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Abstract
Let G be the finite reflection groups Hs, Hy, ¥4, Eg, E; or Eg, acting irreducibly on

the Euclidean space V. We show that there exists an overgroup G of G such that a linear
operator ¢ : End(V) — End(V) satisfies ¢(G) = G if and only if ¢ has the form X — PXQ
or X — PX'Q for some P,Q € G. From our result, we can show that G is actually the

normalizer of G in the group of orthogonal operators on V. Moreover, G = G except when

G:F4.

1 Introduction

Let V be a Euclidean space and let End(V) be the algebra of linear endomorphisms on
V. An operator T' € End(V) is a reflection if there exists a unit vector v € V such that
T(v)=v—2(v,u)ufor all v € V. A group G of invertible operators in End(V') is a reflection
group if it is generated by a set of reflections. The study of reflection groups has motivations
and applications in many areas, and the theory is quite well developed; see [1, 2].

Recently, there has been considerable interest in characterizing those linear operators

¢ : End(V) — End(V) such that

G) =G. (1)
For G = O(V), the group of orthogonal operators on V', Wei [7] showed that a linear operator
¢ : End(V) — End(V) satisfying (1) if and only if there exist P, € G such that ¢ has the

form

X PXQ or X+ PX*Q, (2)

where X* is the adjoint operator of X acting on V so that (Xu,v) = (u, X*v) for allu,v € V.
In [5], it was shown that the same result holds for G = A,,. In [4], the authors reproved this
result using a different approach, and consider the problems for the cases when G = B,,, D,
and I(n). For D, and I (n), ¢ : End(V) — End(V) is a linear operator satisfying (1) if
and only if there exist P and @ in the normalizer N(G) of G in O(V) such that ¢ has the
form (2). The same statement is true for G = O(V) and A,, because N(G) = G in these
cases. However, the situation for G = B,, is different. Suppose G = B,, is viewed as the

group of n X n signed permutation matrices, i.e., product of diagonal orthogonal matrices
and permutation matrices, acting on V' = IR", and End(V) is identified with the set M, (IR)

of n X n real matrices. Then a linear operator ¢ : M, (IR) — M, (IR) satisfies (1) if and only
if there exist P,Q) € G and R = (r;;) € M,(IR) with r;; € {1, —1} such that ¢ has the form

X Ro(PXQ) or X Ro(PX'Q),



where Y o Z denotes the Schur (entry-wise) product of two matrices Y, Z € M, (IR).

In this paper, we consider the problem for the remaining cases, namely, G = Hs, Hy, Fy,

Es, E; and Eg, and confirm that a linear operator ¢ : End(V) — End(V) satisfies (1) if and
only if there exist P,Q) € N(G) such that (2) holds.

One may also study the more difficult problem of characterizing linear operators ¢ :
End(V) — End(V) such that ¢(G) C G. When G = O(n), such a linear map has the usual
form (2) except when n = 2,4, 8, and there are singular maps ¢ satisfying (1) in these cases;
see [7] for details. Furthermore, one may consider other subsets & of End(V) related to G
and linear maps ¢ : End(V) — End(V) such that ¢(S) = S and ¢(S) C S; see [3, 4, 5]). All
of these can be viewed as studies of linear preserver problems related to groups and algebraic
sets; see [6, Chapter 4].

Our paper is organized as follows. We present some preliminary results and describe some
basic strategies of our proofs in the next section. In Sections 3 — 8, we prove our preserver
results for G = Hs, Hy, ¥4, Eg, E;, and Eg, respectively. In each of these sections, we
describe a natural matrix realization of G, and possible inner products (X,Y") for elements
X.,Y € G. These results are then used to solve the corresponding preserver problem. For
G = E; and Eg, we work on their 8 x 8 matrix realizations (as subgroups of Eg). Some
matlab programs used in our proofs are included in Section 9.

