Principal Submatrices of a Hermitian matrix
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Abstract
Suppose k1, ---, k, and n are positive integers such that k; + --- + k,, < n. We char-
acterize those k; x k; Hermitian matrices A;, ¢+ = 1, ---, m that can appear along the block

diagonal of an n x n Hermitian matrix C' with prescribed eigenvalues. The characterization
will be given in terms of the eigenvalues of C' and A;, i = 1, ---, m. Our results extend
those of Thompson and Freede, Horn, Fan and Pall.
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1 Introduction

Let H,, be the real linear space of n X n complex Hermitian matrices, and let 4, be the group
of n X n unitary matrices. Given ¢ = (c1,---, ¢,) € R™", let U(c) be the set of matrices in
‘H,, with eigenvalues ¢y, - - -, ¢,. Schur [12] gave some necessary conditions for d € IR" to be
the diagonal of a matrix in U(c) and Horn [7] showed that the conditions are also sufficient.
For 1 < k < n, Fan and Pall [3] gave necessary and sufficient conditions for a matrix in
Hy, to be the principal submatrix of a matrix in #(c). Thompson and Freede [13] obtained
necessary conditions for Ay, ..., Ay such that Aj; € Hy,, where ny + -+ +ngy = n, are
the digonal blocks of a matrix in U(c), i.e., there exists A = (A4;;)1<ij<m € U(c). In this
paper, we give a necessary and sufficient condition for this to happen. More generally, for

any m—tuple of positive integers k = (k1, ka, ..., kn) such that > 7", k; < n, define
PE(C) = {(Alla .. ;Amm) c Hkl XX Hkm : there exists A = (AZJ)Eill € Z/{(C)} .

Using an idea of Thompson and a recent result of Fulton, we give a complete description of
Py(c) by showing that (Aiq,. .., Amm) € Pg(c) if and only if the eigenvalues of A;1,..., Apm
satisfy a certain collection of inequalities. Moreover, we discuss how to reduce the number
of inequalities in the collection, and demonstrate how to use our results to obtain those of
Horn, Fan and Pall.

Although our discussion is on complex Hermitian matrices, all our results are valid (with

the same proofs) for real symmetric and Hermitian matrices over real quaternions.
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In our discussion, the sets of eigenvalues or singular values always mean the multi-sets of
eigenvalues or singular values counting multiplicities.

Before concluding this section, we mention a different formulation of our problem used by
other authors. Suppose C € H,, has eigenvalues ¢; > --- > ¢,. Then P;(C) can be identified
with the set of matrices PLCP;, +-- -+ P,,C'P,, € H, for some idempotents P,..., P, € H,,
where rank P, = k; for 1 <7 < m, and P,P; =0if7 # j. If P+ ---+ P, = I, then
pPCP, +---+ P, CP,, is a pinching of the matrix C, which is a useful concept in studying
matrix and operator inequalities; see [1]. One can easily reformulate our results under this
setting.

2 Principal Submatrices
Let 8 ={(j1,---,dr): 1 < j1 <jo <...<jr <n}. For J = (j1,...,Jr) € S, define

AT) = (G =1y g — 1), (1)

Denote by LR!(m) the set of (m+1)-tuple (Jo, Ji, ..., ), Ji € S, such that the Littlewood-
Richardson coefficient of the partitions A(Jy), A(J1), ..., A(Jn,) is positive, i.e., one can gen-
erate the young diagram of \(Jy) from those of A(J1), ..., A(J;) according to the Littlewood-

Richardson rule; see [4]. We have the following result; see [5] and also [9].

Lemma 2.1 There exist A; € H, with eigenvalues agi) > ... > gld)
C € H, with eigenvalues ¢; > -+ > ¢, such that

C=A1+Ay++ Ay,
if and only if

PICEDIDI LS (3)
jeJdo i=1j€eJ;
Let C € H, and let k£ = (ki,ko,...,kn) be an m—tuple of positive integers such that
Now, we can use Lemma 2.1 and an idea of Thompson and Freede [13] to characterize
the set
Py(c) = {(A1r, -, Apm) € Mgy X --- x Hy, + there exists A = (Ay)7H € U(c)} .
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Since (Ay,...,An) € Pg(c) if and only if (4 — aly,,..., An —ady,) € Py(c — al,), there

is no harm to restrict our attention to positive semi-definite matrices C, Ay, ..., A,,.

Theorem 2.2 Suppose C € H,, has eigenvalues ¢y > -+- > ¢, > 0. Let k = (k1, ko, - .., k)
be an m-tuple of positive integers such that £ =n — > 7", k; > 0.

