
Advances in Operator Theory manuscript No.
(will be inserted by the editor)

Joint matricial range and joint congruence matricial
range of operators

Pan-Shun Lau · Chi-Kwong Li ·
Yiu-Tung Poon · Nung-Sing Sze

Dedicated to Professor Rajendra Bhatia.

Received: date / Accepted: date

Abstract Let A = (A1, . . . , Am), where A1, . . . , Am are n× n real matrices.
The real joint (p, q)-matricial range of A, ΛR

p,q(A), is the set of m-tuple of
q × q real matrices (B1, . . . , Bm) such that (X∗A1X, . . . ,X

∗AmX) = (Ip ⊗
B1, . . . , Ip ⊗ Bm) for some real n × pq matrix X satisfying X∗X = Ipq. It is
shown that if n is sufficiently large, then the set ΛR

p,q(A) is non-empty and
star-shaped. The result is extended to bounded linear operators acting on a
real Hilbert space H, and used to show that the joint essential (p, q)-matricial
range of A is always compact, convex, and non-empty. Similar results for the
joint congruence matricial ranges on complex operators are also obtained.
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1 Introduction

Let F be the field R of real numbers and the field C of complex numbers.
Denote by Mn(F) the set of n × n matrices with elements in F and Mm

n (F)
the set of m-tuple of matrices in Mn(F). The joint numerical range of A =
(A1, ..., Am) ∈Mm

n (C) is defined by

W (A) = {(x∗A1x, . . . , x
∗Amx) : x ∈ Cn, x∗x = 1} . (1.1)

The joint numerical range is useful in studying problems involving a collection
of matrices that arise naturally in pure and applied areas, see [9,16,30] and
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their references. When m = 1, W (A) = W (A1) reduces to the classical nu-
merical range of A1 ∈Mn(C), and the joint numerical range is one of its many
generalizations, see [12, Chapter 1]. In particular, researchers also consider the
real joint numerical range WR(A) for A = (A1, . . . , Am) ∈Mm

n (R), which is
defined analogous to (1.1) using real vectors and real matrices; see [2,4,5,8,
20,21,23]. In this case, the conjugate transpose X∗ is just the transpose Xt

for any X ∈Mn(R).
In theories as well as applications, it is useful to study the geometric

properties of the joint numerical ranges such as the convexity and the star-
shapedness. The results on the complex case and the real case could be similar
or very different. We elaborate this comment in the following.

For complex matrices A1, ..., Am ∈ Mn(C), by the Hermitian decomposi-
tion, W (A1, . . . , Am) ⊆ Cm can be identified by W (H1,K1, . . . ,Hm,Km) ⊆
R2m, where Aj = Hj + iKj with (Hj ,Kj) = (H∗j ,K

∗
j ) for j = 1, ...,m. There-

fore, one can focus on m-tuple of Hermitian matrices in the study of the
geometric properties of W (A). The Toeplitz-Hausdorff Theorem asserts that
W (A1, A2) is always convex for any Hermitian matrices A1, A2, see [10,28].
Au-Yeung and Poon [3] showed that W (A1, A2, A3) is always convex for Her-
mitian matrices A1, A2, A3 ∈Mn(C) if n ≥ 3. In general, W (A1, . . . , Am) may
fail to be convex if m ≥ 4, for example, see [16]. In fact, it is possible to con-
struct examples such that no three points in W (A) are collinear. For example,
one may let {A1, . . . , Am} be such that {I/

√
n,A1, . . . , Am} is an orthonormal

basis of Mn(C) under the usual inner product 〈A,B〉 = tr(AB∗). Then one can
verify that every element (µ1, . . . , µm) ∈W (A) satisfies

∑n
j=1 |µj |2 = 1−1/n.

Thus, no three points in W (A) are collinear. In [15], the authors obtained the
unexpected result that if n is sufficiently large, then W (A1, . . . , Am) is always
star-shaped.

For real matrices A1, ..., Am ∈Mn(R), one can decompose Aj = Sj +Gj ,
where Sj is real symmetric and Gj is real skew-symmetric for j = 1, ...,m.
Since vtGjv = 0 for all real vectors v ∈ Rn, we see that WR(A1, . . . , Am) =
WR(S1, . . . , Sm). Brickman [5] showed that WR(S1, S2) is always convex for
symmetric matrices S1, S2 ∈ Mn(R) if n ≥ 3. However, WR(S1, S2, S3) may
fail to be convex in general. There are examples for which no three points
in WR(S1, . . . , Sm) are collinear. One may wonder if WR(S1, . . . , Sm) is star-
shaped when n is sufficiently large. We will answer this question in the affir-
mative by proving more general results.

Let A = (A1, ..., Am) ∈ Mm
n (R) be an m-tuple of real matrices. The real

joint (p, q)-matricial range of A is defined by

ΛR
p,q(A) = {(B1, . . . , Bm) ∈Mm

q (R) : XtAjX = Ip ⊗Bj ,

XtX = Ipq, j = 1, . . . ,m}.

In other words, Ip ⊗ B1, . . . , Ip ⊗ Bm are compressions of A1, . . . , Am to a
pq-dimensional subspace of Rn. When p = q = 1, ΛR

1,1(A) reduces to the real

joint numerical range WR(A1, . . . , Am). The set ΛR
p,q(A) is the real analog of

the joint (complex) (p, q)-matricial range of A ∈Mm
n (C) defined as

Λp,q(A) = {(B1, . . . , Bm) ∈Mm
q (C) : X∗AjX = Ip ⊗Bj ,

X∗X = Ipq, j = 1, . . . ,m}.

The study of Λp,q(A) was motivated by the search of quantum error correction
code for a given quantum channel, for example, see [13,17]. In [13] it was shown
that if the dimension n is sufficiently large, then the complex joint (p, q)-
matricial range is non-empty and star-shaped. Consequently, if the underlying
Hilbert space of a quantum system has sufficiently high dimension, one can
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always find a correctable subsystem for a quantum channel; see [6] and [17]
more details.

