde{S}^{\mathbb{F}}_{r,q}(\mathbf{A}). \end{split}$$

Moreover, by Theorem 2.3, Theorem 3.3 and (4.4), we have

$$\bigcap_{r\geq 1} \mathbf{cl}(\Lambda_{r,q}^{\mathbb{F}}(\mathbf{A})) \subseteq \bigcap_{r\geq 1} \mathbf{cl}(\Lambda_{p_0+2rq,q}^{\mathbb{F}}(\mathbf{A})) \subseteq \bigcap_{r\geq 1} \left(\bigcap_{Y\in\mathcal{V}_r^{\perp}(\mathcal{H})} \mathbf{cl}(\Lambda_{p_0,q}^{\mathbb{F}}(Y^t\mathbf{A}Y)) \right) \\
= \bigcap \{ \mathbf{cl}(\Lambda_{p_0,q}^{\mathbb{F}}(Y^t\mathbf{A}Y)) : Y\in\mathcal{V}^{\perp}(\mathcal{H}) \} \subseteq \bigcap_{r\geq 1} \mathbf{cl}\left(\Lambda_{r,q}^{\mathbb{F}}(\mathbf{A})\right).$$

Setting $p_0 = p$, we have $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \bigcap_{r \geq 1} \operatorname{cl}\left(\Lambda_{r,q}^{\mathbb{F}}(\mathbf{A})\right) = \bigcap_{r \geq 1} \tilde{S}_{r,q}^{\mathbb{F}}(\mathbf{A})$. As $\tilde{S}_{r,q}^{\mathbb{F}}(\mathbf{A})$ is a compact convex set for all positive integers r, their intersection is also compact and convex. Thus, $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A})$ is compact and convex.

Note that $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \bigcap_{r>1} \tilde{S}_{r,q}^{\mathbb{F}}(\mathbf{A})$, which is independent on p. We see that

$$\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A}).$$

We close the paper with the following result showing that one may define $\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A})$ using compact operators instead of finite rank operators as commented before Theorem 4.2.

Theorem 4.3 Let $\mathbf{A} \in \mathcal{B(H)}^m$ and p,q be any positive integers. Then

$$\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \bigcap \{ \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G})) : \mathbf{G} \in \mathcal{C}(\mathcal{H})^m \}.$$

Proof. Let

$$S_1(\mathbf{A}) = \bigcap \{ \mathbf{cl}(\Lambda_{1,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G})) : \mathbf{G} \in \mathcal{C}(\mathcal{H})^m \}.$$

We first show that $\Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A}) = S_1(\mathbf{A})$. Evidently, $S_1(\mathbf{A}) \subseteq \Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A})$ as $\mathcal{F}(\mathcal{H}) \subseteq \mathcal{C}(\mathcal{H})$. We focus on the reverse inclusion. Suppose $\mathbf{C} = (C_1, \dots, C_m) \in \Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A})$. We will show that $\mathbf{C} \in \mathbf{cl}(\Lambda^{\mathbb{F}})$ ($\mathbf{A} + \mathbf{G}$) for every $\mathbf{G} \in \mathcal{C}(\mathcal{H})^m$.

We will show that $\mathbf{C} \in \mathbf{cl}(A_{1,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G}))$ for every $\mathbf{G} \in \mathcal{C}(\mathcal{H})^m$. Suppose $\mathbf{G} = (G_1, \dots, G_m) \in \mathcal{C}(\mathcal{H})^m$. For every given $\varepsilon > 0$, there exists $Y \in \mathcal{V}^{\perp}$ such that $||Y^tG_iY|| < \varepsilon/2$ for all $1 \le i \le m$. By Theorem 4.2, we can find $X \in \mathcal{V}_q$ such that $||C_i - X^tY^tA_iYX|| < \varepsilon/2$ for all $1 \le i \le m$. Therefore, $||C_i - X^tY^t(A_i + G_i)YX|| < \varepsilon$ for all $1 \le i \le m$. Hence, $\mathbf{C} \in \mathbf{cl}(A_{1,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G}))$. As \mathbf{G} is arbitrary, we have $\mathbf{C} \in S_1(\mathbf{A})$.

Now let

$$S_p(\mathbf{A}) = \bigcap \{ \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G}) : \mathbf{G} \in \mathcal{C}(\mathcal{H})^m \}.$$

Clearly, $S_p(\mathbf{A}) \subseteq \Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A})$. We consider the reverse inclusion. By Theorem 4.2, for a fixed $\mathbf{G} \in \mathcal{C}(\mathcal{H})^m$,

$$\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) = \Lambda_{1,q}^{e,\mathbb{F}}(\mathbf{A}) = S_1(\mathbf{A}) = S_1(\mathbf{A} + \mathbf{G}) = \Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A} + \mathbf{G}) \subseteq \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G})).$$

Thus,
$$\Lambda_{p,q}^{e,\mathbb{F}}(\mathbf{A}) \subseteq \bigcap \{ \mathbf{cl}(\Lambda_{p,q}^{\mathbb{F}}(\mathbf{A} + \mathbf{G}) : \mathbf{G} \in \mathcal{C}(\mathcal{H})^m \} = S_p(\mathbf{A}).$$

Acknowledgements Li is an honorary professor of the Shanghai University, and an affiliate member of the Institute for Quantum Computing, University of Waterloo; his research was supported by the USA NSF DMS 1331021, the Simons Foundation Grant 351047, and NNSF of China Grant 11571220. Research of Sze was supported by a PolyU central research grant G-YBNS and a HK RGC grant PolyU 502512. The HK RGC grant also supported the post-doctoral fellowship of Lau at the Hong Kong Polytechnic University during 2016-2018.

