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Abstract

Let Mn,k (Mn) be the set of n× k (n× n) complex matrices, and per(X) be the permanent
of a square matrix X. We study the three types of generalized numerical ranges associated
with generalized matrix functions

Πk(A) =

{
k∏

j=1

(V ∗AV )ii : V ∈ Mn,k, V ∗V = Ik

}
,

Dk(A) = {det(V ∗AV ) : V ∈ Mn,k, V ∗V = Ik} ,

and
Pk(A) = {per(V ∗AV ) : V ∈ Mn,k, V ∗V = Ik} .

We give complete descriptions of the set Π2(A), D2(A) and P2(A) for essentially hermitian
matrices A ∈ Mn. In particular, all three sets are star-shaped. For 3 × 3 normal matrices
A, it is known that D2(A) is convex. We show that Π2(A) and P2(A) are star-shaped. This
a�rms a conjecture of Nakazato et. al.
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1. Introduction

Let Mm,n be the set of all m×n complex matrices. When m = n, Mn,n is abbreviated to
Mn. Suppose 1 ≤ k ≤ n and χ : H → C is an irreducible character on a subgroup H of the
symmetric group Sk of order k. The generalized matrix function dHχ : Mk → C associated
with H and χ is de�ned, for B ∈ Mk, by

dHχ (B) =
∑
σ∈H

χ(σ)
k∏

i=1

(B)iσ(i).

⋆Dedicated to Professor Yiu-Tung Poon on the occasion of his birthday.
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Here (B)ij is the (i, j)-th entry of B. Marcus and Wang [17] introduced the decomposable
numerical range of A ∈ Mn associated with dHχ as

WH
χ (A) :=

{
dHχ (V

∗AV ) : V ∈ Mn,k, V ∗V = Ik
}
.

When k = 1, the set WH
χ (A) reduces to the classical numerical range W (A), which has been

studied extensively; see [8], [9, Chapter 1], and their references.
If H = {e} ⊆ Sk is the trivial subgroup and χ is the principal character, then dHχ (B) =∏k

i=1(B)ii. In this case, we denote WH
χ (A) as

Πk(A) =

{
k∏

j=1

(V ∗AV )ii : V ∈ Mn,k, V ∗V = Ik

}
.

Geometric properties of Πk(A) including convexity, star-shapedness and simply connected-
ness were investigated in [2, 14]. In particular, the authors showed that Πk(A) may fail to be
convex when k ≥ 2 and fail to be simply connected when k ≥ 3. Characterizations of Πk(A)
for essentially hermitian matrices A, i.e., normal matrices whose eigenvalues are collinear in
C, are given in [2, 19]. Additionally, the authors in [19] showed that Πk(A) is star-shaped
for 3× 3 essentially hermitian matrices A.

LetH = Sk. The generalized matrix function dHχ associated with the alternative character
χ is the determinant function det(·). Alternatively, if χ equals the principal character, then
dHχ becomes the permanent function per(·). In these two cases, we denote the corresponding
decomposable numerical ranges as

Dk(A) = {det(V ∗AV ) : V ∈ Mn,k, V ∗V = Ik} ,

and
Pk(A) = {per(V ∗AV ) : V ∈ Mn,k, V ∗V = Ik} .

The range Dk(A) is known as the kth decomposable numerical range in the literature and has
been studied extensively due to its connections with theories of determinants, exterior spaces,
and other areas; see [1, 5, 16]. It is known that Dk(A) generally fails to be convex when
k ≥ 2; see [15, 16]. In addition, Dk(A) may fail to be simply connected when k ≥ 6; see [5].
However, not much is known concerning the star-shapedness or the simple connectedness of
Dk(A) for 2 ≤ k ≤ 5. The set Pk(A) is referred to as the kth permanental numerical range
and is applied to quantum systems of bosons; see [3, 10, 11, 12]. In general, Pk(A) may fail
to be convex if k ≥ 2.

The purpose of this paper is to investigate the star-shapedness of Π2(A), D2(A) and
P2(A). In Section 2, we give complete descriptions of the sets Π2(A), D2(A) and P2(A) for
n×n essentially hermitian matrices A. In particular, the sets are star-shaped. In Section 3,
we consider 3 × 3 normal matrices A. In this case, it is known that D2(A) is convex. We
show that Π2(A) and P2(A) are star-shaped. This a�rms a conjecture in [19].

2. Essentially Hermitian Matrices

Note that if a matrix A ∈ Mn is essentially hermitian then there exists z ∈ C such that
A = z(In + iK) where K ∈ Mn is hermitian. Since for every A ∈ Mn and z ∈ C, we have
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WH
χ (zA) = zkWH

χ (A), it su�ces to consider A = In + iK, where K is hermitian and has
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. In the sequel, we denote by [a, b] = {ta+(1−t)b : 0 ≤ t ≤ 1}
the closed line segment joining a, b ∈ C. For essential hermitian matrices A, we obtain the
following characterizations of Πk(A), Dk(A) and Pk(A) .

Theorem 2.1. Let A = In + iK ∈ Mn where K is a hermitian matrix with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn.

(a) Π2(A) is the region enclosed by the four line segments[
(1 + iλ1)(1 + iλ2),

(
1 + i

λ1 + λ2

2

)2
]
,

[
(1 + iλn−1)(1 + iλn),

(
1 + i

λn−1 + λn

2

)2
]
,

[
(1 + iλ1)(1 + iλn), (1 + iλ1)(1 + iλ2)

]
,
[
(1 + iλ1)(1 + iλn), (1 + iλn−1)(1 + iλn)

]
,

and an arc of a parabola

{(
1 + i

α

2

)2

: α ∈ [λn−1 + λn, λ1 + λ2]

}
.