In this paper, we establish the non-emptyness and the star-shapedness
result for ΛR

p,q(A) when n is sufficiently large. Similar results are obtained for
the joint congruence (p, q)-matricial range of A ∈Mm

n (C) defined by

ΛC
p,q(A) = {(B1, . . . , Bm) ∈Mm

q (C) : XtAjX = Ip ⊗Bj ,

X∗X = Ipq, j = 1, . . . ,m}.

When p = q = m = 1, Λp,q(A1) reduces the congruence numerical range
considered in [7,11,18,19,25–27]; the study is related to the action of unitary
congruence A 7→ U tAU on complex matrices A. Furthermore, we extend the
results to infinite dimensional operators.

Our paper is organized as follows. In Section 2, we obtain lower bounds on
the dimension n for which ΛR

p,q(A) is non-empty and star-shaped. In Section
3, we obtain similar results for the joint congruence (p, q)-matricial range of
A ∈Mm

n (C). In Section 4, we extend the results in Sections 2 and 3 to bounded
linear operators acting on infinite dimensional Hilbert space H over F. In
particular, we define the joint (p, q)-matricial range and the joint congruence
(p, q)-matricial range for bounded linear operators, respectively, depending on
F = R or C. In addition, we use the results to show that the joint essential
(p, q)-matricial for real operators and the joint essential congruence (p, q)-
matricial range of complex operators are always compact, convex, and non-
empty.

2 The Real Joint (p, q)-Matricial Range

Denote by Mn,r(R) the set of all n × r real matrices and denote by Pn,r the
set of n × r real matrices X such that XtX = Ir. We abbreviate Mn,n(R)
and Pn,n to Mn(R) and Pn respectively. Note that Pn is the group of all
orthogonal matrices. Recall that for A = (A1, . . . , Am) ∈ Mm

n (R), its real
joint (p, q)-matricial range is defined by

ΛR
p,q(A) = {(B1, . . . , Bm) : XtAjX = Ip ⊗Bj , X ∈ Pn,pq}.

Let Aj = Sj +Gj , Sj be real symmetric and Gj be real skew-symmetric, j =
1, ...,m. Then ΛR

p,q(A) has the same structure as ΛR
p,q(S1, . . . , Sm, G1, . . . , Gm).

Suppose that {S̃1, . . . , S̃u}, {G̃1, . . . , G̃v} are bases of span{S1, . . . , Sm} and
span{G1, . . . , Gm}, respectively. Then there are (tij) ∈ Mu,m(R) and (sij) ∈
Mv,m(R) such that Sj =

∑u
i=1 tijS̃i and Gj =

∑v
i=1 sijG̃i for j = 1, . . . ,m.

It is clear that (B1, . . . , Bm, C1, . . . , Cm) ∈ ΛR
p,q(S1, . . . , Sm, G1, . . . , Gm) if

and only if Bj =
∑u

i=1 tijB̃i and Cj =
∑v

i=1 sijC̃i, j = 1, . . . ,m, for some

(B̃1, . . . ., B̃u, C̃1, . . . , C̃v) ∈ ΛR
p,q(S̃1, . . . , S̃u, G̃1, . . . , G̃v). Therefore, in order

to study the geometrical properties of Λp,q(S1, . . . , Sm, G1, . . . , Gm), we may

focus on ΛR
p,q(S̃1, . . . , S̃u, G̃1, . . . , G̃v) where {S̃1, . . . , S̃u, G̃1, . . . , G̃v} forms a

linearly independent set.
For real symmetric matrices, one can adapt the proof in [15, Proposition

2.4] to deduce the following. It is clear that for A ∈Mm
n (R), (s1Iq, . . . , smIq) ∈

ΛR
p,q(A) if and only if (s1, . . . , sm) ∈ ΛR

pq,1(A).

Proposition 2.1 Let S1, . . . , Sm ∈Mn(R) be real symmetric matrices. If n ≥
(m+ 1)2(pq − 1), then there are real numbers s1, . . . , sm such that

(s1, . . . , sm) ∈ ΛR
pq,1(S1, . . . , Sm).
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Clearly, if G1, ..., Gm ∈Mn(R) are skew-symmetric, then ΛR
p,1(G1, . . . , Gm)

⊆ {(0, . . . , 0)}. In general, we have the following proposition. In its proof, we
will denote by 0n,r the n× r zero matrix and 0n the n× n zero matrix.

Proposition 2.2 Let G1, . . . , Gm ∈Mn(R) be real skew-symmetric matrices.
If n ≥ 2mpq, then

ΛR
pq,1(G1, . . . , Gm) = {(0, ..., 0)}.

Proof. “⊆” is clear. Now consider “⊇”. We first assume m = 1. It suffices to
consider the case n = 2pq. By spectral decomposition of real skew-symmetric
matrices, there is an orthogonal matrix W ∈ Pn such that W tG1W = B1 ⊕

B2⊕· · ·⊕Bpq where Bj =

[
0 λj
−λj 0

]
, λj ∈ R and j = 1, ..., pq. Then 0pq is the

principal submatrix of W tG1W lying in the rows and the columns indexed by
1, 3, . . . , 2pq − 1. Hence 0 ∈ ΛR

pq,1(G1).
Let m > 1 and n ≥ 2mpq. We apply an inductive argument. First, there is

an orthogonal U ∈ Pn such that U tGmU has 02m−1pq as the leading principal

submatrix. Replace Gj by U tGjU for all j = 1, . . . ,m. Let Ĝj ∈M2m−1pq(R)

be the leading principal submatrix of Gj for j = 1, . . . ,m. Then Ĝm = 02m−1pq.

By induction, there is an orthogonal matrix V ∈ P2m−1pq such that V tĜjV
has leading principal submatrix 0pq for j = 1, . . . ,m−1. Thus, if W = V ⊕I ∈
P2mpq, then W tGjW has leading principal submatrix 0pq for j = 1, . . . ,m. It
follows that (0, ..., 0) ∈ ΛR

pq,1(G1, . . . , Gm)

For A ∈Mm
n (R), it is clear that (a1, ..., am) ∈ ΛR

pq,1(A) for real a1, ..., am if

and only if (a1Iq, ..., amIq) ∈ ΛR
p,q(A). Combining Proposition 2.1 and Propo-

sition 2.2, we have the following.