In our discussion, denote by {ej,...,e,} the standard basis for IR", e = 3"_, ¢;, and
Ei; = eie € Mu(R). If V is equal to (or identified with) IR", then End(V) is equal to
(or identified with) M, (IR), which is also a Euclidean space with inner product defined by
(X,Y) =tr (XY?).

It is worth noting that even though the general strategies of our proofs can be easily

described, see Section 2, it requires a lot of effort and technical details to prove our results.
It would be nice if there are shorter conceptual proofs for our results.

2 Preliminary Results

Denote by O(End(V')) the group of orthogonal operators on End(V') preserving the inner
product. We have the following result; see [4, Corollaries 2.2].

Proposition 2.1 Let G be a finite reflection group acting irreducibly on V.. The collection
of linear maps ¢ : End(V') — End(V) satisfying ¢(G) = G form a subgroup of O(End(V)).

General Procedures and Strategies
We briefly describe some general procedures and strategies in our proofs in the next few
Sections.

GP1. To find a matrix realization of the given reflection group G, we use the standard root
systems in IR" described in [1, p.76] to construct some basic reflections I,, — 2zz*, and
their products until we get all the elements in G. Very often, we partition the group G
into different subsets to facilitate future discussion.



GP2. Using the matrix realization in GP1, we determine some possible inner products

r=(X,Y) for elements X, Y € G. For each r, we define
S, ={XeG:([.X)=r}

which is used in the proof of the linear preserver result.

GP3. To characterize ¢ : M,,(IR) — M, (IR) such that ¢(G) = G, we can always assume that
¢(I,) = I,,. Otherwise, we can replace ¢ by a mapping of the form

X = (L) o(X).

By Proposition 2.1, we see that ¢(S,) = S,, where S, is defined as in GP2. Then we

show that there is an overgroup G of G so that one can strategically modify ¢ by a finite
sequence of mappings of the form

X Py(X)P  or X+ PIY(X)'P (3)

by P € G so that the resulting map is the identity map on M, (IR). It will then follow
that the original ¢ has the desired form.

GP4. Using our results, one can show that the group G in GP3 is N(G), the normalizer

of G in O(V), as follows. By our linear preserver result, if ¢ satisfies ¢(I,) = I,, and
#(G) = G then ¢ has the form

X~ P'XP or X P'X'P,

for some P in a certain group G. Since the mapping X — P!X P sends G onto itself for
any P € G, we see that G < N(G). Now, if @ € N(G) then the mapping ¢ defined by

X — Q'X(Q satisfies ¢(G) = G. By our linear preserver result, there exists P € G such
that

P'XP =Q'XQ forall X € G or P'X'P =Q'XQ for all X € G.

If the latter case holds, then XPQ'X = PQ' for all X € G, which is impossible; if the

former case holds, then one readily shows that P = ). Thus, we get the reverse inclusion
N(G) <G.

GP5. To study Eg, E; and Eg, we first use strategies GP1 - GP4 to handle Eg C Ms(IR).
Then we identify E; C M7(IR) as a subgroup &; of Eg C Mg(IR) by the mapping

1 0

t
AU (0 Y

>UEE8

for some suitable orthogonal matrix U € Mg(IR). To characterize a linear map 1 :

M;(IR) — M;(IR) such that '(E7) = E7, we consider an affine map ¢ induced by ¢ on

the affine space generated by &;. We use a similar idea to investigate Eg.
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3 Hj

3.1 Matrix Realization

The group Hj has 2% - 3 -5 = 120 elements; see [1, p.80]. Using the standard root systems

(see [1, p.76]) of Hs in IR?, we see that H3 admits a matrix realization in M3(IR) consisting
of the following matrices:
(I) 24 matrices of the form PD, where P € M3(IR) is an even permutation (so P is either

the identity or a length 3 cycle) and D € M3(IR) is a diagonal orthogonal matrix.
(II) 12 matrices of the form PH P, where P is a matrix of type (I) and

a b c
H=1I—2(-b,c,a)(=b,c,a) = (b c a) (4)

c —a —=b

with a = (1 4+ +/5)/4, b = (=1 + V/5)/4, ¢ = 1/2. Note that the diagonals of these
matrices have the form (a,c,—b), (=b,a,¢) or (¢,—b,a), and the sum of the diagonal
entries is always one.