(b) D2(A) is the region enclosed by the four line segments[
(1 + iλ1)(1 + iλ2), (1 + iλ2)

2] , [
(1 + iλn−1)(1 + iλn), (1 + iλn−1)

2] ,[
(1 + iλ1)(1 + iλn), (1 + iλ1)(1 + iλ2)

]
,
[
(1 + iλ1)(1 + iλn), (1 + iλn−1)(1 + iλn)

]
,

and an arc of a parabola

{(
1 + i

α

2

)2

: α ∈ [2λn−1, 2λ2]

}
.

(c) P2(A) is the region enclosed by the four line segments[
(1 + iλ1)(1 + iλ2),

(1+iλ1)
2

2
+ (1+iλ2)

2

2

]
,
[
(1 + iλn−1)(1 + iλn),

(1+iλn−1)
2

2
+ (1+iλn)

2

2

]
,

[(1 + iλ1)(1 + iλn), (1 + iλ1)(1 + iλ2)] , [(1 + iλ1)(1 + iλn), (1 + iλn−1)(1 + iλn)] ,

and two arcs of parabolas{
(1 + iλn)

2

2
+

(1 + i(α− λn))
2

2
: α ∈ [λn−1 + λn, λ1 + λn]

}
,

{
(1 + iλ1)

2

2
+

(1 + i(α− λ1))
2

2
: α ∈ [λ1 + λn, λ1 + λ2]

}
.

The authors in [19] presented a characterization of Π2(A) for 3× 3 essentially hermitian
matrices. Theorem 2.1 (a) extends their result to n×n essentially hermitian matrices. While
an algebraic characterization of D2(A) for essentially hermitian matrices A is provided in
[4], Theorem 2.1 (b) o�ers a more geometric description of D2(A). It is known that D2(A)
generally fails to be convex for n ≥ 4; see [5, 20]. This non-convexity can also be derived from
Theorem 2.1 (b). Matrices with non-convex P2(A) can be constructed by Theorem 2.1 (c)
as well. In addition, Theorem 2.1 illustrates the following inclusion relations:

D2(A) ⊆ Π2(A) ⊆ P2(A)
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for every essentially hermitian matrix A ∈ Mn. Note that the �rst inclusion relation holds
for general matrices.

To prove Theorem 2.1, we begin with some observations on essentially hermitian matrices.
Let A = In + iK ∈ Mn and V ∈ Mn,2 with V ∗V = I2. Then

2∏
i=1

(V ∗AV )ii =
2∏

i=1

(I2 + iV ∗KV )ii = 1−
2∏

i=1

(V ∗KV )ii + i tr(V ∗KV ).

As a result, we have

Π2(A) =

{
1−

2∏
i=1

(V ∗KV )ii + i tr(V ∗KV ) : V ∈ Mn,2, V ∗V = I2

}
.

In addition, it is straightforward to show

D2(A) = {1− det(V ∗KV ) + i tr(V ∗KV ) : V ∈ Mn,2, V ∗V = I2} ,

and
P2(A) = {1− per(V ∗KV ) + i tr(V ∗KV ) : V ∈ Mn,2, V ∗V = I2} .

Since the generalized interlacing inequalities of hermitian matrices, as given by Fan and
Pall [6], play an essential role in this section, we present them here for the reader's reference.

Proposition 2.2. [6] Let 1 ≤ k ≤ n, A ∈ Mn and B ∈ Mk be hermitian matrices with
eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bk, respectively. There exists V ∈ Mn,k with
V ∗V = Ik such that B = V ∗AV if and only if

aj ≥ bj ≥ an−k+j, j = 1, . . . , k.

The following lemma is a quick consequence of Proposition 2.2.

Lemma 2.3. Let K ∈ Mn be a hermitian matrix with eigenvalues λ1 ≥ · · · ≥ λn. Then{
tr(V ∗KV ) : V ∈ Mn,2, V ∗V = I2

}
= [λn−1 + λn, λ1 + λ2] .

Lemma 2.3 illustrates that the projections of Π2(A), D2(A), and P2(A) on the imaginary
axis equal the interval [λn−1 + λn, λ1 + λ2].

Miranda [18] characterized Π2(A) for 2× 2 essentially hermitian matrices A.

Proposition 2.4. [18] Let A = I2+iK ∈ M2 where K is a hermitian matrix with eigenvalues
λ1 ≥ λ2. Then

Π2(A) =

{
1− z + i(λ1 + λ2) : z ∈

[
λ1λ2,

(
λ1 + λ2

2

)2
]}

.

We extend Proposition 2.4 as follows.
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Lemma 2.5. Let A = In + iK ∈ Mn where K is a hermitian matrix with eigenvalues
λ1 ≥ · · · ≥ λn. For each α ∈ [λn−1 + λn, λ1 + λ2], we de�ne

Lα =

{
[λn(α− λn), (α/2)

2 ] if λn−1 + λn ≤ α ≤ λ1 + λn;

[λ1(α− λ1), (α/2)
2 ] if λ1 + λn < α ≤ λ1 + λ2.

Then
Π2(A) =

⋃
α∈[λn−1+λn,λ1+λ2]

{1− z + iα : z ∈ Lα} .

Proof. (⊆): Let V ∈ Mn,2 and V ∗V = I2. Note that

2∏
i=1

(V ∗AV )ii =
2∏

i=1

(I2 + iV ∗KV )ii ∈ Π2(I2 + iV ∗KV ).