Theorem 2.1 Let A = (S1, . . . , Sm1
, G1, . . . , Gm2

) ∈Mm1+m2
n (R) where S1,

. . . , Sm1 are real symmetric and G1, . . . , Gm2 are real skew-symmetric. If n ≥
2m2(m1+1)2(pq−1), then there are real numbers s1, . . . , sm1+m2 with sm1+1 =
· · · = sm1+m2

= 0 such that

(s1, . . . , sm1+m2
) ∈ ΛR

pq,1(A) and (s1Iq, . . . , sm1+m2
Iq) ∈ ΛR

p,q(A).

Proof. If n ≥ 2m2(m1 + 1)2(pq − 1), then by Proposition 2.2, there is an or-
thogonal matrix U ∈ Pn such that the leading principal submatrix U tGjU

is 0r with r = (m1 + 1)2(pq − 1), j = 1, ...,m2. Let S̃j ∈ Mr(R) be the
leading r × r principal submatrix of U tSjU . By Proposition 2.1, there are
real numbers s1, . . . , sm1

and V ∈ Pr such that sjIpq is the leading prin-

cipal submatrix of V tS̃jV for j = 1, . . . ,m1. Let W = U(V ⊕ In−r) and
sm1+1 = · · · sm1+m2

= 0. Then s1Ipq, ...., sm1+m2
Ipq are the leading principal

submatrices of W tS1W, ...,W
tSm1

W, W tG1W, ...,W
tGm2

W respectively. The
result follows.

Theorem 2.2 Let A = (A1, . . . , Am) ∈ Mm
n (R), where A1, . . . , Am are real

symmetric or real skew-symmetric. Suppose

C = (C1, ..., Cm) ∈ ΛR
p,q(Y tA1Y, ..., Y

tAmY ) for all Y ∈ Pn,n−pq(m+1).

Then C is a star-center of ΛR
p,q(A).

Proof. Suppose B = (B1, ..., Bm) ∈ ΛR
p,q(A). Then there is an X1 ∈ Pn,pq such

that Xt
1AjX1 = Ip ⊗ Bj for j = 1, ...,m. Extend the X1 to an orthogonal

matrix U1 ∈ Pn. Then

U t
1AjU1 =

[
Ip ⊗Bj Rj

R̃j ∗

]
, where R̃j = Rt

j or R̃j = −Rt
j , j = 1, . . . ,m.
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Note that there is a subspace of dimension at most pqm containing the range
spaces of R̃1, ..., R̃m. Therefore, there exists an V ∈ Pn−pq such that RjV =
[0pq,n−pq(m+1)|Sj ] where Sj ∈Mpq,pqm(R), j = 1, ...,m. Then

(Ipq ⊕ V )tU t
1AjU1(Ipq ⊕ V ) =

[
Ip ⊗Bj RjV

V tR̃j ∗

]
=

Ip ⊗Bj 0 Sj

0 Ĉj ∗
S̃j ∗ ∗

 ,
where S̃j = St

j or S̃j = −St
j ; and Ĉj ∈Mn−pq(m+1)(R), j = 1, . . . ,m. By as-

sumption, we have C ∈ ΛR
p,q(Ĉ1, ..., Ĉm). Then there is an X2 ∈ Pn−pq(m+1),pq

such that Xt
2ĈjX2 = Ip⊗Cj , j = 1, ...,m. Extend X2 to U2 ∈ Pn−pq(m+1). For

every 0 ≤ α ≤ 1, let W = U1(Ipq ⊕ V )(Ipq ⊕ U2 ⊕ Ipqm)[αIpq|
√

1− α2Ipq|0] ∈
Pn,pq. Then

W tAjW = Ip ⊗ (αBj + (1− α)Cj), j = 1, ...,m.

Hence, αB + (1 − α)C ∈ ΛR
p,q(A1, . . . , Am) for all 0 ≤ α ≤ 1 and C is a

star-center of ΛR
p,q(A).

Theorem 2.3 Let A = (A1, . . . , Am) ∈ Mm
n (R) and p, q, r be positive inte-

gers. If 1 ≤ qr < p ≤ n, then

ΛR
p,q(A) ⊆

⋂{
ΛR
p−qr,q(Y tAY ) : Y ∈ Pn,n−r

}
where Y tAY = (Y tA1Y, . . . , Y

tAmY ).

Proof. We start with the case when r = 1, that is

ΛR
p,q(A) ⊆

⋂{
ΛR
p−q,q(Y tAY ) : Y ∈ Pn,n−1

}
.

Let Y ∈ Pn,n−1. Extend Y to an orthogonal matrix U = [Y |y] ∈ Pn. Let
C = (C1, ..., Cm) ∈ ΛR

p,q(A). Then there is an X = [X1|...|Xp] ∈ Pn,pq with
X1, ..., Xp ∈ Pn,q such that Xt

`AjXk = δ`,kCj , j = 1, ...,m and `, k = 1, ..., p.
Here δ`,k is the Kronecker delta function. Define the q × p real matrix

Q =
[
Xt

1y X
t
2y · · · Xt

py
]
.

Note that the nullity of Q is at least p − q. Then there exists a W = [wij ] ∈
Pp,p−q such that QW = 0. Let Vj =

∑p
i=1 wijXi, j = 1, ..., p − q. By direct

computation, we have V t
i Vj = δi,jIq and V t

j y = 0; i, j = 1, ..., p− q. Therefore,
V = [V1| · · · |Vp−q] ∈ Pn,(p−q)q and there exists Z ∈ Pn−1,(p−q)q such that
Y Z = V . Moreover, V t

` AjVk =
∑p

s=1

∑p
t=1 ws`wtkX

t
sAjXt = δ`,kCj , j =

1, ...,m, and `, k = 1, ..., p− q. Hence,

ZtY tAjY Z = V tAjV = Ip−q ⊗ Cj , j = 1, ...,m,

and hence C ∈ ΛR
p−q,q(Y tAY ). The general case follows by induction:⋂

Y1∈Pn,n−k

ΛR
p−qk,q(Y t

1 AY1) ⊆
⋂

Y1∈Pn,n−k

⋂
Y2∈Pn−k,n−k−1

ΛR
p−qk−q,q(Y t

2 Y
t
1 AY1Y2)

⊆
⋂

Y ∈Pn,n−(k+1)

ΛR
p−q(k+1),q(Y tAY ).

