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Abstract

Given a matrix A, let O(A) denote the orbit of A under a certain group action such as

(1) U(m) @ U(n) acting on m X n complex matrices A by (U, V)x A = UAV?,

(2) O(m)®@O0(n) or SO(m)® SO(n) acting on m X n real matrices A by (U, V)x A =UAV",
(3) U(n) acting on n X n complex symmetric or skew-symmetric matrices A by Ux A = UAU?,
(4) O(n) or SO(n) acting on n X n real symmetric or skew-symmetric matrices A by Ux A =

UAU!.
Denote by
O(Al,...,Ak) :{Xl—I-—I-XkX, € O(A,), = 1,,k}

the joint orbit of the matrices Ay, ..., Ay. We study the set of diagonals or partial diag-
onals of matrices in O(Ay,..., Ax), L.e., the set of vectors (dy,...,d,) whose entries lie in
the (1,71),...,(r, jr) positions of a matrix in O(Ay, ..., Ag) for some distinct column indices
Jiy---,Jr- In many cases, complete description of these sets is given in terms of the inequali-
ties involving the singular values of Ay, ..., Ax. We also characterize those extreme matrices
for which the equality cases hold. Furthermore, some convexity properties of the joint orbits
are considered. These extend many classical results on matrix inequalities, and answer some
questions by Miranda. Related results on the joint orbit O(Ay,..., Ax) of complex Hermitian
matrices under the action of unitary similarities are also discussed.
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1 Introduction

Let M, .(F) (respectively, M, (F)) be the set of m X n (respectively, n x n) matrices over
F, where F is the complex field C or the real field R. Let U(n) denote the unitary group
in M,(C), and let O(n) and SO(n) denote the orthogonal and special orthogonal group in

M, (R). For notational convenience, we sometimes use U, (F) to denote the unitary or real
orthogonal group depending on F = C or R.

Given a matrix A, let O(A) denote the orbit of A under a certain group action such as

UAU".
The joint (additive) orbit of the matrices Ay,..., Ay is defined by

O(Al,,Ak):{Xl—I-—I-XkX,EO(A,), izl,...,k},

which has been studied extensively in connections with many subjects including matrix
inequalities, operator theory, combinatorial theory, Lie theory, and algebraic geometry, see
for example, [1, 16] and their references.

In this paper we study the set of diagonal or partial diagonals of matrices in the joint orbit
O(Ay,. .., Ay), i.e., the set of r tuples (dy,...,d,) whose entries lie in the (1,71),...,(r,J,)

positions of a matrix X € O(Ay,...,A) for some distinct column indices ji,...,7,. In
many cases, complete description of these sets is given in terms of the inequalities involving
the singular values of Ay,..., A;. We also characterize those extreme matrices for which

the equality cases hold. Furthermore, some convexity properties of the joint orbits are
considered. These extend many results in matrix inequalities, and answer some questions
raised by Miranda [7] (see Theorem 2.7).

In our discussion, we shall make heavy use of the theory of majorizations. We refer the
readers to [6] for general background. Here we give some basic definitions and notations.
Given two real vectors x and y we say that x is weakly majorized by y, denoted by x <, y
if the sum of the r largest entries of x is not larger than that of y forr =1,... n. f x <, y
and the sum of entries of x is the same as that of y, we say that x is majorized by y, denoted
by x <y. Let x = (zy,---, ,) be a complex vector, define |x| = (||, -, |z,|). We shall
let

T=Tp={pcF:|u=1}.

Furthermore, if X € M, (F), the vector of diagonal entries of X is denoted by diag (X). The
standard basis for M, ,,(F) will be denoted by { Ey1, E1g, ..., Emy,}. Foragiven A € M, »(F),
let s(A) = (s1(A), ..., sm(A)) be the vector of singular values of A with s1(A4) > -+ > s,,(A).



2 Matrices under the action of U,,(F) ® U, (F)

In this section, we consider matrices in M, ,(R) under the group action U, (F) ® U,(F)
defined by (U, V) * A = UAV'. Tt is well known the orbit O(A) of A € M,, .(F) consists of
all matrices X € M,, ,(F) such that s(X) = s(A). Suppose Ay,..., Ay € M,, »(F) and

k
O(Al, .. ,Ak) = {ZX, X € O(A,), 1=1,... ,k} . (2.1)
i=1

We are interested in studying the set D, (A, ..., Ag) of r-tuples (dy,...,d,) such that d; is
the (7, ) entry of a matrix in O(A;,..., Ax)for yj=1,...,r. Since X € O(A4,,...,Ax) if and
only if PX@Q € O(Ay, ..., Ag) for any permutation matrices P and @, the set D, (A, ..., Ag)
can be viewed as the set of vectors with entries lying in the (1, 7),...,(r, j,) positions of a
matrix in O(A,,. .., Ag) for any distinct column indices 7y, ..., j,.

We divide our discussion into several subsections. First, some background is presented in
Section 2.1. In Sections 2.2 and 2.3, we give a complete description of the set D, (A4, ..., Ax)
in terms of inequalities involving the singular values of Ay, ..., A;. Furthermore, the extremal
matrices for which the inequalities become equalities are characterized. A variation of the

problem is considered in Section 2.4. Then we study some convexity properties of the set

D.(Ai,...,Ax) in Section 2.5.

2.1 Background

In [18] (see also [12]), Thompson obtained necessary and sufficient conditions for a vector
(dv,...,d,) to be the vector of diagonal entries of a matrix in O(A) for a given A € M, (F).

Proposition 2.1 Suppose A € M,(F) has singular values s; > -+ > s, > 0. Then
di,...,dn € F with |d| > --- > |d,| are the diagonal entries (in any order) of a matriz in
O(A) if and only if

Z|dj|§28j,?“:1,...,n, (22)
7=1 7=1

and
n—1 n—1
S 15—l < 355 — s 2.3
7=1 7=1

This result was later extended to the product of matrices as follows, see [8, 7, 15].

Proposition 2.2 Suppose Ay,..., Ay € M,(F). Let s; = [I%, 5;(4;) for j = 1,...,n.
Then dy,...,d, € F with |dy| > --- > |d,| are the diagonal entries (in any order) of a
matriz of the form 1%, X; with X; € O(A4;) for each i if and only if (2.2) and (2.3) hold.

It is interesting that the same conditions (2.2) and (2.3) are necessary and sufficient in
the extended result with a simple (natural) modification of the definition for sq,...,s,. In
particular, we have the following consequence.
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Corollary 2.3 Let Ay,..., Ay € M, (F) and sy,...,s, satisfy the hypothesis of Proposition
2.2. Then dy,...,d, are the diagonal entries (in any order) of a matriz [I%_, X; with X; €
O(A;) for each i if and only if dv,...,d, are the diagonal entries of a matriz with singular
values s1,...,8y,.

Evidently, Proposition 2.2 can be viewed as the description of vectors of diagonal entries
of matrices in the joint (multiplicative) orbit of Ay,..., Ay defined by

P(Al,...,Ak) = {ﬁX] 1 X € O(A])} . (2.4)

J=1

It is natural to ask the corresponding question for the joint (additive) orbit O(A, ..., Ay)
defined as in (2.1). In fact, the problem was raised explicitly in [7].