Let µ1 ≥ µ2 be the eigenvalues of V
∗KV and α = tr(V ∗KV ) = µ1+µ2. By Proposition 2.4,

Π2(I2 + iV ∗KV ) =
{
1− z + iα : z ∈

[
µ1µ2, (α/2)

2]} .
It su�ces to show that µ1µ2 ∈ Lα.

Firstly, suppose that λn−1 + λn ≤ α ≤ λ1 + λn. Then µ1µ2 ∈ Lα if and only if µ1µ2 ≥
λn(α− λn). By direct computation

µ1µ2 − λn(α− λn) = µ1µ2 − λn(µ1 + µ2 − λn)

= (µ1 − λn)(µ2 − λn)

≥ 0.

The last inequality follows from µ1 ≥ µ2 ≥ λn. Secondly, suppose that λ1+λn < α ≤ λ1+λ2.
We have to show µ1µ2 ≥ λ1(α− λ1). Since λ1 ≥ µ1 ≥ µ2, it follows by µ1µ2 − λ1(α− λ1) =
(µ1 − λ1)(µ2 − λ1) ≥ 0.

(⊇): Suppose that λn−1 + λn ≤ α ≤ λ1 + λn. By Proposition 2.2, there exists V ∈ Mn,2

with V ∗V = I2 such that V ∗KV has eigenvalues λn and α− λn. By Proposition 2.4,{
1− z + iα : z ∈ [λn(α− λn), (α/2)

2]
}
= Π2(I2 + iV ∗KV ) = Π2(V

∗AV ) ⊆ Π2(A).

The case of λ1 + λn < α ≤ λ1 + λ2 can be shown similarly.

For D2(A), we have the following characterization.

Lemma 2.6. Let A = In + iK ∈ Mn where K is a hermitian matrix with eigenvalues
λ1 ≥ · · · ≥ λn. For every α ∈ [λn−1 + λn, λ1 + λ2], let Lα = [ℓα, uα] where

uα =


λn−1(α− λn−1) if λn−1 + λn ≤ α < 2λn−1;

(α/2)2 if 2λn−1 ≤ α ≤ 2λ2;

λ2(α− λ2) if 2λ2 < α ≤ λ1 + λ2,
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and

ℓα =

{
λn(α− λn) if λn−1 + λn ≤ α ≤ λ1 + λn;

λ1(α− λ1) if λ1 + λn < α ≤ λ1 + λ2.

Then
D2(A) =

⋃
α∈[λn−1+λn,λ1+λ2]

{1− z + iα : z ∈ Lα} .

Proof. (⊆): Let V ∈ Mn,2 and V ∗V = I2. Recall that det(V ∗AV ) = 1 − det(V ∗KV ) +
itr(V ∗KV ). Assume that µ1 ≥ µ2 are eigenvalues of V

∗KV and α = tr(V ∗KV ) = µ1 + µ2.
It su�ces to show that det(V ∗KV ) = µ1µ2 ∈ Lα. From the proof of Lemma 2.5, we have
ℓα ≤ µ1µ2 ≤ (α/2)2. Thus, it remains to show that µ1µ2 ≤ uα when λn−1 + λn ≤ α < 2λn−1

and 2λ2 < α ≤ λ1 + λ2.
Assume that λn−1 + λn ≤ α < 2λn−1. The quantity µ1µ2 = µ1(α − µ1) is a concave

quadratic function in µ1 and is decreasing for µ1 ≥ α
2
. By Proposition 2.2, we have µ1 ≥

λn−1 ≥ α
2
. Therefore µ1µ2 ≤ λn−1(α− λn−1). The case for 2λ2 < α ≤ λ1 + λ2 can be shown

similarly.
(⊇): Assume that λn−1+λn ≤ α < 2λn−1. We divide the proof into two cases: α ≤ λ1+λn

and α > λ1 + λn.
Case 1. Suppose that α ≤ λ1 + λn. De�ne for t ∈ [0, 1], µ(t) = tλn−1 + (1− t)(α− λn).

Note that µ(t) is in the interval [λn−1, α − λn] and λn−1 ≤ α − λn ≤ λ1. Hence we have
λn−1 ≤ µ(t) ≤ λ1. In addition, µ(t) ≤ α − λn yields λn ≤ α − µ(t). Since α < 2λn−1 and
µ(t) ≥ λn−1, we have α − µ(t) < 2λn−1 − λn−1 ≤ λ2. By Proposition 2.2, for each t ∈ [0, 1],
there exists Vt ∈ Mn,2 with V ∗

t Vt = I2 such that V ∗
t KVt has eigenvalues µ(t) and α − µ(t).

Hence 1 − det(V ∗
t KVt) + iα = 1 − µ(t)(α − µ(t)) + iα ∈ D2(A). Since µ(0)(α − µ(0)) = ℓα

and µ(1)(α − µ(1)) = uα, by the continuity of the function µ(t), we have the line segment
{1− z + iα : z ∈ Lα} ⊆ D2(A).

Case 2. Suppose α > λ1+λn. De�ne for t ∈ [0, 1], µ(t) = tλn−1+(1− t)λ1. It clear that
λn−1 ≤ µ(t) ≤ λ1. In addition, α−µ(t) ≥ λ1+λn−λ1 ≥ λn and α−µ(t) ≤ 2λn−1−λn−1 ≤ λ2.
Proposition 2.2 asserts that for each t ∈ [0, 1], there exists Vt ∈ Mn,2 with V ∗

t Vt = I2 such that
V ∗
t KVt has eigenvalues µ(t) and α− µ(t). As µ(0)(α− µ(0)) = ℓα and µ(1)(α− µ(1)) = uα,

by the continuity of the function µ(t), we have {1− z + iα : z ∈ Lα} ⊆ D2(A).
The cases 2λn−1 ≤ α ≤ 2λ2 and 2λ2 < α ≤ λ1 + λ2 can be shown similarly.