(I1T) 84 matrices of the form QD where @ is a type (II) matrix and D is a diagonal orthogonal
matrix not equal to I3. In fact, each of these seven diagonal matrices D generates a class
of twelve matrices, and we get seven different classes. Note that the absolute values of
the diagonals are (a,¢,b), (b,a,c) or (¢,b,a).

3.2 Inner product

Since (X,Y) = (I3, X'Y) for any X,Y € Hj, we focus on the possible values of (I3, X)
with X € Hs. If X € Hj is type (I), then ([5,X) € {0,+1,43}; X € Hjs is of type (II),
then (I3, X) = 1; if X is type (III), then (I3, X) € {0, —1,4+/5/2, (1 + v/5)/2}. Thus, if
X € Hj, then

(I,X) € {0,4+1,+V5/2, +(1 + v/5)/2, +3}.
By GP2 in Section 2, for each r in the above set, define

S, ={X €Hy: (Is,X) =r}. (5)

For example, let r = 1. If X € &, then X must of one of the following two forms.
(a) The 3 matrices of type (I), namely,

Dy = diag(—1,1,1), D, = diag(1,—1,1), D5 = diag(1,1,—1), (6)

(b) The 12 type (II) matrices.



3.3 Linear Preservers

Theorem 3.1 A linear operator ¢ : Ms(IR) — Ms(IR) satisfies ¢(Hs) = Hs if and only if
there exist P, () € Hy such that ¢ has the form

X s PXQ or X PX'Q.
Consequently, N(Hs) = Hs.

Proof. The assertion on N(Hjs) follows from GP4 in Section 2. The (<) part of the first
assertion is clear. We consider the (=) part. Define S, as in (5). By Proposition 2.1, if
¢ preserves Hj, then ¢ preserves the inner product (X,Y) = tr (XY"). By GP3 in Section
2, we may assume that ¢(I3) = Is and ¢(S,) = S, for each r. In the following, we will

show that ¢ has the form X — P*XP or X — P'X'P for some P € Hz. We shall use the
matrices Dy, Dy, D3 and H defined in §3.1 — 3.2.

First, consider ¢(D;) = Y; for some j = 1,2,3. Then Y; € S;. Since ¢(I3) = I3 and
(D1 4+ Dy + Ds)/2 = I, we have (Y7 + Y, 4+ Y3)/2 = I. We consider 2 cases depending on
whether ¢(D;) is a type (a) or type (b) matrix defined in §3.2.

Case 1. Suppose Y] is a type (a) matrix. Then (Y; + Y2 + ¥3)/2 = I implies that all Y; are
type (a) matrices. We can assume that ¥; = Dy; otherwise, replace ¢ by a mapping of the
form X — Q¢(X)Q' for a suitable even permutation matrix . Then

{6(Ds), #(D3)} = { Dy, D3}.

We will show that ¢(D;) = D, for ¢ = 2, 3.
Suppose that ¢(X) =Y for some X, Y € Hj. Since ¢ fixes I5 and Dy, (X, I3) = (Y, I3)
and (X, Dq) = (Y, D). It follows that tr (X) = tr (V') and

2(X,En) = (X,I—Dy) = (Y,I;— Dy) =2(Y, Ey,).
Now, consider
T={X€e8&:(LX)=1, (X,B)=a}={H}U{D;HD; :1=1,2,3}
where H is the matrix in (4). Then ¢(7) = T, and thus ¢(H) € 7. We may assume that
$(H) = H, otherwise replace ¢ with X ~— D;(X)D;. Since
(H,¢(Ds)) = (6(H), ¢(D1)) = (H, Dy) # (H, Ds),

it follows that ¢(Dy) = D, and thus ¢(Ds) = Ds. So, we have shown that the modified
mapping ¢ fixes X for X =I5, Dy, Dy, D3, H.