Problem 2.4 Let Ay,..., Ay € M,(F). Determine the necessary and sufficient condition
for (di,...,dy) to be the vector of diagonal entries of a matriz in O(Ax,..., Ax) in terms of
the singular values Aq,. .., Ag.

In view of Propositions 2.1 and 2.2, one might guess that (2.2) and (2.3) are the necessary
and sufficient conditions if s; = 2% | s;(4;). In fact, it follows easily from Proposition 2.1
that the inequalities (2.2) and (2.3) are still sufficient, and that (2.2) is necessary. However,

(2.3) may not be necessary, as shown in the following example.

Example 2.5 Let A; = [, and A, = [1]®[—1]. Then d; = 2 and d; = 0. Since 51 = 55 = 2,
we see that dy — dy £ 51 — ss.

We shall give a complete answer of Problem 2.4 in the next subsection. The following
observation is useful in our discussion.

Lemma 2.6 Let Ay,..., Ay € Mp,(F), and 1 < r < min{m,n}. Then (di,...,d,) €
D.(Ai, ..., Ar) if and only if

(,uld,'l,. . .,/erir) € DT(Al,. . ,Ak)
for any permutation (i1,...,1,) of (1,....r) and p; €T for alli =1,...,r.

By the above lemma, we can always focus on those d = (dy,...,d,) € D,(A4,..., Ax)
with dy > --- > d, > 0.

2.2 Characterization of D,(A4,,...,A,) and extremal matrices:
The case m=n=r

In this subsection, we characterize the set D, (A1,. .., Ax) for Ay, ..., Ax € M,(F), giving
the solution for Problem 2.4. As mentioned before, the most challenging part is to find a
suitable replacement for condition (2.3). It turns out that the required condition can be
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understood from the 1 x 1 case with an appropriate formulation. We shall not distinguish
1 x 1 matrices and scalars in our discussion. Thus for n =1 and A; = [s1(A4;)] fori=1,...,k,
we have

Di(Ar, ..., Ax) = Di(s1(Ar), ..., 51(Ap)) = {Z,uisl(/li) Dy € T} )

If F = R then D;(A;,...,A;) is a finite set with at most 2% points. If F = C, then
d € Di(Ay,..., Ay) if and only if e''d € Di(Ay,..., A;) for all t € R. Since D; (A, ..., Ap)
is connected, it is an annulus centered at the origin in C. It is not hard to see that the outer
radius of the annulus is s; = Zle s1(A;). If for some 7, s1(A;) > 3,4, 51(4;), then the inner
radius of the annulus is po = s51(4;) — X,4; 51(A;). Otherwise, py = 0. Thus,

po =min{|d| : d € Di(A1,..., Ap)} = max ({0} U {2s1(A;) —s1:1 <1< Ek}).

The result of the 1 x 1 case can be stated in terms of inequalities so that it can be extended
to higher dimensions, namely, d € Dy(Ay, ..., Ag) if and only if

0 > min{|d—p|:p € Di(s1(A1), -, s1(Ax))}
= min{||d] —|p|| : p € Di(s1(A1), -, 51(Ax))} .

For higher dimensions, we have the following result.

Theorem 2.7 Let Ay,..., Ay € M,(F). Suppose s; = ¥ s:(4;), and dy,...,d, € F
satisfy |di| > -+ > |d,|. Then D,(Ai,...,Ar) contains a vector with entries dy,...,d, in
any order if and only if

SN <> s r=1,...,n, (2.5)
7=1 7=1

and
n—1 n—1
> ldj| +min{[|da| = Ipl| : p € Di(sa(Ar), - sa(Aa))} < D55 (2.6)
7=1 7=1

IfF = C, (2.6) can be replaced by the inequality

n—1 n—1
Do 1dil = ldnl < D2 55— po, (2.7)
7=1 7=1

where

Po = min{|p| ‘pE Dl(sn(Al)v T 75n(Ak>)}'

Moreover, suppose A = Y&, A;, where A; = (az(jé) € O(A;) fori = 1,...,k, satisfies
diog (4) = (1], .., 1du]).



(a) < n. The equality holds in (2.5) if and only if A; = B; ® C; such that
)

Let 1 < r

B € M( is positive semi-definite and has eigenvalues s1(A;), ..., s.(4;), for all
=1,.

(b) The equality holds in (2.6) if and only zfa >0 foralli=1,....k, j=1,....,n—1,

pE Dl(sn(Al), ce ,Sn(Ak))} 5

k
5 [lafdl - sa(4)] =
=1

and there exists a diagonal matriz D = I,_y @ [u] € U,(F) such that

(1) if |a@| > s.(A;), then pa) = [al)| and DA; is hermitian with eigenvalues
s$1(Ai), oy snm1(A), sn(Ad);

(2) 4 aifr)l < sn(A;), then ,uagfr)l = —|a£f)l| and DA; is hermitian with eigenvalues
$1(A), oy 8no1(Ay), —sn(A);

al)| = s,(A;), then DA; = B; @ [al)], where B; is hermitian with eigenvalues

(3) 4
Sl(A,'), ceey Sn_l(A,').

Furthermore, if the equality holds in (2.6) and there exists 1o, such that s, (A;) >
ali9)| = (Ai) = || for all i # i,

nn

Note that one may replace (2.6) by

n—1 n—
> ldil + min{|d, — p| - p € Di(sn(Ar), - sn(Ar))} < D sj - (2.8)
For F = R, there are more numbers of the form |d,, — p| than the numbers of the form

l|dn| — |p|| with p € Di(sn(A1), -, sn(Ax)). Hence, there is an advantage for considering
(2.6). For F = C, if at least two of s,,(A;), -, s,(A) are not equal to 0, then there are
infinite many numbers of the form |d, — p| or ||da| — |p|| with p € Di(sn(A41),- -, sn(A4k)).
Nonetheless, (2.6) can be replaced by the single inequality (2.7).

Proof of Theorem 2.7 Let us first prove the fact that the conditions (2.5) and (2.6)
are equivalent to (2.5) and (2.7) when F = C. Let

¢ =min{||dn| — |pl| : p € Di(sn(Ar), -, 5n(Ar))} = [|dn] = [p1]],
where p1 € Di(sn(A1), -, su(Ak)).
Suppose (2.5) and (2.6) hold. We have

n—1 n—1 n—1 n—1
Yo 1dil A+ po = ldnl < D 1di| 4 [oa] = [dal < D2 1ds| + [Ipa] = ldall < D2 550
7=1 7=1 7=1 7=1



Hence,

n—1 n—1
doldil = 1dal <7 55— po-
7=1 7=1

Conversely, suppose (2.5) and (2.7) hold. If |d,| < po, then ¢ = pg — |d,|; so (2.7) gives
It dil = [dal < 3521 s — po- Tt follows that Y777 |dj] + ¢ <TI0 s,

If po < |dn| < 8y, then ¢ = 0 and (2.6) reduces to (2.5) with r = n — 1. If |d,| > s,, then
¢ = |dn| — sn and (2.6) follows from (2.5) for r = n.