(a) Suppose £ = 0. For1 < i <m, let A; € Hy, have eigenvalues agi) > > ag) > 0.
Define ag-i) =0forl1<i<mandk;+1<j<n. Then (Aq,...,An) € Py(c) if and
only if

al? (4)

IEDD

n m n

1

and for each r € {1,...,n— 1} and (Jo, J1,...,Jm) € LR (m),

LRI (5)

Jj€Jo i=1j€eJ;
(b) Suppose £ > 0. Let d = (trC — X" tr A;) /¢, and k' = (k1,...,km,1,...,1). Then
¢
(A1,..., Ap) € Pyle) if and only if (A1, ..., Am,[d],...,[d]) € Py(c). In this case, we
N————

¢
can apply (a) to check the last condition.

Proof. (a) Suppose £ = 0 and (Ai,...,An) € Pg(c). Let A = (Ay)7-, € U(c) with
Ay = A;. Write A = [By|---|Bp|*[Bi] - - - |B] so that B; is n x n; satisfying B} B; = A; for

1=1,...,m. Hence,

A=[Bi|- [Bul[Bi] -+ |Bu] = (B B))ie. (©)
Then the matrix

A=[Bi|-|Bu]lBi|- - |Bul = B\B} +--- + BB, (7)
has eigenvalues ¢; > --- > ¢,, and each B;B; has eigenvalues agi) > > asf), 1=1,...,m.

We can apply Lemma 2.1 to get (4) and (5).

Conversely, suppose A; € Hy,, i = 1,...,m, satisfy (4) and (5). Then by Lemma
2.1, for i = 1,...,m, there exists A; € H, with eigenvalues agi) > e 2> asf) so that
A=A +--+ flm has eigenvalues ¢; > --+ > ¢,. Moreover, since Ai has rank at most k;,
we can write A; = B;B; such that B; € C"** and A € U(c) has the form (7). Then there
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exist U; € Uy,, i = 1,...,m such that UfB;B;U; = A;. Let A be the matrix in the form (6)
and U = @, U;, then U*AU € U(c). Therefore, (Ay, ..., An) € Py(c).

(b) Suppose ¢ > 0. Then we have (Ayy,..., Amm) € Pi(c) if and only if there exists
A = (Aij)i<ij<m+1 € U(c). By [8, Theorem 1.3.4], we may assume that A, 1,41 has
constant diagonal entries equal to d = (trC — X1, tr A;)/¢; otherwise, replace A by the
matrix (I,—, @ W*)A(I,_, ® W) for a suitable W € U,. The first assertion follows.

Now, since 37 k; + £ = n, we can use (a) to check the condition

(A, A, [d), .., [d]) € Py(c).

; O

There are numerous inequalities in (5). To reduce the list of inequalities, one can replace

LR"™(m) by the set LR, (m) consisting of the set of (Jo, ..., Jn) such that the Littlewood-
Richardson coefficient of the partitions A(Jp), ..., A(Jy,) is one. In the next section, we will

consider other reduction schemes.

3 Reducing the List of Inequalities

In the following, we show that one can reduce the number of inequalities needed to be checked
in (5). We need two lemmas; the first one is the solution of the saturation conjecture; see
2, 5, 10, 11].

Lemma 3.1 Suppose 1 < m < n and J; € 8" for 0 < i < m. Then (Jo,J1,...,Jm) €
LR(m) if and only if there exist By, B1,...,By € H, so that By = By + --+ + By,, and
fori e {0,1,...,m}, AN(J;), as defined in (1), is the vector of eigenvalues of B; with entries

arranged in descending order. In particular, if \(Jo) = 74 A(J;), then (Jo, J1,...,Jm) €
LRI'(m).

Lemma 3.2 Let (Jy, J1,...,Jn) € LR (m) with \(J;) = (agi), oo, a®) fori=0,1,...,m.
Suppose there erists ig € {1,...,m} such that

a%o) > oz%oll with jo € {1,...,r—1} or a%o) >0 with jo=r.

Let jio be obtained from J;, by subtracting one from the jo entry. Then there exists Jy such

that Jy — jo has nonnegative entries and

(Joy J1s -+ oy Tig—1 Jigs Jigs1s - - - I) € LR™(m).



Proof. Without loss of generality, we may assume that i0 = 1. We are going to prove
by induction on r. The result is trivial for » = 1. Suppose r > 1 and the result holds
for all dimension less than r. Since (Jy, Ji,...,Jn) € LR!(m). By Lemma 3.1, there exist
By, By,...,B,, € M, so that By = By + --- + By, and for i € {0,1,...,m}, A(J;) is the
vector of eigenvalues of B; with entries arranged in descending order. By Lemma 2.1,

Yo =33 o, (8)
k=1

i=1j=1

and
Yol <3 Y al, )
j€lo =1 jel;
whenever (ly, I, ..., ;) € LR)(m) with 1 <p <.
If strict inequality holds in (9) for all (Iy, I, ..., I,,) € LR (m) with p € {1,...,r — 1},
let Jy be such that \(Jp) = (a§°), ..., 8{9) equals the decreasing rearrangement of (a§°) -

1,04%0),...,04,(,0)). Then
LY a0 =% 00 1= KED I 1—2;‘1(1 + 3 Y and

2. Eselo © < ESEIO < Zz 1 E]EI O! -1 < E]Eh + E =2 E]EI a()

whenever (Iy, I1, ..., Im) € LRj(m) with 1 < p < r. Note that in the second inequality,

we use the fact that all the inequalities in (9) are strict.