Since ¢(D;) = D; and ¢ preserves inner product, we see that (D;, X) = (D;, ¢(X)) for
all © = 1,2,3. Thus ¢(X) and X have the same diagonal. Consider the four matrices with

diagonal (—a,c,—b), namely,
X1 - DlH, X2 - H.D1 - XI, X3 - —DzHDg, X4 - —D3H_D2 - X;
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Then ¢(X;) = X, for some j € {1,2,3,4}. Since
(6(X1), H) = ((X1),6(H)) = (X1, H) = (Xo, H) # (X3, H) = (Xy, H),

we see that ¢(X;) € {X1, X2}, We may assume that ¢(X;) = Xi; otherwise, replace ¢ with
the mapping X — ¢(X)". Then ¢(X;) = X,. Furthermore, we have ¢(X3) € {X3, X4}

Since

(X1, 0(X3)) = (6(X1), p(X5)) = (X1, X5) # (X1, Xa),
we see that ¢(X3) = X3. As a result, we have ¢(X;) = X, for 1 = 1,2,3,4.

Next, consider the four matrices with diagonal (a, —¢, —b), namely,
X5 — _1)2_['.]-7 XG — _['.’-_l)z7 X7 — —DlH_D3, Xg — —D3H_D1.

Since (H — X1, X;) # (H — X3, X;) for 5 <i < j <8, we have ¢(X;) = X, for 1 =5,6,7,8.

Now, we have ¢(X) = X for X € {D1,D,, D5, H, X;,..., Xg}, which is a spanning set of
M;(IR); for example, it can be checked using MATLAB as shown in the last section. Thus
d(X) = X for all X € M;5(IR).

Case 2. If Y] is a type (b) matrix, then we may replace ¢ by a mapping of the form
X — P@(X)P? for a type (I) matrix P and assume that Y7 = H. Then replace ¢ by the
mapping X — HQ'D1¢(X)D1QH with Q = Eyy + Eq3 + Es;; we see that ¢(D;) = Dy, and

we are back to case 1. O

4 H,

4.1 Matrix Realization

Note that Hy has 26 - 32 - 52 elements; see [1, p.80]. Let
a=(14+V5)/4, b= (-1+V5)/4, c=1)2.

Using GP1 in Section 2 and the standard root systems of Hy in IR* (see [1, p.76]), we see
that Hy contains the following two matrices:

1 -1 -1 -1

o111 -1 4
A—I—ee/2—§ 1 1 1 1] (7)
-1 -1 -1 1
and
1 0 0 0
B =1,—2(0,-b,c,a)(0,~b,c,a) = 0 a b ¢ (8)
T T 0 b ¢ —a
0 ¢ —a —b



Using these two matrices, we can describe the matrices in My(IR) as follows.

(I) 412% = 253 matrices of the form P D, where P is an even permutation, and D is a diagonal
orthogonal matrix. Note that (I, P) € {0,+1, +4}.
(IT) 273 matrices of the form PAQ, where A is the matrix in (7), and P,Q are matrices of
type (I). Note that
(L4, PAQ) € {0,£1,+2}.

(IIT) 2'°3 matrices of the form PBQ, where B is the matrix in (8), and P, () are matrices of
type (I). The counting is done as follows. For a matrix of the form PBQ@, each P and Q

has 2*12 choices. However, PBQ = RBS if and only if R*PBQS' = B. So, we have to
count pairs of (X,Y") such that XBY = B. One can check that XBY = B if and only

X =[r]dUand Y =[r] &V, where r = £1 and (U, V) is one of the following pairs:
+(I3,I3), £(—E13+ E21 + Esz, E13+ E91 — Esy),

+(E12 + Ey3 — E31, Ev2 + Eg3 — E3).