For the sufficiency part of Theorem 2.7, let d = (dy,---, dy), with |dy| > -+ > |d,|
satisfying (2.5) and (2.6). We are going to show that d € D, (A4, ..., Ax).

Suppose

min {||dn| = [pl| : p € Di(sn(A1); -+, 8n(Ar))} = ||dn] = [p1]],

where |p;| = X5, pisn(A;) € Di(sn(A1), -, 80(Ax)). We have

n—1 n—1 n—1
Yo ldil+1orl = 1dal < D2 1di| + [lda] = |pal] < 37 55
j=1 Jj=1 Jj=1

Hence,
n—1 n—1
S il = 1dal < 3 55— Ioul.
7=1 7=1

So, by Proposition 2.1, there exist U, V' € U, (F) such that

S1 0 0
d = diag |[U|Y UV |y
. - Sp-1 0
0 - 0 Ipl
si(A) 0 0
= diag vl o ' V| eDa(Al ... A).
l»z:; : S, Sn—l(Ai) 0

We finish the proof of Theorem 2.7 by proving the necessity of (2.5) — (2.7) and the equality
cases in (a) and (b). To achieve that, we need the following lemma adapted from Theorems
3.1 and 3.4 in [5] (see also the proof of Lemma 5 in [18]).

Lemma 2.8 Let A = (ap,) € M,,(F) have nonnegative diagonal entries.

(a) Suppose 1 <r <n. Then 37 a;; = Y 5;(A) if and only if A= B @ C such that
B € M, (F) satisfies B = B* with eigenvalues s1(A),...,s.(A4).



(b) We have Z] Laji—an = Y021 8;(A)—5,(A) if and only if there ezists D = I,,_1®[u] €

71=1

Un(F) such that DA = A*D* has eigenvalues s1(A), ..., sn_1(A), —sn(A).

To prove the necessity of (2.5), let d = diag (X5, U; A;V;), where Uy, ..., U, Vi,..., Vi €
U,(F),and dy > --- > d, > 0. Let d®) = diag (U;A:V;), st = (s1(Ai), -+, su(A4;)) and
s = (51, -, 8,). By Proposition 2.1, we have |[d®)| <,, s) for 1 < i < k. Therefore,

k
d=|3 d |<w2|d <0 350 =
i=1 i=1
This proves (2.5).

Suppose 1 < r <n and the equality holds in (2.5). Then the sum of the first  diagonal
entries of U;A;V; must equal Y7_,; 5;(A;). By Lemma 2.8 (a), we see that U;A;V; = B; ®
C; such that B, € M,(F) is positive semi-definite and has eigenvalues s;(A4;),...,s.(4;).
Conversely, if U; A;V; has the above structure, then clearly (2.5) is an equality. Thus (a) is

valid.
Next, we turn to (2.6). For the convenience of notation, let Dy = Dy (s,(A41), -+, sn(Ak)),

and let U; A;V; = ( ) Choose & € T such that a =¢ |a | fore=1,...,k. We have

jal) — Gisu(Ai)] = [Jall)] = sa(A)|  fori=1,... k.

Let py = Y8, €isn(A;) € Dy. Choose a partition {1, I, I3} of K = {1, 2,---, k} such that

={icK:|a)]>s,(4)}, L={i € K:]a%| < s,(A4)}, L={i € K:|al)| = s,(4)}.

Then
n—1
> 1dj| + min{[|dn| — |pl| : p € D1}
7=1
n—1
= > |dj| + min{|d, —p| : p € D1}
7=1
n—1
< D ldil 4 1dn = pil
7=1
n—1 k ) k
= Y I d)+136 (|al] - sa(a)) |
7=1 =1 =1
< Z {Z lagi |+ |& ( aifr)l — sn(A,))‘}
=1 ]
n—1 .
= ¥ {Z )]+ [al)] = s } +3 {Z a%)] = lalD] +sn<Ai>} + 303 |af))
i€l =1 1€l = i€l3 j=1



IN

3 n—1
Z (Z Z S]‘(A,')) (applying Proposition 2.1 to each U;A;V})
=1 \z€l; =1
k n—1 n—1
= D 2 sild) =25,
j

-~
~

Furthermore, the equality holds in (2.6) if and only if all the above inequalities become
(1)

equalities. Thus, a;; is nonnegative for all: =1,...,k,and j =1,...,n — 1, and

min{|d,, — p|: p € D1}

= D& ( al| — Sn(Ai)) +> & (Sn(Ai) -

€l ielp

= Z( —sn(A,»))+z;(sn(A,»)—

[ASH i

ali)

)

)

G ol

nn

= 3 [Jal] = sa(A)| . (2.9)
=1

If UL, =0, set 4 = 1; otherwise, we can set = & = —& for all 7 € I} and i’ € I,. Let
D =1, &[y]. Then, by Lemma 2.8,

1. for each i € I, we have pa’,, = |al)| and tr DA; = 3" ‘a@

J=1 %33

= > 7-18j(4;), hence
DA, is hermitian with eigenvalues s1(A4;), ..., 8n-1(4;), sn(A:);

2. for each 7 € I, we have ,uagf)l = —|a£f,)l| and

ali)

n—1
3 [l -
j=1

n—1
7=1

hence DA; is hermitian with eigenvalues s1(4;),. .., Sn—1(A4;), —sn(Ai);

3. for each i € I5, we have Y7} \a%)

= Y72} 5;(A;), and hence A; = B; @ [al)].
Finally, if inequalities (2.6) becomes an equality and there exists i such that s, (A4;,) >
‘a(i) = 0, then the equalities hold in (2.9) for any choice of ¢, € T. It follows that

sn(A;) = ‘ag’g for all ¢ # 4. 0

Remark 2.9 In [10] the authors give a necessary and sufficient condition for s; > -+ > s,
to be the singular values of a matrix in O(A;, ..., Ax). In principle, one can solve Problem 2.4
by studying all the possible singular values of matrices in O(Ay,..., Ax) and then applying

Proposition 2.1. However, the condition in [10] involves a large set of inequalities, which are
difficult to write down especially for the real case. It does not seem to be possible to deduce
our result using this method.



2.3 Characterization of D,(A4,,...,A,) and extremal matrices:
The remaining cases
Next, we turn to D, (A, ..., Ax) with Ay, ..., Ax € M, ,(F) when m # nor r < m = n,
1.e., all other cases not covered by Theorem 2.7.

Theorem 2.10 Let Ay, ..., Ay € My, o(F). Suppose 1 < r < min{m,n} such that m # n or

r<m=nmn. Let s; = ¥, 5;(A;) fori =1,...,n. The following conditions are equivalent.

(a) Up to a (any) permutation of the entries, the vector (dy,...,d,) is in D.(Aq,..., A.).

(b) Up to a (any) permutation of the entries, the vector (di,...,d,) is in D,(A) for some
A€ M,(F) with s(A) = (S1,. -+, Sm)-

(¢) (|di]y-- -y |dr]) <w (S15---y8r).
Furthermore, suppose X; € O(A;) fori =1,...,k, and so that the first r diagonal entries
of Xo+ -+ Xy equal dy,....d,. Then |di|+ -+ +|d.| = s1+ -+ s, if and only if there
exists a diagonal matriz D € U, (F) such that

Y; 0 .
DX,—(O Z,)’ Z—l,...,k,

where Y; € M, (F) is hermitian with eigenvalues s1(A;), ..., s.(4;).