Therefore, (Jo, J1, Jo, . . ., Jym) € LR*(m).
Suppose there exists (Io, I, ..., In) € LRy(m) with p € {1,...,7 — 1} such that

Yo=Y Yl

s€lp =1 jEL;

Let It ={1,2,---, r} \ I; for i € {0,1,...,m}. By an (easy) extension of [6, Theorem 5] to
the sum of m Hermitian matrices, there are Hermitian matrices By, By, ..., B, € H, and
Co,Ch,...,Cp € Hyp such that

(l) BOIBl+"'+Bm, 00201++Cm, and

(i) for i € {0,1,...,m}, (a!?)ses, (respectively, (Ozgi))sezic) is the vector of eigenvalues of B;

(respectively, C,') with entries arranged in descending order.

If ](1) € I, we can apply induction assumption to By,..., B, to get By,...,B, € ‘H, so

that B; and B; have the same eigenvalues for i = 2, ..., n, the eigenvalue of By are those of
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By except one of them is reduced by one, and the eigenvalues of B; are those of B except the
one equal to 045-(1]) is reduced by one. Now, if A; = B,®C; € Hy, we have Ag = A1 +---+ A,,.
We can then obtain (Jy, Jy, Jo, ..., Jm) € LR!(m) from the eigenvalues of Ay, ..., Ay,. If

j(()l) € If, we can apply induction assumption on Cy,...,C,,, and get the conclusion by a

similar argument. O

Theorem 3.3 In checking condition (5) in Theorem 2.2 (a), it suffices to check those se-
quences (Jo, J1, ..., Jm) € LR*(m) satisfying the following condition:
Foralll<i<m, ifJ;=(1\",...,jD) and jz(,i_)l < ki < j§) for some 1 < p <r, then

GO, 50 D) = (ki + Lk + 2, ki 17 — ).

Proof. Suppose condition (5) in Theorem 2.2 (a) holds for all (Jy, Ji,...,Jn) € LR*(m)

satisfying the above condition. For each J; = (jfi), ...,7%) such that ji(,i,)l <k < jz(,i) for
some 1 < p < r, define J; = (E(i), -, D), where 5{@ = jéi) for1 </ < pand jﬁt =k;+t+1

forall 0 <t <r—p. Since A\(J;) = (@ —r,...,5" —1) and
(i) _ O (1) < () 1
Jp) =D > Gpl1 — (0= 1) & 4y > jpli + 1,

we can use Lemma 3.2 and replace J, with J, = (ﬂo), . ,3'(0)) such that Eéo) < jéo). We

T

have
n

m n . m .
RS DD D IILEDIP I
J€Jo jedo i=1 jeJ; i=1jeJ; O

We illustrate how to use the above theorem in the following.

Theorem 3.4 Let C € H,, have eigenvalues ¢, > --- > ¢, and k = (2,...,2,1,...,1).

Suppose A; € Hy have eigenvalues agi) > ag) for1 < i < m, and A; = [agi)] € H,y for

m+1<i<n-—m. Let (i, ---, im) be a permutation of (1, ---, m) such that agil) >
o> a¥™ . For any subset R C {1, -+, m} with |[R| =r, let b} > .- > bR, be the

eigenvalues of ®igrAi. Then (Ay, ..., An_m) € Pi(c) if and only if

ZCZ' = i tI‘AZ‘, (10)
=1 =1



and for any s € {0,---, m} and t € {0,...,n — 2s}, with 0 < s+t < n, we have

s+t+1
Zcz-l- S>3 dy +Zb (11)
1=t42 JES
for any s element subset S C {iy, - -, i} where £ =min{m, s+ t}.
Proof. We may assume that C, Aq,..., A,_,, are positive semi-definite; otherwise, apply

the translation X +— X 4 ~[I to them for a sufficiently large v > 0. Furthermore, we may
assume that i; = j for j =1, ---, m.

Suppose (Ai,...,An—m) € Pgx(c). Then (10) clearly holds. Let s € {0,---, m} and
t€40,...,n—2s}, with 0 < s+t < n and £ = min{m, s + t}. For any s element subset
S C {1, -+, £}, choose disjoint subsets P C {1,---,n—m}\Sand Q C {1,---, m}\ S
such that |P|+2|Q| =t and Ycpal’ + Yico (a ( D4 a(z)) ELbY.