For 2×2 essentially hermitian matrices A, a characterization of P2(A) is provided in [11].

Proposition 2.7. [11] Let A = I2+iK ∈ M2 where K is a hermitian matrix with eigenvalues
λ1 ≥ λ2. Then

P2(A) =

{
1− z + i(λ1 + λ2) : z ∈

[
λ1λ2,

(
λ2
1 + λ2

2

2

)]}
.

For general n× n essentially hermitian matrices, we have the following result.
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Lemma 2.8. Let A = In + iK ∈ Mn where K is a hermitian matrix with eigenvalues
λ1 ≥ · · · ≥ λn. For α ∈ [λn−1 + λn, λ1 + λ2], de�ne

Lα =


[λn(α− λn), ((α− λn)

2 + λ2
n)/2] if λn−1 + λn ≤ α ≤ λ1 + λn;

[λ1(α− λ1), ((α− λ1)
2 + λ2

1)/2] if λ1 + λn < α ≤ λ1 + λ2.

Then
P2(A) =

⋃
α∈[λn−1+λn,λ1+λ2]

{1− z + iα : z ∈ Lα} .

Proof. (⊆): Let V ∈ Mn,2 with V ∗V = I2. Assume that µ1 ≥ µ2 are eigenvalues of V
∗KV

and α = tr(V ∗KV ) = µ1 + µ2. By Proposition 2.7, we have

per(V ∗AV ) ∈ P2(I2 + V ∗KV ) =

{
1− z + i(µ1 + µ2) : z ∈

[
µ1µ2,

(
µ2
1 + µ2

2

2

)]}
.

Thus, it su�ces to show that
[
µ1µ2,

(
µ2
1+µ2

2

2

)]
⊆ Lα. We will demonstrate this for the case

λn−1 + λn ≤ α ≤ λ1 + λn; the second case can be shown similarly.
By Lemma 2.5, we get λn(α− λn) ≤ µ1µ2. Consequently we have

µ2
1 + µ2

2

2
=

(µ1 + µ2)
2

2
− µ1µ2 =

α2

2
− µ1µ2 ≤

α2

2
− λn(α− λn) =

(α− λn)
2 + λ2

n

2
.

(⊇): Suppose that λn−1 + λn ≤ α ≤ λ1 + λn. Since λn−1 ≤ α− λn ≤ λ1, Proposition 2.2
asserts that there exists V ∈ Cn×2 with V ∗V = I2 such that V ∗KV has eigenvalues λn and
α− λn. Therefore, we have

{1− z + iα : z ∈ Lα} = P2(I2 + iV ∗KV ) ⊆ P2(A).

The remaining case can be shown similarly.

Proof of Theorem 2.1. We show the case of Π2(A) only as D2(A) and P2(A) can be derived
similarly.

In Lemma 2.5, each α in the interval [λn−1 + λn, λ1 + λ2] determines a horizontal line
segment of Π2(A) on the complex plane. Thus Π2(A) is the region bounded above and below
by the line segments

{1− z + i(λ1 + λ2) : z ∈ Lλ1+λ2} =

[
(1 + iλ1)(1 + iλ2),

(
1 + i

λ1 + λ2

2

)2
]

and

{1− z + i(λn−1 + λn) : z ∈ Lλn−1+λn} =

[
(1 + iλn−1)(1 + iλn),

(
1 + i

λn−1 + λn

2

)2
]

7



respectively. In addition, the lower bounds of Lα is a continuous function on α and they
bound the Π2(A) on the right. More precisely, Π2(A) is bounded on the right by the two
line segments

{1− λ1(α− λ1) + iα : α ∈ [λ1 + λn, λ1 + λ2]} =
[
(1 + iλ1)(1 + iλn), (1 + iλ1)(1 + iλ2)

]
and

{1− λn(α− λn) + iα : α ∈ [λn−1 + λn, λ1 + λn]}=
[
(1 + iλ1)(1 + iλn), (1 + iλn)(1 + iλn−1)

]
.

Similarly the upper bounds of Lα is a quadratic function on α, they give an arc of the
parabola which bound Π2(A) on the left, that is,

{1− (α/2)2 + iα : α ∈ [λn−1 + λn, λ1 + λ2]} =

{(
1 + i

α

2

)2

: α ∈ [λn−1 + λn, λ1 + λ2]

}
.

We plot Π2(A), D2(A), and P2(A) for a 5× 5 essentially hermitian matrix below.

Example 1. Let A = diag(1 + 3i, 1 + i, 1, 1− i, 1− 3i) ∈ M5.

ℜ

ℑ

(a) Π2(A)

ℜ

ℑ

(b) D2(A)

ℜ

ℑ

(c) P2(A)

Recall that a set S is star-shaped with a star-center c ∈ S if tx + (1− t)c ∈ S for every
x ∈ S and 0 ≤ t ≤ 1. The characterizations in Theorem 2.1 lead to the star-shapedness of
Π2(A), D2(A) and P2(A).

Theorem 2.9. Let A = In+iK ∈ Mn where K is a hermitian matrix with eigenvalues λ1 ≥
· · · ≥ λn. Then Π2(A), D2(A) and P2(A) are star-shaped with a star-center (1+iλ1)(1+iλn).
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3. 3 × 3 Normal matrices

In this section, we consider 3× 3 normal matrices A with eigenvalues λ1, λ2 and λ3. We
have the following result regarding the star-shapedness of Π2(A).