Proof. The implication (a) = (c) follows from Theorem 2.7. It is clear that (b) = (a).

Consider the implication (¢) = (b). First, assume that r < m = n. Suppose (c) holds.
Let d; = min{sj, |d,|} for j = r+1,...,n. One easily checks that di,...,d, satisfy (2.5) and
(2.6). By Theorem 2.7, there exists a matrix of the form 2521 U;A;V; with diagonal entries
di,...,d,. Thus condition (a) holds.

Next, consider the case when m # n. Without loss of generality, we may assume that
m > n. We prove (¢) = (b) by induction on n. We may assume that » = n by setting d; = 0

for r < 53 <n. Let Ag = 2?21 $jE;; € My n(F). It suffices to show that one can construct a
matrix of the form A = UAGV with (1,1),...,(n,n) entries equal to |di|,..., |d,].
If n =1, then A = |d;|E1++/s? — |di|?E3; is a required matrix. Suppose the result holds

for matrices with fewer than n columns. Let &k be the largest integer such that s, > |d;|.
If & < n, then there exists a 2 x 2 unitary matrix U such that U*diag (sg, sk+1)U has diag-
onal entries |dy| and t = sg+sp41—|d1|. Let B = diag (Sk, Skt1, 51552, -« Skels Skt2y -« » Sn ) D

0p—p. Then
v @Im‘?)<om_m>w@]“‘2)‘< D5

where By has vector of singular values (si,...,Sk_1,%, Sk+2,...,8,). One easily checks that
(Idaly ..y |dn|) <w (S1y.« -y Sk—1,t, Skt2, ..., Sn). By induction assumption, there exist unitary
W and V so that W B,V has diagonal entries |dy|, ... |d,|. Consequently, the matrix

A= 11 W)U* & L,_2)BU D L) (1] V)
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has (1,1),...,(n,n) entries equal to |di|,...,|d,]|.
If K =n, then (|di], |d2|) <w (s51,52) and (|da], ..., |dn|) <w (|da], $3,...,5n). So the result
follows from an argument similar to the one in the previous paragraph.

Next, we turn to the last assertion. The sufficiency part is clear. Conversely, suppose
Y1 8; = 2oy |dj|. Let D be a diagonal matrix in U,,(F) such that the first r diagonal

entries of D(X; + - - 4+ X}) are nonnegative. Let DX; = (33 ;) with Y; € M, (F). Since
si(Y;) < sj(A;) for j=1,...,r, we have

r k E r r
ZS]‘ = Ztl’Y;' S Z Sj(A,’) = Sj.
J=1 1

=1 =1 j=1 7=

This implies that s;(Y;) = s;(4;) for j = 1,...,r, and trY; = 377_, 5,;(Yi). Append rows or
columns to the matrix DA; to get a square matrix if necessary. By Lemma 2.8, the resulting
matrix is a direct sum of Y; and another matrix. The result follows. O

2.3 A variation arising from Lie theory

In this subsection, we consider the set
ReD,(Ai,...,Ar) = {(Rez,...,Rez) : (z1,...,2,) € Dy (A1,..., Ap)},

which arises naturally if one uses the Lie theory approach to matrix inequalities (see [16]).
By the results in the last two subsections , one easily deduce the following statement using
the approach in [16, Theorem 6].

Proposition 2.11 Let Ay,..., Ay € M, ,(C), and 1 < r < min{m,n}. Suppose s; =
¥ si(A) forallj=1,...,m.

(a) Up to a (any) permutation of the entries, the vector (dy,...,d,) isinRe D, (A1, ..., Ag).

(b) Up to a (any) permutation of the entries, the vector (di,...,d,) is in ReD,(A) with
A=Y" 5 FE; with p=min{m,n}.

(©) (Il |dy]) <w (51, .-, 50).

Furthermore, suppose X; € O(A;) for alli =1,... k, so that the first r diagonal entries of
Xi + -+« + Xy, have real parts dy,...,d,. Then |di|+ -+ |d.| = s1 + -+ s, if and only if
there exists a diagonal matriz D € U,,(C) such that

Y; 0 .
DX,—(O Z,)’ ’L—l,...,k,

where Y; € M,(C) is hermitian with eigenvalues s1(A;), ..., s.(4;).
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Proof. The implication (b) = (a) is clear. Suppose (di,...,d,) = (Rez,...,Rez,) where
(z21,...,2;) € Dp(Ay, ..., Ar). Then by the previous results, we have

(Idrls s lde]) <w (l2als- -5 120 ]) < (5150205 80).

Thus the implication (a) = (c) is proved.

Suppose (c) holds. Then (see [6]) there exists a nonnegative vector (¢1,...,¢,) such that
|di| < ¢ for 1 <¢ <rand (¢r,...,¢) < (81,...,8.). By the result in [2], there exists a
real symmetric matrix Ay with eigenvalues sq,...,s, and diagonal entries ¢1,...,¢,.. One

can multiply Ag by a diagonal unitary matrix Dy on the left so that the diagonal entries of
DyAg are z,...,z with Rez; = d;. Suppose A € M, ,(R) such that the (z,7) entry equal

s; for i = 1,...,min{m,n}, and zero otherwise. Then there exists a matrix of the form
(D%AO 2) € O(A), and hence (dy,...,d,) € ReD,(A). So, condition (b) holds.
The proof of the last assertion is similar to that of Theorem 2.10. O

2.4 Convexity properties

A subset S of F" is said to be star-shaped with star-center ¢ € S if ts+ (1 —t)c € S
for all s € S and 0 < ¢t < 1. It follows from Proposition 2.1 that if n > 2, D,(Ay,..., Ag)
and ReD,(A4,...,A;) are star-shaped with (0,...,0) as a star-center. Next, we consider
the convexity property of D,(A1,..., Ax) and Re D, (Ay,..., Ap).

Theorem 2.12 Let Ay, ..., Ar € My, o(F), and 1 <r < min{m,n}.
(a) The set ReD,(Ay,..., Ax) is always convez.
(b) Except for the case when m =n = r the set D,(Aq,..., Ax) is always convez.
(¢c) Form=mn, and F = C, D,(Ay,...,A) is convez if and only if
min{[p| : p € Di(sn(A1), -+, $a(4n))} = 0.
(d) Form =mn, and F =R, D,,(A1,..., Ax) is convez if and only if s, = 0.
(e) In all cases, the convex hull of D,(A1,...,Ar) is the set

C:{dEFr|d| <w (317"'757’)}

(f) For every d € C, there exist a, b € D, (A1,...,Ax) and 0 < t < 1 such that d =
ta4 (1 —t)b. If F = C, we can choose t = 1/2.
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Proof. Assertions (a) and (b) follow from Proposition 2.11 and Theorem 2.10 .
For (c), suppose that m = n, and D,(A,...,Ax) is convex. D,(Ay,...,Ar). Since
(s1,-++, 8p) and (s1, -+, —$,) both are in D, (A4, ..., Ax), we have

(Sl, e Sn_170) = Dn(A17 .. ,Ak)

Hence,
n—1 n—1
S sy +min{]0 — ol p € Dy(salA), - su(A)} € 3 s,
7=1 7=1
and thus,

po = min{[0— |ol] - p € Dy(su(Ar), - 5u(A))} = 0.
Conversely, suppose min{|p|: p € Di(sn(A41), -, 5n(An))} = 0. Then (2.7) follows from
(2.5). Hence, D, (Ay,. .., A) is convex.