We denote by conv(S) the convex hull of the set S.
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Corollary 2.1 Let A = (A1, . . . , Am) ∈ Mm
n (R). If n ≥ 2m(m + 1)2(pq(1 +

q2(2m+ 1))− 1), then

(i) ΛR
p̃,q(A) is non-empty where p̃ = p(1 + q2(2m+ 1)),

(ii) ΛR
p,q(A) is star-shaped and C is a star-center of ΛR

p,q(A) for all C ∈
conv(ΛR

p̃,q(A)).

Proof. (i) This follows from Theorem 2.1 by setting m1 = m2 = m and iden-
tifying ΛR

p̃,q(A) with ΛR
p̃,q(S1, ..., Sm, G1, ..., Gm).

(ii) By Theorem 2.3, we have

ΛR
p̃,q(A) ⊆

⋂{
ΛR
p̃−q2p(2m+1),q(Y tAY ) : Y ∈ Pn,n−pq(2m+1)

}
=
⋂{

ΛR
p,q(Y tAY ) : Y ∈ Pn,n−pq(2m+1)

}
.

Note that the set of all star-centers is always convex. Then the result follows
from Theorem 2.2.

3 Joint Congruence (p, q)-Matricial Range

Let Mn,k(C) be the set of all n× k complex matrices and let Un,k be the set
of n × k complex matrices X such that X∗X = Ik. We abbreviate Mn,n(C)
and Un,n to Mn(C) and Un respectively. Note that Un is the group of all
unitary matrices. Define the joint congruence (p, q)-matricial range of A =
(A1, . . . , Am) ∈Mm

n (C) by

ΛC
p,q(A) = {(B1, . . . , Bm) : XtAjX = Ip ⊗Bj , X ∈ Un,pq}.

Evidently, (B1, . . . , Bm) ∈ ΛC
p,q(A) if and only if there is a unitary U ∈ Un

such that Ip⊗Bj is the leading principal submatrix of U tAjU for j = 1, . . . ,m.
The orbits of a matrix A under the group action (U,A) 7→ U tAU , where U
is unitary, have been studied in [7,11,18,19,25–27]. Using the techniques in
Section 2, we can obtain similar results for the joint congruence (p, q)-matricial
range. To avoid repetitions of arguments, we may omit some details in the
proofs unless non-trivial modifications are needed.

For j = 1, . . . ,m, we can write Aj = Sj +Gj such that Sj = (Aj + At
j)/2

is complex symmetric and Gj = (Aj −At
j)/2 is complex skew-symmetric. It is

easy to see that the ΛC
p,q(A) and ΛC

p,q(S1, . . . , Sm, G1, . . . , Gm) have the same
geometric structure. So we follow the idea in the previous section and consider
(A1, ..., Am) where Aj is complex symmetric or complex skew-symmetric. After
that we can derive similar results for general complex matrices. Moreover, we
may remove Aj which is a linear combination of other components until we get
a family of linearly independent matrices A1, . . . , Ak. We start by the following
observation.

Proposition 3.1 Suppose A = (A1, . . . , Am) ∈ Mm
n (C). Then (C1, . . . , Cm)

is a star-center of ΛC
p,q(A) if and only if every element in the set

conv{(U tC1U, . . . , U
tCmU) : U ∈ Uq}

is a star-center. In particular, if ΛC
p,q(A) is star-shaped, then (0q, . . . , 0q) is a

star-center.

The proof of the following result is similar to the proof of Theorem 2.2 and
will be omitted.
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Theorem 3.1 Let A = (A1, . . . , Am) ∈ Mm
n (C) where A1, . . . , Am are com-

plex symmetric or complex skew-symmetric. Suppose n ≥ pq(m+ 1) and

C ∈ ΛC
p,q(Y tA1Y, ..., Y

tAmY ) for all Y ∈ Un,n−pq(m+1).

Then C is a star-center of ΛC
p,q(A).

Theorem 3.2 Suppose A = (A1, . . . , Am) ∈ Mm
n (C) where A1, . . . , Am are

complex symmetric or complex skew-symmetric.

(i) If n ≥ 2mpq, then 0q = (0q, . . . , 0q) ∈ ΛC
p,q(A).

(ii) If n ≥ pq(2m +m+ 1), then 0q is a star-center of ΛC
pq(A).

Proof. (i) The proof is similar to the proof of Proposition 2.2. If one can show
that for n ≥ 2pq, there exists an X ∈ Un such that X∗A1X has 0pq as the
leading principal submatrix, then the same inductive argument in the proof of
Proposition 2.2 leads to 0q ∈ ΛC

p,q(A). Therefore, we will show the existence
of such X when n ≥ 2pq. If A1 is complex skew-symmetric, then X exists by
the same construction in the proof of Proposition 2.2.

Now, let A1 be symmetric. First, we show that A1 is congruent to a matrix
Ã1 such that the first row has the form (0, ∗, 0, . . . , 0) and the first column has
the form (0, ∗, 0, . . . , 0)t. By Autonne-Takagi factorization there is a unitary
U ∈ Un such that U tA1U = diag(a1, . . . , an) with a1 ≥ · · · ≥ an ≥ 0 (see [1,
12]). Multiply the second column of U by i to get V and we have V tA1V =
diag(a1,−a2, a3, a4, . . . , an). Note that there is a real 2× 2 orthogonal matrix
P such that the (1, 1)-th entry of P tdiag(a1,−a2)P is zero. Let W1 = V (P ⊕
In−2). Then the first row of Ã1 = W t

1A1W1 is (0, µ, 0, . . . , 0) for some µ. As
Ã1 is symmetric, we see that the first column of Ã1 equals (0, µ, 0, . . . , 0)t.