So, there are 12 pairs of matrices (X,Y’), and the total number of type (III) matrices is
(2412)2/12 = 2'°3. Note that

(I;, PBQ) € {0,+1,+2, (+1 £ 5)/2, (43 + v5)/2}.

(IV) 2'13 matrices of the form PCQ, where P, () are matrices of type (I), and

0 1 0 O 0 a b c
1 0 0 0 a b 0 —c
¢=5B 0 0 0 1 B = b 0 —a ¢
0 01 0 ¢ —c¢c ¢ c

The counting is done as follows. For a matrix of the form PCQ, each P and @ has

2412 choices. However, PCQ = RCS if and only if RIEPCQS* = C. So, we have to
count pairs of (X,Y’) such that XCY = C. One can check that XCY = C if and

Ol’lly HX =Y = :i:(U D [1]) with U = _[3, E13 — E21 — _E327 or —E12 — E23 + E31. SO7
there are 6 pairs of such matrices (X,Y), and the total number of class (IV) matrices is

(2*12)2/6 = 2''3. Note that

(I;, PCQ) € {0,41,(£1 +£5)/2, (+3 + v5)/2}.
(V) 32524 matrices of the form PEQ, where P and @ are type (III) matrices and

E = (Ei2+ Ey1+ Esqy — Ey3)B(Eva+ Egs — Esy + Eqy)B

c 0 b —a
0 ¢ —a =D

- b a ¢ 0 |- (9)
a b 0 c



The counting is done as follows. For a matrix of the form PE(Q, each P and @ has 212
choices. However, PE(Q) = RES if and only if R‘FPEQS* = E. So, we have to count pairs
of (X,Y) such that XEY = E. One can check that XEY = E if and only if X = Y7 is

the plus or minus of one of the following:
I4, By — Eoy + B3y — E43, Ey3+ Eog — B3y — Egy, By — Egz + E3p — Eyy.

So, there are 8 pairs of such matrices (X,Y), and the total number of class (V) matrices

is (2%12)?/8 = 3-2° - 24. One checks that

(I;, PEQ) € {0,41,42, (+1 + V5)/2, +1 £ V/5}.

4.2 Inner product

By the discussion in the last subsection, if X € H,, then

(I, X) € {0, 41, 42, (£1 £ /5)/2, (£3 £ V5)/2, £1 + /5, +4}.
By GP2 in Section 2, for each r in the above set, define
ST = {Y € H4 . (_[4,Y) = T}. (10)

Then S, consists of matrices of the following forms.
(a) The 4 diagonal matrices, namely

D, =1,-2E;, i=1234. (11)

(b) The 24 matrices of the form DA;D for ¢ = 1,2,3 where D = diag(1,+1,+1,+1), A, = A
defined in (7),

1 -1 -1 -1
1f1 1 -1 1 .
Az = 5 1 1 1 1 and A3 = AZ'
1

-1 1 1

(c¢) The 48 type (III) matrices with diagonal entries 1,a, —b, ¢ in a certain order. Note that
these must be of the form PBP?! where P is of type (I). To see this, note that if P and @
are type (I) matrices such that PB@ has diagonal entries 1, a, —b, ¢, then removing the
row and column containing the entry 1, we get a type (II) matrix of Section 3.1. Hence,
we see that ) = P'.

(d) The 24 type (V) matrices of the form PEP* where P is a type (I) matrix. This conju-

gation will leave the diagonal entries (namely ¢, ¢, ¢, ¢) on the diagonal.



4.3 Linear Preservers

Theorem 4.1 A linear operator ¢ : My(IR) — My(IR) satisfies ¢(Hy) = Hy if and only if
there exist P, Q) € Hy such that ¢ has the form

X PXQ or X PX'Q.
Consequently, N(H4) = Hy.