For (d), suppose that m = n, F = R, and D,(A;,...,Ax) is convex. Therefore,
(81,7 Sp—1,t) € Dy(Ay,..., Ax) for all 0 < ¢ < s,. Hence, Dy (sn(A1), -+, sn(Ar)) =
[0, s,]. Since Di(s,(A1),...,8.(Ax)) is finte, we have s, = 0. Conversely, if s, = 0, then
Sn(A1) =+ = su(Ag) = 0. Hence, Dy (sn(A1),...,5.(Ax)) = {0}, and (2.6) reduces to (2.5)
when r = n. Therefore, D,,(Ay, ..., Ag) is convex.

(e) follows from Theorem 2.7, Corollary 5 of [18] and [17]

(f) It suffices to prove the case when m = n = r. Suppose d = (di,...,d,) € C with
|di| > ... > |dy|. If |dn| > spn, then d € D,,. So we may assume that |d,,| < s,.

Let d = min(|dn_1]|, sn). For g € T, let d(p) = (d1,...,dn-1, pd). Since |d,| < |d|, there
exist py, pg € T and 0 < ¢ <1 such that d, = tpud + (1 — t)ped. Hence, d = ¢td(p1) + (1 —
t)d(pz2). Furthermore, if F = C, we can choose t = 1/2. Clearly, d(p) <w (81, 8n). It
remains to prove that d(u) satisfies (2.6) for all p € T.

If |du—1| > spn, we have d = s,, and (2.6) is clearly satisfied.

If |d,—1| < spn, we have d = |d,_1| and

n—1 n—2 n—2 n—1
DoNdil 4 s = lpdnaa| = D ldjl 450 <D sitsa <D 0S5
J=1 =1 Jj=1 j=1

Therefore, (2.6) is satisfied. O
Let p, g be positive integers satisfying p < m,q < n and r = min{p, ¢q}. Define

D, (A, ... AL ={X € M, ,(F): X is a submatrix of Y € O(Ay,..., Ax)}.

By an argument similar to the one in (e) in the last theorem, we can prove the following

extension of Theorem 10 in [18].

Proposition 2.13 Let Ay,..., A, € M, .(F), let p,q be positive integers satifying p <
m,q <n, and r = min{p, q}. The conver hull of ®,,(A1,..., Ar) is the set

{X e M, (F):0(X) <uw (S1,...,5)}.
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3 Real matrices under the action of SO(m)® SO(n)

In this section, we consider A € M,, ,(R) under the action of SO(m) @ SO(n). Let
SO(A) ={UAV':U € S0(m), V € SO(n)}.

The joint orbit of Ay,..., Ax € M, »(R) is

k

SO(Al,,Ak) = {ZX, X € SO(A,), 1= 1,...,k}.
i=1

We are interested in the set D,(Ay,..., Ag) of r-tuples (di,...,d,) whose entries are the

first r diagonal entries of a matrix in SO(Ay, ..., Ax). Again, the set D,(Ay,..., Ax) can be

viewed as the set of vectors with entries lying in the (1,71),...,(r,J,) positions of a matrix

in SO(A;y, ..., Ag) for any distinct column indices jq,. .., J,.

3.1 Background

In [18, Theorems 2 and 7] Thompson gave a complete description of D, (A) for a given
A € M,(R) by proving the following result.

Proposition 3.1 Let A € M,,(R) have nonnegative determinant and singular values sq >
-+ > 8,. Then there exists X € SO(A) with diagonal entries dy,...,d, in any order such
that q of them are negative and |di| > -+ > |d,| if and only if

SNld;| <> s r=1,...,n, (3.1)
7=1 7=1

and
n—1 n—1
Yo ldil = (=1)da| < 37 55— s (3.2)
7=1 7=1

In particular, Dy (A) is the convez hull of all vectors (£sn1), - -+, £5n(n)) with an even number

of negative signs and with ™ any permutation.

In [15, Theorem 2], the author showed that if Ay,..., Ay € M, (R) with det(A;--- Ag) >
0, and if s; = [T%, s;(4;) for j = 1,...,n, then dy,...,d, € R are the diagonal entries of a
matrix of the form [T¥_, X; with X; € SO(A,) for j = 1,...,k, if and only if (3.1) and (3.2)
hold.

Once again, the product version of Proposition 3.1 is relatively easy to prove, and the
summation version is not so simple. It is worth mentioning that the sets SO(Aq,..., Ax)

and D,(A;,..., Ay) arise naturally in the Lie group setting as pointed out in [16].
In the next subsection, we give a complete description of the set D,(A;,..., Ax). One

easily checks (see also [16, Section 4]) that if m # n or r < m = n then

DT(Al, “en ,Ak) - DT(Al, .. .,Ak),
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which is studied in the previous section. So, we only need to consider the case r = m = n.

3.2 Characterization of D,(Ay,..., A;) and extremal matrices

The following results of Thompson [18] (Lemma 5’ and the proof of Theorem 2) play a
crucial role in our discussion.

Lemma 3.2 Let A € M,(R) with diagonal entries dy,...,d, satisfy det(A) > 0. Then
n—1
Zd]‘—dn S S]‘(A) —Sn(A).
7=1

The equality holds if and only if (I,_1 & [—1])A is symmetric with eigenvalues
s1(A)y ..o sn1(A), —sn(A).
Let J = I,_1 & [—1]. We note that E?;ll dj—d,=tr JA=trAJ.

Lemma 3.3 Let A € M,(R) and (di,...,d,) € D,(A). Then (di,...,d,)P € D,(A) for

any permutation matriz P or diagonal matriz P € SO(n).

The next result treats the special case when all A; have nonnegative determinants. It
turns out that the same set of conditions (3.1) and (3.2) are necessary and sufficient if one
defines s1, ..., s,, appropriately.

Proposition 3.4 Let Ay,..., Ay € M, (R) have nonnegative determinants, and dy, ..., d, be
real numbers such that q of them are negative and |dy| > - -+ > |d,|. Suppose s; = % s;(4;)
for 3 =1,...,n. The following conditions are equivalent.

(a) Up to a (any) permutation of the entries, the vector (dy,...,d,) is in Dn(As, ..., Ag).

(b) Up to a (any) permutation of the entries, the vector (di,...,d,) is in D,(A) with
A=3"siE;.

(¢) The inequalities (3.1) and (3.2) hold.

Proof. Note that A € M,(R) has nonnegative determinant if and only if there exist
U,V € SO(n) such that A = U(X"_, s;(4)E;;)V. So, without loss of generality, we may
assume that A; = 3°7_, s5;(A;)Ej; for each 1.