We may then replace A1 by Ã1. Then consider the principal submatrix
of A1 by deleting the first two rows and the first two columns of A1 and
repeat the above argument on that submatrix. Therefore, there is a unitary
matrix W2 ∈ Un such that the first row and third row of W t

2A1W2 have the
form (0, ∗, 0, . . . , 0) and (0, ∗, 0, ∗, 0, . . . , 0) respectively. Similar patterns hold
for the transposes of the first column and the third column of W t

2A1W2.
As n ≥ 2pq, one can repeat this argument pq times. Then the principal

submatrix of the modified matrix A1 lying in rows and columns indexed by
1, 3, . . . , 2pq − 1 will be 0pq. The result will follow by an inductive argument
similar to that in the proof of Proposition 2.2.

(ii) This follows from Theorem 3.1 and (i).

Theorem 3.3 Suppose A = (A1, . . . , Am) ∈ Mm
n (C). If 1 ≤ 2qr < p ≤ n,

then
ΛC
p,q(A) ⊆

⋂{
ΛC
p−2qr,q(Y tAY ) : Y ∈ Un,n−r

}
where Y tAY = (Y tA1Y, . . . , Y

tAmY ).

Proof. The proof is similar to Theorem 2.3. However, in this case, the corre-
sponding Q will be a 2q × p real matrix in the form

Q =

[
Re (X∗1y) · · · Re (X∗py)

Im (X∗1y) · · · Im (X∗py)

]
,

and the corresponding W ∈ Pp,p−2q ⊆ Up,p−2q with QW = 0. The result fol-
lows by similar argument in Theorem 2.3.

Identifying ΛC
p,q(A) with ΛC

p,q(S1, . . . , Sm, G1, . . . , Gm), we can apply the
preceding results to obtain the following.



8 Pan-Shun Lau et al.

Corollary 3.1 Let A = (A1, . . . , Am) ∈Mm
n (C). If n ≥ 22mp(1 + 2q2(2m +

1))q, then

(i) ΛC
p̃,q(A) is non-empty where p̃ = p(1 + 2q2(2m+ 1)), and

(ii) ΛC
p,q(A) is star-shaped and C is a star-center of ΛC

p,q(A) for all C ∈
conv(ΛC

p̃,q(A)).

4 Infinite dimensional operators

Let B(H) be the set of bounded linear operators on the Hilbert space H over F
(= R or C). Evidently, when H has finite dimension n, we can identify B(H) as
Mn(F). In the following, we always assume that the dimension of H is infinite.

We can extend the definition of symmetric matrices and skew-symmetric
matrices to infinite dimensional operators. In the following, we will obtain
results for infinite dimensional operators as in [13].

First, for every T ∈ B(H), the transpose operator of T is the linear operator
T t : H → H such that 〈T tx, y〉 = 〈T ∗x, y〉 for all unit vectors x, y ∈ H. We
may also define the transpose of T using an arbitrary but fixed orthonormal
basis. An operator A ∈ B(H) is symmetric if A = At; it is skew-symmetric
if At = −A. Every operator can be decomposed into A = S + G, where
S = (A+At)/2 is symmetric and G = (A−At)/2 is skew-symmetric. Let Vk(H)
denote the set of operators X : W → H for some k-dimensional subspace W
of H such that X∗X = IW . Then we can define the joint congruence (p, q)-
matricial range of A = (A1, . . . , Am) ∈ B(H)

m
as follows,

ΛF
p,q(A) = {(B1, . . . , Bm) ∈Mm

q (F) : U tAjU = Ip ⊗Bj , U ∈ Vpq(H)}.

For simplicity, we name both ΛR
p,q(A) and ΛC

p,q(A) the joint congruence (p, q)-
matricial range. Furthermore, we may define the joint congruence (∞, q)-
matricial range by

ΛF
∞,q(A) =

∞⋂
p=1

ΛF
p,q(A).

Firstly, we have the following result which is a consequence of Corollary 2.1
and Corollary 3.1.

Proposition 4.1 Let A = (A1, . . . , Am) ∈ B(H)
m

. Then ΛF
p,q(A) is always

star-shaped for all positive integers p, q. Moreover, if C ∈ ΛF
∞,q(A), then C is

a star-center of ΛF
p,q(A).

Denote by V⊥k (H) the set of operators Y :W⊥ 7→ H such that Y ∗Y = IW⊥
where W⊥ is the orthogonal complement of an k-dimensional subspace W of
H. Moreover define V⊥(H) =

⋃
k≥1 V⊥k (H) and denote by F(H) the set of all

finite rank operators in B(H).
We can then use the techniques of [13] to prove the following.

Theorem 4.1 Let A = (A1, . . . , Am) ∈ B(H)m. Denote by SFp,q(A) the set of

all star-centers of ΛF
p,q(A). Then

ΛF
∞,q(A) =

⋂
p≥1

ΛF
p,q(A) =

⋂
p≥1

SFp,q(A) (4.2)

is a convex set. Moreover, if Y tAY = (Y tA1Y, ..., Y
tAmY ) for Y ∈ V⊥(H),

A + F = (A1 + F1, . . . , Am + Fm) for F = (F1, . . . , Fm) ∈ F(H)m, and p0 is
a positive integer, then

ΛF
∞,q(A) =

⋂
{ΛF

p0,q(Y tAY ) : Y ∈ V⊥(H)} =
⋂
{ΛF

p0,q(A+F) : F ∈ F(H)m}.
(4.3)



Joint matricial range and joint congruence matricial range of operators 9

A key observation is that the set of star-centers SFp,q(A) is always convex,

and therefore ∩p≥1SFp,q(A) is a convex set. It is not hard to see that⋂
p≥1

ΛF
p,q(A) ⊆

⋂
p≥1

SFp,q(A) ⊆
⋂
p≥1

ΛF
p,q(A).

One can then get the convexity and the set equality (4.2). The equality (4.3)
can be established by the following lemma.

Lemma 4.1 Let A = (A1, . . . , Am) ∈ B(H)m. Then the following hold.