References

 L. Autonne, Sur les matrices hypohermitiennes et sur les matrices unitares, Ann. Univ. Lyon, Nouvell Serie I, Fasc. 38 (1915), 1–77.

- Y.H. Au-Yeung, A simple proof of the convexity of the field of values defined by two hermitian forms, Aequations Math. 12 (1975), 82–83.
- 3. Y.H. Au-Yeung and Y.T. Poon, A remark on the convexity and positive definiteness concerning Hermitian matrices, Southeast Asian Bull. Math. 3 (1979), 85–92.
- 4. Y.H. Au-Yeung and N.K. Tsing, Some theorems on the generalized numerical ranges Linear and Multilinear Algebra, 15 (1984), 3–11.
- L. Brickman, On the field of values of a matrix, Proc. Amer. Math. Soc. 12 (1961), 61–66.
- M.D. Choi, D.W. Kribs and K. Zyczkowski, Quantum error correcting codes from the compression formalism, Rep. Math. Phys. 58 (2006), 77–91.
- 7. M.D. Choi, C. Laurie, H. Radjavi and P. Rosenthal, On the congruence numerical range and related functions of matrices, Linear and Multilinear Algebra 43 (1987), 1–5.
- 8. M.D. Choi, C.K. Li and Y.T. Poon, Some convexity features associated with unitary orbits, Canad. J. Math. **55** (2003), 91–111.
- E. Gutkin and K. Zyczkowski. Joint numerical ranges, quantum maps, and joint numerical shadows, Linear Algebra Appl. 438 (2013), 2394–2404.
- 10. F. Hausdorff, Das Wertvorrat einer Bilinearform, Math. Z. 3 (1919), 314-316.
- Y. Hong and R. Horn, A characterization of unitary congruence, Linear and Multilinear Algebra 25 (1989), 105–119.
- R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
- P.S. Lau, C.K. Li, Y.T. Poon, and N.S. Sze, Convexity and Star-shapedness of Matricial Range, J. Funct. Anal. 275 (2018), 2497–2515.
- 14. C.K. Li and Y.T. Poon, The joint essential numerical range of operators: convexity and related results, Studia Math. 194 (2009), 91–104.
- C.K. Li and Y.T. Poon, Generalized numerical ranges and quantum error correction,
 J. Operator Theory 66 (2011), 335–351.
- C.K. Li and Y.T. Poon, Convexity of the joint numerical range, SIAM J. Matrix Anal. Appl. 21 (2000), 668-678.
 J. Operator Theory 66 (2011), 335-351.
- 17. C.K. Li, Y.T. Poon and N.S. Sze, Generalized interlacing inequalities, Linear and Multilinear Algebra 60 (2012), 1245–1254.
- C.K. Li and T.Y. Tam, Numerical ranges arising from simple Lie algebras, Canad. J. Math. 52 (2000), 141–171.
- T.G. Lei, Congruence numerical ranges and their radii, Linear and Multilinear Algebra 43 (1998), 411–427.
- M. Marcus, Pencils of real symmetric matrices and the numerical range, Aequationes Math. 17 (1978), 91–103.
- A. McIntosh, The Toeplitz-Hausdorff theorem and ellipticity conditions, Amer. Math. Monthly 85 (1978), 475–477.
- 22. V. Müller (2010) The joint essential numerical range, compact perturbations, and the Olsen problem, Studia Math. 197 (2010), 275–290.
- Y.T. Poon, Generalized numerical ranges, joint positive definiteness and multiple eigenvalues, Proc. Amer. Math. Soc. 125 (1997), 1625–1634.
- J.G. Stampfli and J.P. Williams. Growth conditions and the numerical range in a Banach algebra, Tôhoku Math. J. 20 (1968), 417–424.
- T.Y. Tam, Note on a paper of Thompson: the congruence numerical range, Linear and Multilinear Algebra 17 (1985), 107–115.
- T.Y. Tam and N.K. Tsing, Congruence numerical range, Linear and Multilinear Algebra 19 (1986), 405.
- R.C. Thompson, The congruence numerical range, Linear and Multilinear Algebra 8 (1980), 197–206.
- O. Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Zeit. 2 (1918), 187–197.
- H. Tverberg, A generalization of Radon's theorem, J. Lond. Math. Soc. 41 (1966), 123–128.
- J.C. Wang, M.K.H. Fan, and A.L. Tits, Structured singular value and geometry of the m-form numerical range, Linear circuits, systems and signal processing: theory and application, 690-615, North-Holland, Amsterdam, 1988.