The equivalence of (b) and (c) follows from Proposition 3.1. The implication (b) =
(a) is clear. Suppose (a) holds. Then (3.1) follows from Theorem 2.7. To prove (3.2), let
(dv,...,d,) = diag (Zle X;) with X; € SO(A,) for each 1.

Applying Lemma 3.2 to each X;, we see that tr JX; < Z;:ll si(Ai) — sn(A;). Thus, we

have

n—1 n—1
Zdj—dn:trJ(Xl—I--"—l-Xk)gZSJ‘—S“. (33)
7=1 7=1
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Suppose there is an even number of negative terms among dy,...,d,. By Lemma 3.3,
we may assume that all d; are nonnegative and (3.2) follows from (3.3). If there is an odd

number of negative terms, we may assume that d; > 0 for y = 1,---,n — 1 and d,, < 0.
Again, (3.2) follows from (3.3). O
By a similar arguments, one may treat the case when A,,..., Ay € M, (R) have negative

determinants. For the general case, we have the following result.

Theorem 3.5 Suppose Aq,..., Ag, Ags1,..., Am € Mu(R) such that det A, > 0 for 1 <
i <kand det A; <0 for k+1<i<m. Suppose s; = >0 5;(A;) forj=1,....,n—1 and
Sp = S8 sn(A)) — it it1 Sn(A;) (sn may be negative). Let dy, ..., d, € R be such that q of

the numbers are negative and |dy| > -+ > |d,| . The following conditions are equivalent.
(a) Up to a (any) permutation of the entries, the vector (di,...,d,) is in D,(Aq, ..., An).

(b) Up to a (any) permutation of the entries, the vector (di,...,d,) is in D,(B), where
B = 2?21 S]‘Ej]‘.

(¢) The following inequalities hold:

S| <> s r=1,...,n—1, (3.4)
7=1 7=1

n—1 n—1
Do1di|+ (=1)da] < D755+ s, (3.5)
7=1

=1
and

n—1 n—1
S di| = (=1)"dn < 3755 = sns (3.6)
7=1 7=1
Furthermore, suppose X; € SO(A;) for all © = 1,...,k, so that the diagonal entries of
X=X+ 4+ Xy equal dy,...,d,.

(1) For1l <r <n, the equality holds in (3.4) if and only if there exists a diagonal matriz
D € U,(R) such that

Y, 0 .
DXi_(O Zi), 1=1,...,m,

where Y; € M, (R) is symmetric with eigenvalues s1(A;), ..., s.(4;).

(2) The equality holds in (3.5) if and only if there exists a diagonal matriz D € SO(n)
such that DX has diagonal entries |di|,...,|dn-1|,(=1)?|d,|, DX; is symmetric with
eigenvalues s1(A;), ..., sn(4;) fori=1,... k, and DX is symmetric with eigenvalues

$1(A45), oy $no1(Ad), —sn(4;) for g =k +1,....m.
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(3) The equality holds in (3.6) if and only if there exists a diagonal matriz D € U,(R) with
det(D) = —1 such that DX has diagonal entries |di],...,|d,_1],(—1)7|d,|, DX, is
symmetric with eigenvalues s1(A4;), ..., sn—1(4i), —sn(A;) fori=1,... k, and DX, is
symmetric with eigenvalues s1(A;j),...,sn(A4;) forj=k+1,....,m.

Proof. Let d = (dy,...,d,). Clearly (b) implies (a).

Suppose (c) holds. We consider two cases:

Case 1. Suppose s, > 0. Then B has singular values si,...,s, and (3.2) follows from
(3.6). For r =1,...,n —1, (3.1) follows from (3.4); for r = n, (3.1) follows from (3.5) or
(3.6). By (b) of Proposition 3.4, d € D, (B).

Case 2. Suppose s, < 0. Then B.J has singular values s1,...,5,-1, —S,. Applying the
argument in Case 1 to d.J and B.J, there exist U,V € SO, (R) such that d.J = diag U(B.J)V.
Thus d = diag UB(JV.J) with U, JV.J € SO,(R).

Next, suppose condition (a) holds. By Proposition 3.4, we may assume that d =
diag (U1 B1 Vi + Uy By V) where

B, = 2: (Z} Sj(Ai)) E;; and B, = nz:; (_nzk; Sj(Ai)) Ej; — (_"Zk; Sn(Ai)) Enn,

and Uy, Uy, Vi and V, € SO,(R). Let d® = diag (U;B;V;) for 1 = 1, 2. Then, for r =
1

n — 1, we have

Sl = S 1a + i
7=1 7=1

ge ey

T

< 0+ 14
< Sls(B) +5i(B2) by (31).

Hence (3.4) follows.
To prove (3.5) and (3.6), first consider the case where an even number of the entries in

d are negative. By Lemma 3.3, we may choose a suitable diagonal matrix D in SO(n) so
that dD have nonnegative entries. For simplicity, we assume that D is the identity matrix;

otherwise, replace d by dD. Applying Lemma 3.2 to d") and d®.J = diag (Uy(ByJ)(JV3J)),

we have

3
|
—_
3
|
—_

n—1 n—1
S d —dV <3 si(By) —sa(By) and Y dP 4+d®D <3 si(By) — sa(By).
7=1 7=1

From (3.1) we have

oA +d) < 3 s(Bi) + sa(B1) and dP) —dP <3 si(B) + su(By).
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Therefore, we have

n—1 n—1 n-l1 i
Shad €T gt md Sl <Y -
7=1 Jj=1 7=1 7=1

from which (3.5) and (3.6) follow. If an odd number of the entries in d are negative, we can
replace d by d.J. Interchanging the roles of By and B in the previous arguments, we get
the conclusion.

Now, we turn to the characterization of the equality cases. First, condition (1) can be
proven by an argument similar to that in the proof of Theorem 2.7.

Suppose X; € SO(A;) so that Xy = X, 4+ ... 4+ X,, has diagonal entries dy,...,d,
attaining the equality in (3.5). Suppose g of the diagonal entries of X, are negative. Then
there exists D € SO(n) such that diag (DXo) = (|di|, -+, (=1)?d,|). For i = 1,... k,
tr (DX;) < Y%, s;(A), by (2.2). For j = k+1,..., m,det (JDX;) > 0for j = k+1,..., m,
by Lemma 3.2, we have tr DX; = tr J(JDX;) < 2?2—11 sj(A;) — sn(Ai). Hence, we have

n m k n m n—1 n
ZSJ‘ :tr(DXO) = Ztr(DX,) S ZZS](A,)—I- Z (Z Sj(A,’) —Sn(A,)) = ZS]‘.
7=1 i=1 i=1 =1 i=k+1 \j=1 7=1
It follows that tr (DX;) = Y¥7_ s;(4;) for ¢+ = 1,...,k, and tr DX; = tr J(JDX;) =
2?2—11 $i(A;) — sn(Ai) for e =k 4+ 1,...,m. The result follows from Lemma 3.2.
The proof for the equality in (3.6) is similar. O

3.3 Convexity properties

Proposition 3.6 Under the assumption in Theorem 3.5, D,,(A1, ..., Am) is the convez hull
of all vectors (£51y," ", £5r(n)) with an even number of negative signs and with © any

permutation. Furthermore, the set
conv {s(X): X € SO(Ay,...,An)} ={s(X) : X € convSO(Ay4,...,An)}

consists of vector s(X) = (01,...,0,) such that oq,...,e60, € Dp(Ay, ..., Ay), where e =1
if spdet(X) >0, e =—1if s, det(X) < 0.