(i)
⋂

Y ∈V⊥ Λ
F
p,q(Y tAY ) ⊆

⋂
Y ∈V⊥ Λ

F
1,q(Y tAY ) ⊆ ΛF

∞,q(Y tAY ).

(ii) For every F ∈ F(H)m, there is a Y ∈ V⊥(H) such that ΛF
p,q(Y tAY ) ⊆

ΛF
p,q(A + F).

(iii) For every Y ∈ V⊥(H), there is an F ∈ F(H)m such that ΛF
p,q(A + F) ⊆

ΛF
p,q(Y tAY ).

Proof. We may assume without loss of generality that A1, ..., Am are either
symmetric or skew-symmetric operators.

(i) The first inclusion is obvious. Now given that C = (C1, ..., Cm) ∈⋂
Y ∈V⊥ Λ

F
1,q(Y tAY ), we claim that there exists an infinite sequence of oper-

ators {Xr}∞r=1 ⊆ Vq(H) with Xr : Hr → H for some q-dimensional subspace
Hr of H such that for r 6= s, Hr and Hs are orthogonal and

X∗rXs =

{
Iq r = s,

0q r 6= s,
and Xt

rAjXs =

{
Cj r = s,

0q r 6= s.

Once the claim holds, since {Hr}∞r=1 is an infinite sequence of mutually or-
thogonal q-dimensional subspaces of H, one can extend ⊕∞r=1Xr to a unitary
operator U : H → H such that U |Hr

= Xr for all r. Then the operator matrix
of U tAjU with respect to the decomposition H = H1⊕H2⊕H3⊕ · · · has the
form 

Cj 0 0 · · ·
0 Cj 0 · · ·
0 0 Cj · · ·
...

...
...

. . .

 .
Thus, C ∈ ΛF

∞,q(A). Now it remains to prove the claim, which will be done
by induction.

Assume C = (C1, ..., Cm) ∈
⋂

Y ∈V⊥ Λ
F
1,q(Y tAY ). Then C = (C1, ..., Cm) ∈

ΛF
1,q(A) and there exists X1 ∈ Vq(H) such that X1 : H1 → H with X∗1X1 =

IH1
for some q-dimensional subspace H1 of H so that Xt

1AjX1 = Cj for
j = 1, . . . ,m. The claim holds for {X1}.

Assume the operators {X1, . . . , Xn} already satisfy the claim. ThenHr and
Hs are orthogonal for all 1 ≤ r < s ≤ n. Since X∗rXs = 0q for 1 ≤ r < s ≤ n,
Xr(Hr) is orthogonal to Xr(Hs) for r 6= s. Then one can extend X1⊕· · ·⊕Xn

to a unitary operator U : H → H such that U |Hr
= Xr for 1 ≤ r ≤ n,

and the operator matrix of U tAjU with respect to the decomposition H =

(
⊕n

r=1Hr)⊕ (
⊕n

r=1Hr)
⊥

has the form[
In ⊗ Cj ∗
∗ ∗

]
.

Let L be the subspace spanned by{
(⊕n

r=1Hr) , U tA1U (⊕n
r=1Hr) , . . . , U tAmU (⊕n

r=1Hr)
}
.
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Then L has dimension at most qn(m+ 1). Take Y = U |L⊥ . Then Y ∈ V⊥(H).
By the above assumption, we have C ∈ ΛF

1,q(Y tAY ) and there exists X :

Hn+1 → L⊥ with X∗X = IHn+1
for some q-dimensional subspace Hn+1 of L⊥

such that

Xt(Y tAjY )X = Cj , j = 1, . . . ,m.

Let Xn+1 = Y X : Hn+1 → H. Clearly, X∗n+1Xn+1 = Iq and Xt
n+1AjXn+1 =

Cj for all j = 1, . . . ,m. Now fix 1 ≤ r ≤ n. For every u ∈ Hn+1 and v ∈ Hr ⊆
L, Xu ∈ L⊥ and U tAjUv ∈ L. Then

〈u,X∗n+1Xrv〉 = 〈Xn+1u,Xrv〉 = 〈Y Xu,Uv〉 = 〈UXu,Uv〉 = 〈Xu, v〉 = 0

and

〈u,Xt
n+1AjXrv〉 = 〈Xn+1u,AjXrv〉 = 〈Y Xu,AjUv〉 = 〈Xu,U tAjUv〉 = 0.

Thus, X∗n+1Xr = 0 and Xt
n+1AjXr = 0 for all 1 ≤ j ≤ m and 1 ≤ r ≤ n. As

Aj is symmetric or skew-symmetric, we have Xt
rAjXn+1 = 0 for all 1 ≤ j ≤ m

and 1 ≤ r ≤ n. Thus, the operators {X1, . . . , Xn+1} satisfy the claim. By
induction, the claim holds.

(ii) For every F ∈ F(H)m, there exists Y ∈ V⊥ such that Y tFY = 0 =
(0, . . . , 0). Then

ΛF
p,q(Y tAY ) = ΛF

p,q(Y t(A + F)Y ) ⊆ ΛF
p,q(A + F).

(iii) Suppose Y ∈ V⊥r for some r. Then Y : L⊥1 → H is such that Y ∗Y = IL⊥1
for some r-dimensional subspace L1 of H. Since L⊥1 is infinite dimensional, by
Proposition 4.1, ΛF

pq,1(Y tAY ) is non-empty. Pick (b1, ..., bm) ∈ ΛF
pq,1(Y tAY ).

Then there exist a pq-dimensional subspace H1 of L⊥1 and X : H1 → L⊥1 with
X∗X = IH1

such that Xt(Y tAjY )X = bjIpq for j = 1, . . . ,m. Extend the
operator Y X : H1 → H to a unitary operator U : H → H so that U |H1

= Y X.
Let L2 be the subspace spanned by

{L1,H1, U
tA1U(H1), . . . , U tAmU(H1)}.