Theorem 3.1. Let A ∈ M3 be a normal matrix with eigenvalues λ1, λ2 and λ3. Then Π2(A)
is star-shaped with star-center 1

3
(λ1λ2 + λ2λ3 + λ1λ3).

In [19], the authors conjectured Π2(A) is always star-shaped for 3 × 3 normal matri-
ces without proposing a star-center; see also [13, Question 3.3]. Theorem 3.1 settles the
conjecture in the a�rmative.

We need some notations to prove Theorem 3.1. De�ne

Λ3 =
{
(α1, α2, α3)

⊤ ∈ R3 : α1, α2, α3 ≥ 0, α1 + α2 + α3 = 1
}
.

Each α ∈ Λ3 determines a subset of Π2(A) as follows. Let α = (α1, α2, α3) ∈ Λ3 and

xα =
(√

α1,
√
α2,

√
α3

)⊤ ∈ C3. We de�ne

SA(α) =
{
(y∗1Ay1)(y

∗
2Ay2) : xα, y1, y2 ∈ C3 are orthonormal

}
⊆ Π2(A).

It is not hard to see that if Y ∈ M3,2 with Y ∗Y = I2 whose range space is {xα}⊥, then
SA(α) = Π2(Y

∗AY ).
The following lemma characterizes Π2(A) for 3× 3 normal matrices A in terms of SA(α).

Lemma 3.2. Let A ∈ M3 be a normal matrix. Then

Π2(A) =
⋃
α∈Λ3

SA(α).

Proof. (⊇) It is clear by the de�nition of SA(α).
(⊆) By unitarily similarity, we assume without loss of generality A = diag(λ1, λ2, λ3).

Let z ∈ Π2(A). There exist orthonormal y1, y2 ∈ C3 such that z = (y∗1Ay1)(y
∗
2Ay2). Let

x = (x1, x2, x3)
⊤ ∈ C3 be a unit vector orthogonal to y1 and y2. We shall show that

z ∈ SA(α) where α = (|x1|2, |x2|2, |x3|2) ∈ Λ3.
Let |x| = (|x1|, |x2|, |x3|)⊤ and D be a diagonal unitary matrix in which Dx = |x|. Then

|x|, Dy1, Dy2 are orthonormal vectors in C3. By the de�nition of SA(α), we have

z = (y∗1Ay1)(y
∗
2Ay2)=(y∗1D

∗ADy1)(y
∗
2D

∗ADy2)=((Dy1)
∗A(Dy1)) ((Dy2)

∗A(Dy2))∈SA(α).

A characterization of Π2(A) for any A ∈ M2 was given by Hu and Tam [12].

Proposition 3.3. [12] Let A ∈ M2 with eigenvalues µ1 and µ2. Then Π2(A) is an elliptical

disk with foci at µ1µ2 and
(
µ1+µ2

2

)2
, and major axis of length 1

2
tr(A∗A)−

∣∣µ1+µ2

2

∣∣2.
To characterize SA(α), we need the following result.
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Lemma 3.4. Let A = diag(λ1, λ2, λ3) and x = (x1, x2, x3)
⊤ ∈ C3 be a unit vector. Suppose

Y ∈ M3,2 with Y ∗Y = I2 whose range space is {x}⊥. If µ1, µ2 are eigenvalues of Y ∗AY ,

then µ1µ2 = |x1|2λ2λ3 + |x2|2λ1λ3 + |x3|2λ1λ2 and µ1+µ2

2
= 1−|x1|2

2
λ1 +

1−|x2|2
2

λ2 +
1+|x3|

2
λ3.

Proof. Let αi = |xi|2, i = 1, 2, 3. By [7, Theorem 1], the characteristic polynomial of Y ∗AY
is

p(z) = α1(z − λ2)(z − λ3) + α2(z − λ1)(z − λ3) + α3(z − λ1)(z − λ2)

= z2 − ((α2 + α3)λ1 + (α1 + α3)λ2 + (α1 + α2)λ3)z + α1λ2λ3 + α2λ1λ3 + α3λ1λ2

= z2 −
(
1− α1

2
λ1 +

1− α2

2
λ2 +

1 + α3

2
λ3

)
z + α1λ2λ3 + α2λ1λ3 + α3λ1λ2

The result follows straightforwardly.

By Proposition 3.3 and Lemma 3.4, we present a characterization of SA(α).

Lemma 3.5. Let A = diag(λ1, λ2, λ3) and α = (α1, α2, α3) ∈ Λ3. Then SA(α) is an elliptical

disk with foci at α1λ2λ3+α2λ1λ3+α3λ1λ2 and
(
1−α1

2
λ1 +

1−α2

2
λ2 +

1−α3

2
λ3

)2
, and major axis

of length 1
2

∑3
i=1(1− αi)

2|λi|2 +
∑

1≤i<j≤3 αiαjRe
(
λiλj

)
−

∣∣1−α1

2
λ1 +

1−α2

2
λ2 +

1−α3

2
λ3

∣∣2.
Proof. Given α = (α1, α2, α3) ∈ Λ3, we let xα = (

√
α1,

√
α2,

√
α3)

⊤ ∈ C3. Note that
SA(α) = Π2(Y

∗AY ) where Y ∈ M3,2 with Y ∗Y = I2 whose range space is {xα}⊥. Let
µ1, µ2 be eigenvalues of Y ∗AY . Lemma 3.4 shows µ1µ2 = α1λ2λ3 + α2λ1λ3 + α3λ1λ2 and
µ1+µ2

2
= 1−α1

2
λ1 +

1−α2

2
λ2 +

1+α3

2
λ3.