Proof. If s,, > 0, the result follows from the condition (b) in Theorem 3.5, Proposition
3.1 and [18, Corollary 9]. Suppose s, < 0. Then d € D,(B) if and only if dJ € D,(B/J),
and X € SO(B) if and only if X.J € SO(B.J). The result follows from the previous case. O
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4 Skew-symmetric matrices under the action of U,(F)

Let A € M, (F) be a skew-symmetric matrix such that n = 2m or 2m + 1. There has been

considerable interest (see [13, 14, 16]) in studying the set D,(A) of r-tuples (u1,..., ),
where for j = 1,...,r, the number y; is the (j,m + j) entry of a matrix of the form UAU"

with U € U,(F). In this section, we study the structure of the set ﬁT(Al, ..y Ag) of r-tuples
(g1, ... ptr), where for j = 1,...,r, the number y; is the (j,m 4 j) entry of a matrix of the
form Xo = Xy + -+ + Xi, where X; = U; A,U! with U; € U,(F) for all i. We begin with the

following lemma.

Lemma 4.1 Let n = 2m or2m + 1, and let A € M,(F) be a skew-symmetric matriz with
singular values s; = sqj_1(A) = s2;(A) for j =1,...,m, and sgms1(A) =0 if n = 2m + 1.
Suppose 1 < r < m and p1,...,pur € F satisfy |p1| > -+ > |p|. The following conditions
are equivalent.

(a) Up to a (any) permutation of the entries, the vector (uy,...,pu,) is in YN)T(A).

ere exists U € U, such that = and (p1, ..., H1y) s in the
b) Th U € Ua(F) such that UAU* = ( “n, % ) and h

(1,1),...,(r,r) positions of X.
(¢) The following inequalities hold:
(pals oo lpe]) <w (51,205 80),
and if r=n/2
r—1 r—1
Dol = el €37 55— s
7=1 7=1

Proof. The implication (b) = (a) is clear. For (a) = (c), see [13, Theorem 1] and [14,
Theorems 2.1 and 2.2]. Suppose (c) holds. By Proposition 2.1 and Theorem 2.10, one can

construct an m X (n —m) matrix X with singular values s1,..., s, and (j,7) entry equal to
. X : .
p; for j=1,...,r. Then <—?Xt 0 ) satisfies condition (b). O

Lemma 4.2 Suppose n =2m or2m+1, Ay,..., Ap € M,(R) are skew-symmetric matrices
and 1 <r < m. The following conditions are equivalent.

(a) Up to a (any) permutation of the entries, the vector (uy, ..., ) is in YN)T(A).

b) There exist Uy,..., U, € U,(F) such that U;A;U! = Orm Xi ci=1,...,k, and
2 _Xt 0

(f1y ..oy pir) is in the (1,1),...,(r,r) positions of X1 + -+ + Xj.
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(¢) Up to a (any) permutation of the entries, the vector (1, ..., pu.) is in D.(By,...,B,)
(as defined in Section 2), where B; = 327 s95(Ai)Ej; € Myppm(F) fori=1,... k.

Proof. Suppose (a) holds. Then there exist V1,..., Vi € U, (F) so that u; is the (j,m+j)
entry of a matrix of the form Y%, V;A;Vi*. Applying the equivalence of (a) and (b) of Lemma

4.1, we may replace each V; A; V' by a suitable matrix of the form U; A;U!f = (_O;'ét OXi >,
which has the same (1,7 4+ 1),...,(r,2r) entries as V;A;V!. Then X;,..., X, satisfy (b).
Suppose Xi,...X, satisfy (b). Then X; has singular values s3(A4;), sa(A;), ..., s2m(4;).
Thus condition (c) holds.
If (¢) holds, then clearly (b) and hence (a) holds. O

By the above lemma, we can translate all the results in Section 2 to skew-symmetric
matrices. We summarize the result in the following.

Theorem 4.3 Suppose Ay, ..., A € M,(F) are skew-symmetric matrices and m = [n/2].
Let s; = Y8 s9,(A;) for all j < nJ2. For1<r <m, let @T(Al,...,Ak) be the set of all
r-tuples complex numbers equal to the (1,m+1),(2,m+2),...,(r,m+r) entries of matrices

of the form Zle U;A;UL where Uy, ..., Up are unitary. Then

(di,...,d,) € D.(Ay, ..., Ap)

if and only of

(ldi], ..., 1dp]) <w (51,5 8:), (4.1)
and if r = n/2 we have
r—1 r—1
2 ldi| + min{[ld:| — |p|| - p € Dilsa(Ar), .-, su(Ar))} < D55 (4.2)
j:l j:l

In the complex case, (4.2) is equivalent to

r—1 r—1
doldl = d] <37 55— po,
7=1 =1

where

po = min{|p| : p € Dy (su(Ar)s-. ., su(Ai))}.

In particular, we have ﬁr(Al, ooy Ar) = Dy (Ag) where Ag = X7 8(Ejmyj — Emsjj), and

j=1
the set is convexr whenever r < n/2. For r = n/2, the set YN)T(Al,...,Ak) = YN)T(AO) 18
star-shaped with (0,...,0) as a star-center; it is convez if and only if s, = 0.

Next, we consider the equality cases for (4.1) and (4.2).
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Proposition 4.4 Suppose Ay, ..., Ag, and s1,. .., s, satisfy the hypotheses of Theorem 4.5.
Let

k
A=A with 4; =UAU! = (dY)), U €U.F) fori=1,....k  (43)
=1
so that |d;| is the (3,m + 7) entry of A for j=1,....m.
(a) Suppose 1 <r < m. Then
Do ldil=>"s; (4.4)
7=1 7=1
if and only if for each 1 =1,... k,

Ci Or,m—r Bz Or,n—m—r

A' - Om—r,r * Om—r,r *
(2 t al
_B, Or,m—r Cz Or,n—m—r
On—m—r,r * On—m—r,r *

such that B; € M,(F) has trace 3_%_, s2;(A;) and the matriz

(%%, )
-C; B;

is positive semi-definite with eigenvalues s1(A;), ..., 2. (4;).

(b) Suppose r =n/2 and

&:Q}tﬁ)uWL&EMEL fori=1,... .k (4.5)

Then (4.2) becomes an equality if and only if for each 1 =1,...,k,
r—1

tr (L1 & [1]) X0 = ) s;(X5) — 50 (Xi) = 2:: s2;(Ai) — s2r(Ai), (4.6)

71=1

and hence Theorem 2.7(b) is applicable to the matriz X;.