Then L2 has dimension at most pqm + r. Set W = U |L⊥2 . Then the operator

matrix of U tAjU with respect to the decompositionH = K1⊕L⊥2 ⊕(K1⊕L⊥2 )⊥

has the form bjIH1 0 ∗
0 W tAjW ∗
∗ ∗ ∗

 .
Let Bj be the operator such that the operator matrix of U tBjU with respect
to the same decomposition H = H1 ⊕ L⊥2 ⊕ (H1 ⊕ L⊥2 )⊥ has the formbjIH1

0 0
0 W tAjW 0
0 0 bjI(H1⊕L⊥2 )⊥

 and Fj = Bj −Aj .

Notice that H1 ⊕ (H1 ⊕ L⊥2 )⊥ = L2 is finite dimensional and U tFjU has the

form

0 0 ∗
0 0 ∗
∗ ∗ ∗

. Thus, Fj is a finite rank operator. Now denote F = (F1, . . . , Fm)

∈ F(H)m and suppose

C = (C1, ..., Cm) ∈ ΛF
p,q(A + F) = ΛF

p,q(B) = ΛF
p,q(U tBU).
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Then there exists Z : H2 → H with Z∗Z = IH2 for some pq-dimensional
subspace H2 of H such that Zt(U tBjU)Z = Ip ⊗ Cj for j = 1, . . . ,m. Write

Z =

Z1

Z2

Z3

 according to the same decomposition H = H1⊕L⊥2 ⊕ (H1⊕L⊥2 )⊥.

Then

bj · Zt
1Z1 + Zt

2(W tAjW )Z2 + bj · Zt
3Z3 = Zt(U tBjU)Z = Ip ⊗ Cj .

Since dimH2 = pq = dimH1, one can always find an operator Ẑ1 : H1 → H1

such that Ẑ∗1 Ẑ1 = Z∗1Z1 + Z∗3Z3. Define Ẑ : H2 → H1 ⊕ L⊥2 by Ẑ =

[
Ẑ1

Z2

]
with respect to the decomposition H1 ⊕ L⊥2 . Then Ẑ∗Ẑ = IH2

and hence,
Ẑ ∈ Vpq(H). Furthermore,

Ẑt

[
bjIH1 0

0 W tAjW

]
Ẑ = bj · Ẑt

1Ẑ1 + Zt
2(W tAjW )Z2

= bj · (Zt
1Z1 + Zt

3Z3) + Zt
2(W tAjW )Z2

= Zt(U tBjU)Z = Ip ⊗ Cj .

Recall that H1 ⊆ L⊥1 and L⊥2 ⊆ L⊥1 , and hence, H1 ⊕ L⊥2 ⊆ L⊥1 . Thus, the
operator bjIH1

⊕W tAjW is a compression of Y tAjY to H1 ⊕ L⊥2 . Thus,

C ∈ ΛF
p,q

(
b1IH1

⊕W tA1W, . . . , bmIH1
⊕W tAmW

)
⊆ ΛF

p,q(Y tAY ).

Hence, the proof is complete.

Proof of Theorem 4.1. By Theorem 2.3, Theorem 3.3, Proposition 4.1
and Lemma 4.1 (i),

ΛF
∞,q(A) ⊆

⋂
p≥1

SF
p,q(A) ⊆

⋂
p≥1

ΛF
p,q(A) ⊆

⋂
p≥1

ΛF
p0+2pq,q(A)

⊆
⋂
p≥1

 ⋂
Y ∈V⊥p (H)

ΛF
p0,q(Y tAY )

 =
⋂
{ΛF

p0,q(Y tAY ) : Y ∈ V⊥(H)}

⊆ ΛF
∞,q(A).

Moreover, by Lemma 4.1 (ii) and (iii), we have⋂
{ΛF

p0,q(Y tAY ) : Y ∈ V⊥(H)} =
⋂
{ΛF

p0,q(A + F) : F ∈ F(H)m}.

Note that SF
p,q(A) is convex for all positive integer p. Hence, the result follows.

Let A = (A1, . . . , Am) ∈ B(H)m. Define the joint essential congruence
(p, q)-matricial range of A by

Λe,F
p,q(A) =

⋂
{cl(ΛF

p,q(A + F)) : F ∈ F(H)m}.

One will see later that F(H) can be replaced by the set of compact operators
C(H). The set Λe,F

p,q(A) can be viewed as the “core” of the joint (p, q)-matricial
range of A under compact perturbation. The definition is motivated from the
study of the Calkin algebra, see [14,22,24]. We have the following.
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Theorem 4.2 Let A ∈ B(H)
m

and q be a positive integer. Then Λe,F
p,q(A) =

Λe,F
1,q(A) for every positive integer p, and they are compact, convex and equal

to ⋂
{S̃ F

r,q(A) : r = 1, 2, . . . } =
⋂
{cl(ΛF

r,q(A)) : r = 1, 2, . . . }

=
⋂
{cl
(
ΛF
p,q(Y tAY )

)
: Y ∈ V⊥(H)},

where S̃Fr,q(A) is the set of all star-centers of cl(ΛF
r,q(A)).

Proof. We first show that for every integers p0 and p⋂
{cl(ΛF

p0,q(Y tAY )) : Y ∈ V⊥(H)} ⊆
⋂
{cl(ΛF

1,q(Y tAY ) : Y ∈ V⊥(H)}

⊆ cl(ΛF
p,q(A)). (4.4)

The first inclusion is trivial. Let C = (C1, . . . , Cm) ∈
⋂
{cl(ΛF

1,q(Y tAY ) : Y ∈
V⊥(H)}. Fix a positive integer n. As C ∈ cl(ΛF

1,q(A)), there exists X1 ∈ Vq(H)

such that X1 : H1 → H with X∗1X1 = IH1
so that Xt

1AjX1 = B
(1)
j and

‖B(1)
j − Cj‖ ≤ 1

n , j = 1, ...,m. By an inductive argument similar to that in
Lemma 4.1, one can construct two infinite sequences {Xr}∞r=1 and {Hr}∞r=1

with Xr : Hr → H for some q-dimensional subspace Hr such that any two
distinct subspaces Hr and Hs are orthogonal,