Set r =n —t — s. Define

Jo =(t+1,s+t+2,s+t+3,...,n), and

2,...,r+1) fori € P,
3,4,...,7+2) forieq@,
1,3,...,7r+1) foriesS,
1,2,...,7) fori e {1,2,...,.n—m}\ (PUQUS).

Then
AMJo) =(s+t,s+t,...,s+t, t), and

(1,...,1) fori e P,

Vo) (2,2,...,2) forieq,

AUR) = (1,...,1,0) forie S,
0,...,0) forie{1,2,....n—m}\ (PUQUS).

Since A(Jo) = MJ1) + -+ + AM(Jn_m), by Lemma 3.1 (Jo, J1,...,Jn-m) € LR*(n —m). So,

we have

t s+t+1
Yet Y oao= Ya-Yg
=1 i=t+2 =1 j€Jo
n—m n—m .
> Y ud- Y Y a
=1 i=1 jeJ;
= T+ T ol + Yl +af)
i€S 1EP 1€EQ
= Za +st
JES



Conversely, suppose (10) and the inequalities (11) hold and (Jy, Ji, ..., Jy_m) € LR} (n— m)

with J; = (jy), ..., 7%). We need to show that
Yo <Y Y (12)
j€Jo i=1 jEJ;

Let

P ={i:1<i<m jP=2}u{i:m+1<i<n—m, ;¥ >2}
Q ={i: 1<z<mj1Z)>2}
S ={i: 1<i<m, i =1, P > 2}

By Theorem 3.3, we can assume that

2,...,r+1) for ¢ € P,
3,4,...,7r+2) forieqQ,
1,3,...,r+1) forieS,
1,2,...,71) fori e {1,2,...,n—m}\ (PUQUS).

Let t = |P|+2|Q| and s = |S|. If s+ ¢ =0 or n, (12) follows from (10). So we may assume
that 0 < s+t < n. Since

(1,...,1) fori e P,

N (2,2,...,2) forie@,

AU = .. ,1,0) fori € S,
0,...,0) forie{l,2,...,n—m}\ (PUQUJS).

we have
Jo=(t+1,s+t+2,s+t+3,...,r+s+1).

Therefore, we have

r+s+t s+t+1
ch—ctﬂ—i- Z cZ<ZcZ Zcﬁ-Zcz

j€Jo 1=5+1+2 =142

and
Z:lz_lm jed; agz) = tr AJ — (EiES a,gL) + ZiEP algl) _+_ ZZEQ (ag’t) _+_ a’gl)))
> trd; = (Lies oy’ + Sy )
If SCA{1,---, £}, then (12) follows from (10) and (11).

If0<s+t<mand SZ{1,---, s+t}, then we can choose disjoint subsets
PCA{l,---,n—m}\Sand Q C {1, ---, m}\ S such that

. . . t
Pl +2|Ql=t and Y al + 3 (0 +af’) =305
=1

1EP 1€Q



Since S € {1,...,s+t}, we have
(PUQUS)N{L, -+, s+t}| <s+t—1.
Choose j € {1,---, s+ t}\(PUQUS),j € S\{1,---, s+t}and let S; = SU{j} \ {/'}

Then |S;| = s and [S1\ {1,---, s+t}| <|S\{1,---, s+t}|. Thus,

ZGQ +Zb51 >Za2 +st

i€S] i€S
and hence
trA; — (Z ay +stl) <trd;— (Za +st>
1€S1 €S
Repeating the above procedure, we can get an s element subset ScC {1, - -+, s+1} such that
t
Ay — (o st <A _<2a2 be),
i€§ i€s i=1
from which (12) follows. O

min{m, s +t} )
s

Note that for each choice of s element set S C {1,...,¢}, there are (

inequalities in (11). Excluding the cases (s,t) = (0,0) and (s,t) = (m,n — 2m), where the

inequalities follows from (10), we see that the number of inequalities in (11) is given by

ii (mm{m s+t}) 5

t=0

By taking m = 0, we have Horn’s result [7]: There exists A € U(c) with diagonal entries
dy > -+ >d, if and only if

Zqudj and chZZdj foralll1<s<n.
j=1 j=1 j=1 j=1

Using a similar argument, we can prove the following result of Fan and Pall [3]:
For 1 < k < n—1, an k£ X k Hermitian matrix A is the principal submatrix of an
n X n Hermitian matrices C' with eigenvalues ¢; > - -+ > ¢, if and only if A has eigenvalues
a; > -+ > ag such that
Cj > aj > Cppyj, for j=1,...,k.
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