Proof. (a) Let 1 < r < n. If 37_, |d;| = 37, s;, then one can multiply the (m + j)th
row of A; by —1 for j = 1,...,r, and then permute the rows and columns appropriately to

get a matrix whose first 2r diagonal entries are nonnegative with sum equal to

T . . 2r
S falh il el =3 (4.
7=1

=1

21



By Lemma 2.8, the resulting matrix is of the form @; & R; such that Q; € M,,(F) is positive
semi-definite with eigenvalues s1(A4;), ..., s2,(A4;). Thus

Ci Or,m—r Bz Or,n—m—r

A' - Om—r,r * Om—r,r *
(A t al
_Bl Or,m—r Cz Or,n—m—r
On—m—r,r * On—m—r,r *

such that B; € M,(F) has trace 37_; s5;(4;) and the matrix

B; C;
Qi = (—a R)

is positive semi-definite with eigenvalues s1(A;), ..., s2.(4;), for all e =1,... k. Conversely,
if A; has the said block form, then the equality (4.4) holds.
(b) Let n = 2r and (4.5) holds. By Proposition 2.1 and [14, Theorem 3.1], we have

-1

(L @ U)X < 3 s5(X) — 5,(X) < g 52,(As) = 520 (Ay).

~

71=1
Hence, (4.2) becomes an equality if and only if (4.6) holds for each ¢t =1,... k. O

Note that the convexity result on ﬁr(Al, ..., Ag) in the last assertion of the theorem
can also be used to study the singular values of submatrices in the off-diagonal blocks of
a skew-symmetric matrix of the form Y.¥ ., U; A;Uf, U; € U,(F) for i = 1,...,k. One can
easily apply a block permutation to move the p x ¢ submatrix in the off-diagonal position
to the off-diagonal position of the leading (p + q) x (p + ¢) principal submatrix. It is more
convenient to state the result is this way, and we have the following result in terms of the
principal submatrices of skew-symmetric matrices (cf. [16, Theorem 19]).

Proposition 4.5 Let Ay,..., Ay € M,(F) be skew-symmetric matrices. Suppose 1 < q <
n and (qu(Al,...,Ak) 1s the set of q X q principal submatrices of matrices of the form
Y UAUL, U € Uy(F). Then the conver hull of ilN')q(Al,...,Ak) is the set of skew-

symmetric matrices X satisfying

s95(Ai), 1<r<q/2

r k
=1

> ay(X) £ 33

= 7=1:

One can also consider Reﬁr(Al, ..., Ag). In such case, only (4.1) is needed to deter-

mined whether (d;,...,d,) € ReD,(A;,...,A;). Again, one easily translates results on the
characterization of equality cases, convexity, etc.

When F = R, given skew-symmetric matrices Ay,..., A, and 1 < r < n/2, one can

consider DT(Al, ..., Ag), the set of vectors (dy,...,d,) lying in the (I,m+1),...,(r,m+r)
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positions of a matrix of the form Y% | U; A,U!, U; € SO(n) for i = 1,...,k. Again, one can

translate the results in Section 3 to D, (Aq,..., Ag). We have the following lemma, which is
crucial for the translation.

Lemma 4.6 Letn = 2m or2m+1, and let A € M,(R) with singular values s; = s3;_1(A) =
s9;(A) for g =1,....m, and Sgmy1(A) = 0 if n = 2m + 1. Then there exists V € SO(n)
such that

(1) VAV' =370 si(Ejmt; — Emtjj)s or

(2) VAV = ;”:_11 $j(Ejmtj — Emtjj) — Sm(Emn — Enm) in case n = 2m.

Suppose 1 < r < m and py,...,u € R satisfy |p1| > -+ > |pr|. The following conditions
are equivalent.

(a) Up to a (any) permutation, the vector (i1, ..., u,) is in D,(A).

b) There exists U € SO(n) such that UAU' = Orm X and (f1, ..., 1y ) lies in the
-Xt 0

(1,1),...,(r,r) positions of X.

(¢) The following inequalities hold:

(pals oo lpe]) <w (51,05 50),

and

r—1 r—1

Dol = (1PN <Y 0sp— s if r=mn/2,

7=1 7=1
where p = 0 or 1 according to (1) or (2) holds, and q is the number of negative terms
U gy ey Py

Using the above lemma one can obtain results on DT(Al, ..., Ag). In particular, one sees

that except when r = n/2, DT(Al, ooy Ag) = Dr(Ay, ..., A). We omit the details.

5 Related Results and Problems

There are results and questions on other joint orbits of matrices under different types of
group actions. First, we consider complex Hermitian or real symmetric matrices under the
action of unitary and orthogonal similarity, respectively. It is not difficult to prove the
following.

Proposition 5.1 Suppose Ai,..., Ay are compler Hermitian or real symmetric matrices.
For1 <r <mn, let D,(A1,...,Ax) be the set of all r-tuples real numbers equal to the first

r diagonal entries of matrices of the form Z§:1 U;A;Ux where Uy, ..., U, € Un(F). Then
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(di,y...,d,) € Do(A1,..., Ax) if and only if (dv,...,d;) <w (A1,..., A,) where Aj is the sum
of the jth largest eigenvalues of the Ay, ..., Ay, and if r = n then 37_, d; = Sk trA;. In
particular, D,(Ay,. .., Ax) = D, (X7 N\;Ejj) is conve.

Given complex symmetric matrices Ay, ..., Ay € M,(C) and 1 < r < n, one may consider
the set of all r-tuples of complex numbers lying on the (1,1),...,(r,r) positions of matrices
of the form Zle U;A;U7 where Uy, ..., Uy, are unitary. The result is rather complicated even

when £ = 1 and r = n. Thompson [19] showed that the complex numbers dy,...,d, with
|d1| > -++ > |d,| can be the diagonal entries of a complex symmetric matrix with singular
values s; > -+ > s, if and only if

(Idi], -y ]dnl) <w (51,5 80),

r—1 n n
Z|dj| _Z|dj| < ZS]‘—QST, r=1,...,n,
Jj=1 J=r j=1
and if n > 3,
n—3 n n—2
Doldil = D0 1dil <D0 s — st — sn.
j=1 j=n—2 j=1

It is challenging to solve the problem for general k and r. An even more difficult problem is
to restrict the choice of U;’s to special unitary matrices, see [16, 20]. In both cases, if one

consider the real parts of the entries, then the problem is easy (cf. [16, Theorem 18]) as
shown in the following.

Proposition 5.2 Given complex symmetric matrices Ay, ..., Ax € M, (C) and 1 <r < n.
Let s; = Y% s;(A;) forj =1,...,n. The following conditions are equivalent.

(a) Up to a permutation, (dy,...,d,) is the real parts of an r-tuple of complex numbers lying
on the (1,1),...,(r,r) positions of matrices of the form Z?Zl U; A;U%, where Uy, ..., Uy,
are unitary.

(b) Up to a permutation, (di,...,d,) is the real parts of an r-tuple of complex numbers lying
on the (1,1),...,(r,r) positions of matrices of the form Ele U;A;UL, where Uy, ..., Uy,

are special unitary.

(C) (|d1|7 SRR |dr|) <w (51, e ,ST),
Consequently, the set of vectors in (a) or (b) is conves.

Also, it is easy to describe the convex hull of the ¢ x ¢ principal submatrices of matrices
of the form E?Zl UjAjU;, where Uy, ..., U, are unitary or special unitary (cf. [16, Theorem
19]), namely, they are just the set of symmetric matrices X in M,(C) satisfying

T

D (X)) < XT:ZSj(A,'), r=1,...,q.
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