X∗rXs =

{
Iq r = s,

0q r 6= s,
and Xt

rAjXs =

{
B

(r)
j r = s,

0q r 6= s,
with

∥∥∥B(r)
j − Cj

∥∥∥ ≤ 1

n
,

for j = 1, . . . ,m. Take d ≥ (p − 1)(2q2m + 1) + 1 and set X = ⊕d
r=1Xr :

⊕d
r=1Hr → H. Then X∗X = I⊕d

r=1Hr
and

XtAjX = B
(1)
j ⊕B(2)

j ⊕ · · · ⊕B(d)
j and

∥∥∥B(r)
j − Cj

∥∥∥ ≤ 1

n
,

for j = 1, . . . ,m and r = 1, . . . , d. Denote Br = (B
(r)
1 , . . . , B

(r)
m ) for r =

1, . . . , d. Identifying B1, . . . ,Bd as d points in R2q2m, then by Tverberg’s The-
orem (see [29]), one can partition {Br : r = 1, . . . , d} into p sets

B1 = {Br : r ∈ I1}, B2 = {Br : r ∈ I2}, . . . Bp = {Br : r ∈ Ip}

such that conv(B1) ∩ · · · ∩ conv(Bp) 6= ∅. Pick C(n) = (C
(n)
1 , . . . , C

(n)
m ) ∈

conv(B1) ∩ · · · ∩ conv(Bp). Then C(n) ∈ ΛF
p,q (⊕r∈I`Bj) for ` = 1, . . . , p and

hence,

C(n) ∈ ΛF
p,q (⊕p

t=1 ⊕r∈I` Bj) = ΛF
p,q

(
⊕d

t=1Bj

)
= ΛF

p,q(XtAX) ⊆ ΛF
p,q(A).

Now as C
(n)
j is a convex combination of B

(r)
j ’s, ‖B(r)

j − Cj‖ ≤ 1
n implies

‖C(n)
j − Cj‖ ≤ 1

n . We have C(n) ∈ ΛF
p,q(A) and

∥∥∥C(n)
j − Cj

∥∥∥ < 1
n . Therefore,

there exists a sequence {C(n)}∞n=1 ⊆ ΛF
p,q(A) converging to C. Hence, C ∈

cl(ΛF
p,q(A)). Note that by Lemma 4.1, we obtain

Λe,F
p,q(A) =

⋂
{cl
(
ΛF
p,q(A + F)

)
: F ∈ F(H)m}

=
⋂
{cl
(
ΛF
p,q(Y tAY )

)
: Y ∈ V⊥(H)}.
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Now by Corollary 3.1 and Corollary 2.1,⋂
r≥1

S̃F
r,q(A) ⊆

⋂
r≥1

cl(ΛF
r,q(A)) ⊆

⋂
r≥1

cl(ΛF
r(1+2q2(2m+1)),q(A))

⊆
⋂
r≥1

cl(SF
r,q(A)) ⊆

⋂
r≥1

S̃F
r,q(A).

Moreover, by Theorem 2.3, Theorem 3.3 and (4.4), we have

⋂
r≥1

cl(ΛF
r,q(A)) ⊆

⋂
r≥1

cl(ΛF
p0+2rq,q(A)) ⊆

⋂
r≥1

 ⋂
Y ∈V⊥r (H)

cl(ΛF
p0,q(Y tAY ))


=
⋂
{cl(ΛF

p0,q(Y tAY )) : Y ∈ V⊥(H)} ⊆
⋂
r≥1

cl
(
ΛF
r,q(A)

)
.

Setting p0 = p, we have Λe,F
p,q(A) =

⋂
r≥1 cl

(
ΛF
r,q(A)

)
=
⋂

r≥1 S̃
F
r,q(A). As

S̃F
r,q(A) is a compact convex set for all positive integers r, their intersection is

also compact and convex. Thus, Λe,F
p,q(A) is compact and convex.

Note that Λe,F
p,q(A) =

⋂
r≥1 S̃

F
r,q(A), which is independent on p. We see that

Λe,F
p,q(A) = Λe,F

1,q(A).

We close the paper with the following result showing that one may define
Λe,F
p,q(A) using compact operators instead of finite rank operators as commented

before Theorem 4.2.

Theorem 4.3 Let A ∈ B(H)
m

and p, q be any positive integers. Then

Λe,F
p,q(A) =

⋂
{cl(ΛF

p,q(A + G)) : G ∈ C(H)m}.

Proof. Let

S1(A) =
⋂
{cl(ΛF

1,q(A + G)) : G ∈ C(H)m}.

We first show that Λe,F
1,q(A) = S1(A). Evidently, S1(A) ⊆ Λe,F

1,q(A) as F(H) ⊆
C(H). We focus on the reverse inclusion. Suppose C = (C1, . . . , Cm) ∈ Λe,F

1,q(A).

We will show that C ∈ cl(ΛF
1,q(A + G)) for every G ∈ C(H)m.

Suppose G = (G1, . . . , Gm) ∈ C(H)m. For every given ε > 0, there exists
Y ∈ V⊥ such that ‖Y tGiY ‖ < ε/2 for all 1 ≤ i ≤ m. By Theorem 4.2, we can
find X ∈ Vq such that ‖Ci −XtY tAiY X‖ < ε/2 for all 1 ≤ i ≤ m. Therefore,
‖Ci−XtY t(Ai +Gi)Y X‖ < ε for all 1 ≤ i ≤ m. Hence, C ∈ cl(ΛF

1,q(A + G)).
As G is arbitrary, we have C ∈ S1(A).

Now let
Sp(A) =

⋂
{cl(ΛF

p,q(A + G) : G ∈ C(H)m}.

Clearly, Sp(A) ⊆ Λe,F
p,q(A). We consider the reverse inclusion. By Theorem 4.2,

for a fixed G ∈ C(H)m,

Λe,F
p,q(A) = Λe,F

1,q(A) = S1(A) = S1(A + G) = Λe,F
p,q(A + G) ⊆ cl(ΛF

p,q(A + G)).

Thus, Λe,F
p,q(A) ⊆

⋂
{cl(ΛF

p,q(A + G) : G ∈ C(H)m} = Sp(A).
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