Proof. The assertion on N(Hy) follows from GP4 in Section 2. The (<) part of the first
assertion is clear. We consider the (=) part. Define S, as in (10). By Proposition 2.1, if ¢
preserves Hy, then ¢ preserves the inner product (X,Y) = tr (XY"). By GP3 in Section 2,
we may assume that ¢(Iy) = Iy and ¢(S,) = S, for each r. In the following, we will show

that ¢ has the form X — P'XP or X — P'X'P for some P € Hy. We shall frequently
use the matrices Dy, Dy, D3, Dy, A1, Ay, A3, B and F as defined in §4.1 — 4.2 as well as the
classification of elements of Sy as types (a), (b), (¢) and (d) as defined in §4.2. Furthermore,
denote by D;; = D;D;.

For E defined as in (9), since D12 ED;y = E* and E + E' = I, the elements of (d) can be
paired up such that X + X' = I, where both X and X' are in (d). Also, the same applies
for those matrices in (b) of the form DA;D, where ¢ = 2,3. (For example, Ay + As = I,).
Now consider ¢(D;) = Y;. Note that since there exists no X € Sy such that D, + X = I;

thus, Y; must be of type (a), (c), or type (b) of the form DA;D. We consider three cases
according to these.

Case 1. Suppose that Y} = D;. Then replace ¢ with a mapping of the form X — P¢(X)P?
where P is an even permutation such that ¢(D;) = D;. Note that

AH(X), En) = (6(X), I — Dy) = (X, I — Dy) = 2(X, Eny).

Let D14+ X3+ X3+ X4 = 21, where X; € S,. Since (Xy+ X5+ Xy, E1q) = 3, and since 1 is the
largest possible value for (X;, E11), it follows that each Xj is either of type (a) or one of the 12
type (c) with the (1,1) entry equal to one. Thus, either ¢(Dz) = D; or ¢(Dy) = Z3 where Z,
is one of the 12 type (c) matrices. If the first case happens, we may assume that ¢(D;) = Dy;
otherwise, replace ¢ by a mapping of the form X — P¢(X)P? for a suitable even permutation
matrix P such that (P, E11) = 1. If the second case happens, then there exists a signed even
permutation matrix  with (@, E11) = 1 such that Q'¢(D;)Q = B. Now, replace ¢ by a
mapping of the form X — BPDyQ'¢(X)QD,P'B with P = Ey1 + Ey + E33 + Ey43. Then

the resulting map fixes I, Dy, Ds.
Recall that ¢(D;) =Y for i =1,...,4, and Y1 + Y2 + Y5 + Y4 = 314. Thus,

{&(D3),4(D4)} = {Ds, Da}.
Moreover, for ¢ € {1,2}, (X, E;;) = (¢(X), ¢(Eii)) = (#(X), Ei;). Consider the set
T={X€S8:(X,En)=1, (X,Es) =a} = {D;BD; : i = 1,2,3,4}.

9



(Note that B = D{BDy). Then ¢(7) = T. If ¢(B) = D,;BD;, then replace ¢ with
X — D;¢p(X)D;. So, we may assume ¢ fixes B. Now, since (D3, B) # (D4, B), we have
¢(D3) = D3 and ¢(Dy4) = D4. It then follow that

(X, Ei) = (6(X), Ey), i=1,...,4.

Since (B, D;BD;) # (B, D;BD,) for i # j, we have
¢(D;BD;) = D,BD;, 1 =2,3,4.

Let P = E13 + Ea3 + E31 + E44, and consider the matrices

B, =B, B,=PBP', B;=P'BP.

Consider those matrices in Sy with diagonal (a, ¢, 1, —b), namely, D, By D; for 1 = 1,2,3,4
(note that By = D3ByD3). Then
(B,B;) = (B,D1ByDy) # (B, DyByD;) = (B, D4ByDy).