To �nd the length of major axis, we have

Y Y ∗ = I3 − xαx
∗
α =

 1− α1 −√
α1α2 −√

α1α3

−√
α1α2 1− α2 −√

α2α3

−√
α1α3 −√

α2α3 1− α3

 ,

and

tr(Y ∗A∗Y Y ∗AY ) = tr(Y Y ∗A∗Y Y ∗A)

=
3∑

i=1

(1− αi)
2|λi|2 +

∑
1≤i<j≤3

αiαjRe (λiλj).

Then the result follows from Proposition 3.3.

For a normal matrix A ∈ M3 with eigenvalues λ1, λ2 and λ3, we de�ne

e2(A) =
1

3
(λ1λ2 + λ2λ3 + λ1λ3).

The main technical result of this section is as follows.

Theorem 3.6. Let A = diag(λ1, λ2, λ3) and J =
(
1
3
, 1
3
, 1
3

)
. Then for every α ∈ Λ3 and

0 ≤ t ≤ 1, the following inclusion relation holds

tSA(α) + (1− t)e2(A) ⊆ SA(tα + (1− t)J).
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We need the two following lemmas to prove our main result.

Lemma 3.7. Let A = diag(λ1, λ2, λ3) and J =
(
1
3
, 1
3
, 1
3

)
. For every α ∈ Λ3, 0 ≤ t ≤ 1 and

λ ∈ C, if
tSA−λI(α) + (1− t)e2(A− λI) ⊆ SA−λI(tα + (1− t)J),

then
tSA(α) + (1− t)e2(A) ⊆ SA(tα + (1− t)J).

Proof. Let α = (α1, α2, α3) ∈ Λ3, 0 ≤ t ≤ 1, and λ ∈ C. De�ne x = (x1, x2, x3)
⊤ , x̃ =

(x̃1, x̃2, x̃3)
⊤ ∈ C3 where xi =

√
αi and x̃i =

√
tαi + (1− t)/3, i = 1, 2, 3. For every η ∈

SA(α), there exist y1, y2 ∈ C3 in which y1, y2, x are orthonormal and η = (y∗1Ay1) (y
∗
2Ay2). By

the inclusion relation assumption, there exist ỹ1, ỹ2 ∈ C3 such that ỹ1, ỹ2, x̃ are orthonormal
and

t (y∗1(A− λI)y1) (y
∗
2(A− λI)y2) + (1− t)e2(A− λI) = (ỹ∗1(A− λI)ỹ1) (ỹ

∗
2(A− λI)ỹ2) .

For simplicity, denote z1 = y∗1Ay1, z2 = y∗2Ay2, z̃1 = ỹ∗1Aỹ1 and z̃2 = ỹ∗2Aỹ2. Since

x∗Ax+ z1 + z2 = trA = x̃∗Ax̃+ z̃1 + z̃2 and x̃∗Ax̃ = tx∗Ax+
1− t

3
trA,

we have

z̃1 + z̃2 = trA− x̃∗Ax̃ = t(trA− x∗Ax) +
2(1− t)

3
trA = t(z1 + z2) +

2(1− t)

3
trA.

By direct computation,

t (y∗1(A− λI)y1) (y
∗
2(A− λI)y2) + (1− t)e2(A− λI)

= t
(
z1z2 − λ(z1 + z2) + λ2

)
+ (1− t)e2(A)−

2(1− t)

3
λtrA+ (1− t)λ2

= tz1z2 + (1− t)e2(A)− λ

(
t(z1 + z2) +

2(1− t)

3
trA

)
+ λ2

= tz1z2 + (1− t)e2(A)− λ (z̃1 + z̃2) + λ2

and on the other hand

(ỹ∗1(A− λI)ỹ1) (ỹ
∗
2(A− λI)ỹ2) = z̃1z̃2 − λ (z̃1 + z̃2) + λ2.

Hence tη + (1− t)e2(A) = tz1z2 + (1− t)e2(A) = z̃1z̃2 ∈ SA(tα + (1− t)J).

Lemma 3.8. Let a, c > 0, b ∈ R, ac ≥ b2 and λ ∈ C. Then

|a− 2bλ+ cλ2| ≤ a− 2bRe (λ) + c|λ|2.

11



Proof. By direct computation, we have

|a− 2bλ+ cλ2| =

∣∣∣∣∣
(√

a− b√
a
λ

)2

+

(
c− b2

a

)
λ2

∣∣∣∣∣
≤

∣∣∣∣(√a− b√
a
λ

)∣∣∣∣2 + (
c− b2

a

)
|λ|2

= a− 2bRe (λ) +
b2

a
|λ|2 +

(
c− b2

a

)
|λ|2

= a− 2bRe (λ) + c|λ|2.

Proof of Theorem 3.6. The result is clear if A is a scalar matrix. Assume A is non-scalar.
By Lemma 3.7, we may assume that λ1 = 0 and λ1 ̸= λ2. In addition, one may replace A
by A/λ2 and further assume that A = diag(0, 1, λ) with λ ∈ C. Hence e2(A) =

λ
3
.

By Lemma 3.5, for every α = (α1, α2, α3) ∈ Λ3, the set SA(α) is an elliptical disk with

foci at α1λ and
(
1−α2

2
+ 1−α3

2
λ
)2
, and major axis of length

1

2
(1− α2)

2 +
1

2
(1− α3)

2|λ|2 + α2α3Re (λ)−
∣∣∣∣1− α2

2
+

1− α3

2
λ

∣∣∣∣2
=

∣∣∣∣1− α2

2
+

1− α3

2
λ

∣∣∣∣2 + α2α3Re (λ)− (1− α2)(1− α3)Re (λ)

=

∣∣∣∣1− α2

2
+

1− α3

2
λ

∣∣∣∣2 − α1Re (λ).

As a consequence, the set tSA(α)+(1−t)e2(A) is an elliptical disk with foci f1 = tα1+(1−t)λ
3
,

f2 = t
(
1−α2

2
+ 1−α3

2
λ
)2
+(1−t)λ

3
, and major axis of lengthM = t

∣∣1−α2

2
+ 1−α3

2
λ
∣∣2−tα1Re (λ).

On the other hand, similar computation shows that SA(tα+(1− t)J) is an elliptical disk

with foci f̃1 = tα1 + (1 − t)λ
3
, f̃2 =

(
1−tα2− 1−t

3

2
+

1−tα3− 1−t
3

2
λ
)2

, and major axis of length

M̃ =
∣∣∣1−tα2− 1−t

3

2
+

1−tα3− 1−t
3

2
λ
∣∣∣2 − (

tα1 +
1−t
3

)
Re (λ).

Let z ∈ tSA(α) + (1 − t)λ
3
. Equivalently |z − f1| + |z − f2| ≤ M . To prove z ∈

SA(tα + (1− t)J), we shall show that |z − f̃1|+ |z − f̃2| ≤ M̃ . Since f1 = f̃1, we have

|z − f̃1|+ |z − f̃2| ≤ M − |z − f2|+ |z − f̃2|
≤ M + |f̃2 − f2|

= M̃ +
(
|f̃2 − f2|+M − M̃

)
.
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It su�ces to show that |f̃2 − f2|+M − M̃ ≤ 0. By direct computation, we have

M − M̃

= t
∣∣1−α2

2
+ 1−α3

2
λ
∣∣2 − tα1Re (λ)−

∣∣∣1−tα2− 1−t
3

2
+

1−tα3− 1−t
3

2
λ
∣∣∣2 + (

tα1 +
1−t
3

)
Re (λ)

= t
∣∣1−α2

2
+ 1−α3

2
λ
∣∣2 − ∣∣∣ t(1−α2)

2
+ 1−t

3
+
(

t(1−α3)
2

+ 1−t
3

)
λ
∣∣∣2 + 1−t

3
Re (λ)

= t(1−α2)2

4
−

(
t(1−α2)

2
+ 1−t

3

)2

+ t(1−α3)2

4
|λ|2 −

(
t(1−α3)

2
+ 1−t

3

)2

|λ|2

+2
(
t
(
1−α2

2

) (
1−α3

2

)
−

(
t(1−α2)

2
+ 1−t

3

)(
t(1−α3)

2
+ 1−t

3

))
Re (λ) + 1−t

3
Re (λ)

= t(1− t)
(
1−α2

2
− 1

3

)2 − 1−t
9

+ t(1− t)
(
1−α3

2
− 1

3

)2 |λ|2 − 1−t
9
|λ|2

+2t(1− t)
(
1−α2

2
− 1

3

) (
1−α3

2
− 1

3

)
Re (λ) + 1−t

9
Re (λ)

= t(1− t)
∣∣(1−α2

2
− 1

3

)
+
(
1−α3

2
− 1

3

)
λ
∣∣2 − 1−t

9
(1 + |λ|2 − Re (λ))

= (1− t)
∣∣∣t (1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2∣∣∣− 1−t
9

(1 + |λ|2 − Re (λ)) ,

and

|f̃2 − f2|

=

∣∣∣∣(1−tα2− 1−t
3

2
+

1−tα3− 1−t
3

2
λ
)2

− t
(
1−α2

2
+ 1−α3

2
λ
)2 − (1− t)λ

3

∣∣∣∣
=

∣∣∣(t (1−α2

2
+ 1−α3

2
λ
)
+ 1−t

3
(1 + λ)

)2 − t
(
1−α2

2
+ 1−α3

2
λ
)2 − (1− t)λ

3

∣∣∣
=

∣∣∣t(t− 1)
(
1−α2

2
+ 1−α3

2
λ
)2 − 2t(t−1)

3
(1 + λ)

(
1−α2

2
+ 1−α3

2
λ
)
+ (1−t)2

9
(1 + λ)2 − (1− t)λ

3

∣∣∣
=

∣∣∣t(t− 1)
(
1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2
+ 1−t

9
(1 + λ)2 − (1− t)λ

3

∣∣∣
= (1− t)

∣∣∣t (1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2 − 1−λ+λ2

9

∣∣∣ .
Hence, |f̃2 − f2|+M − M̃ ≤ 0 if and only if∣∣∣t (1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2 − 1−λ+λ2

9

∣∣∣+ ∣∣∣t (1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2∣∣∣ ≤ 1
9
(1 + |λ|2 − Re (λ)) .

The inequality is equivalent to the condition that the number t
(
1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2
lies inside the ellipse with foci 1−λ+λ2

9
and 0, and major axis of length 1

9
(1 + |λ|2 − Re (λ)).

Hence it su�ces to show that this holds for t = 1. Note that∣∣∣(1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2 − 1−λ+λ2

9

∣∣∣
= 1

9

∣∣∣1− (
1
2
− 3α2

2

)2 − (
2
(
1
2
− 3α2

2

) (
1
2
− 3α3

2

)
+ 1

)
λ+

(
1−

(
1
2
− 3α2

2

)2)
λ2
∣∣∣
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and

1
9
(1 + |λ|2 − Re (λ))−

∣∣∣(1−α2

2
+ 1−α3

2
λ− 1+λ

3

)2∣∣∣
= 1

9

(
1−

(
1
2
− 3α2

2

)2 − (
2
(
1
2
− 3α2

2

) (
1
2
− 3α3

2

)
+ 1

)
Re (λ) +

(
1−

(
1
2
− 3α3

2

)2) |λ|2
)
.

Now let a = 1−
(
1
2
− 3α2

2

)2
, 2b = 2

(
1
2
− 3α2

2

) (
1
2
− 3α3

2

)
+ 1 and c = 1−

(
1
2
− 3α3

2

)2
. The

inequality is equivalent to

|a− 2bλ+ cλ2| ≤ a+ 2bRe (λ) + c|λ|2.

Note that a =
(
1−

(
1
2
− 3α2

2

)2) ≥ 0 and equality holds if and only if α2 = 1. If α2 = 1,

then α3 = 0 = a = b, c = 3
4
,

|a− 2bλ+ cλ2| = 3

4
|λ|2 = a+ 2bRe (λ) + c|λ|2.

Similar argument works for the case c = 0. Now assume a, c > 0. To apply Lemma 3.8, we
need to check ac ≥ b2. It follows by

ac− b2 =
4ac− (2b)2

4

= 1
4

(
4
(
1−

(
1
2
− 3α2

2

)2)(
1−

(
1
2
− 3α3

2

)2)−
(
2
(
1
2
− 3α2

2

) (
1
2
− 3α3

2

)
+ 1

)2)
=

1

4
(3− (1− 3α2)

2 − (1− 3α3)
2 − (1− 3α2)(1− 3α3))

= 9
4
(α2 + α3 − (α2 + α3)

2 + α2α3)

≥ 0

where the inequality follows by α2 + α3 ≤ 1. This completes the proof.

Proof of Theorem 3.1. Let z ∈ Π2(A), 0 ≤ t ≤ 1 and e2(A) =
1

3
(λ1λ2 + λ2λ3 + λ1λ3). By

Lemma 3.2, z ∈ SA(α) for some α ∈ Λ3. By Theorem 3.6,

tz + (1− t)e2(A) ∈ tSA(α) + (1− t)e2(A) ⊆ SA(tα + (1− t)J) ⊆ Π2(A).

By Theorem 3.6, P2(A) is star-shaped for 3× 3 normal matrices A.

Theorem 3.9. Let A ∈ M3 be a normal matrix with eigenvalues λ1, λ2 and λ3. Then P2(A)

is star-shaped with star-center e2(A) =
1

3
(λ1λ2 + λ2λ3 + λ1λ3).
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Proof. Let V ∈ M3,2 with V ∗V = I2 and 0 ≤ t ≤ 1. Write V ∗AV =

[
a11 a12
a21 a22

]
. Then

per(V ∗AV ) = 2a11a22 − det(V ∗AV ).

Let x = (x1, x2, x3)
⊤ be a unit vector with V ∗x = 0 and let α = (|x1|2, |x2|2, |x3|2) ∈

Λ3. Then det(V ∗AV ) = |x1|2λ2λ3 + |x2|2λ1λ3 + |x3|2λ1λ2 and a11a22 ∈ SA(α). Let x̃ =

(x̃1, x̃2, x̃3)
⊤ where x̃i =

√
t|xi|2 + (1− t)1

3
, i = 1, 2, 3. By Theorem 3.6, there exist ỹ1, ỹ2 ∈

C3 such that x̃, ỹ1, ỹ2 are orthonormal and ta11a22 + (1 − t)e2(A) = (ỹ∗1Aỹ1)(ỹ
∗
2Aỹ2). Set

Y = [ỹ1, ỹ2] ∈ M3,2. We shall show that t per(V ∗AV ) + (1− t)e2(A) = per(Y ∗AY ). Since

det(Y ∗AY ) = |x̃1|2λ2λ3 + |x̃2|2λ1λ3 + |x̃3|2λ1λ2 = t det(V ∗AV ) + (1− t)e2(A),

we have

t per(V ∗AV ) + (1− t)e2(A) = 2ta11a22 − t det(V ∗AV ) + (1− t)e2(A)

= 2(y∗1Ay1)(y
∗
2Ay2)− (t det(V ∗AV ) + (1− t)e2(A))

= 2(y∗1Ay1)(y
∗
2Ay2)− det(Y ∗AY )

= per(Y ∗AY )

∈ P2(A).

By the theory of compound matrices and decomposable tensor, one can show that
Dn−1(A) equals the classical numerical range of the (n − 1)-th compound matrix of A and
is always convex; see [16]. We can use Lemma 3.4 to deduce this result for 3 × 3 normal
matrices.

Theorem 3.10. Let A ∈ M3 be a normal matrix with eigenvalues λ1, λ2 and λ3. Then

D2(A) = conv{λ1λ2, λ2λ3, λ1λ3}.

Proof. (⊆) Let V ∈ M3,2 and V ∗V = I2. There exists a unit vector x = (x1, x2, x3)
⊤ ∈ C3

such that V ∗x = 0. Suppose µ1 and µ2 are eigenvalues of V
∗AV . By Lemma 3.4, we have

det(V ∗AV ) = µ1µ2 = |x1|2λ2λ3 + |x2|2λ1λ3 + |x3|2λ1λ2 ∈ conv{λ1λ2, λ2λ3, λ1λ3}.

(⊇) Suppose z = α1λ1λ2 + α2λ2λ3 + α3λ1λ3 where (α1, α2, α3) ∈ Λ3. Then for x =
(
√
α2,

√
α3,

√
α1)

⊤, there exists a matrix V ∈ M3,2 such that V ∗V = I2 and V ∗x = 0. By
Lemma 3.4, z = det(V ∗AV ) ∈ D2(A).
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