We may assume that ¢(By) = By. Otherwise, ¢(Bz) = D1ByD; and replace ¢ with X —

D1¢(X)D;. Now ¢(D3yByDy) = D;ByD; for either i = 2 or ¢ = 4. Since (By, D3B3 Ds) #
(B2, DyB3Dy), we have

QD(D,BZD,) = DiBZDi7 i = 1727374'
The matrices with diagonal (¢, 1,a,—b) are D;BsD; for i = 1,2,3,4 (note that Bs =
Dy B;5D;). We have
(B, Bg) — (B, DlB3D1) 7£ (B, D3.B3_D3) — (B, D4B3_D4).
But (Bz, Bg) = (Bz, D3.B3_D3) 7£ (Bz, DlBng) = (Bz, D4BgD4). Therefore,
QD(D,B3D,) = DiBSDi7 @ = 1727374'
Next, consider
B4 = _l)g_B7 B5 = _Dsz, and BG = DlBg.
Their diagonals are (1,a,—c,—b), (a,—¢,1,—b) and (—¢,1,a, —b) respectively. Note that
for each 1+ = 4,5,6, that D;B;D; share diagonal entries, where 5 = 1,2,3.4. Since the
triples ((B, D;B;D;j) (B2, D;B;D;) (Bs,D;B;D,)) are different for different 7, j, one can see

that each of these 12 matrices must be mapped to themselves. Thus ¢(X) = X where
X = D;B;D; for 5 =1,2,3,4 and 1 = 1,...,6. One readily checks that these 24 matrices

span M4(IR); see the last section. So ¢ fixes every matrix in My(IR).

Case 2. Suppose that Y] has the form PBP*. Then replace ¢ by the mapping of the form
X — Po(X)P'. Thus Y; = B. Then replace ¢ by the mapping X — BP!'¢(X)PB where
P = Ei1 + Eys + Esy + Eyz. Thus ¢(Dy) = Dy, and we are back to case 1.

Case 3. Suppose that Y] has the form DA;D. Then replace ¢ by the mapping of the form
X — D¢(X)D where D is such that ¢(D;) = A;. Then replace ¢ with the mapping of the
form X — A;D1¢(X)D1Ay. Thus ¢(D,) = D, and we are back to case 1. O
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5 Fy

5.1 Matrix Realization

The group F4 has 4123 elements (see [1, p.80]) and is generated by B, and the matrix

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

A:I—eet/2:% (12)

Let G be the group in O(4) generated by By and the matrix

(AR g

Then G has 4!12°3 elements. Our result will show that G = N(F4) as discussed in GP4 in
Section 2.

5.2 Inner product
By the discussion in the last subsection, if X € Fy4, then
(L4, X) € {0,+1, 42, +4}.
By GP2 in Section 2, for each r in the above set, define
S, ={YeF,: (,Y)=r} (14)

The set S consists of matrices of the following forms.

(I) There are 4 diagonal matrices, namely, D; = I, — 2E;;, 1 = 1,...,4.

(IT) There are 24 matrices of the form DP;; € By, where P;; is the matrix obtained from I,
by interchanging the ¢th and jth rows for 1 < < 7 <4, and D is a diagonal orthogonal
matrix such that tr (DP;;) = 2. For example,

P34:

OO O
OO = O
— o o O
O = O O

(ITI) There are 48 matrices of the form DA, D, ..., DAgD, where

1 -1 -1 -1 1 1 -1 -1
1l -1 1 -1 -1 11 1 1 1
A1_§ -1 -1 1 =1 ’A2_§ 1 -1 1 =1}

-1 -1 -1 1 1 -1 -1 1

11



1 -1 -1 1 1 -1 1 -1
11 1 -1 —1 1{1 1 -1 -1
A3_§ 1 -1 1 -1 ’A4_§1 1 1 1|
1 1 1 1 1 -1 -1 1
1 -1 -1 -1 1 -1 -1 -1
111 1 1 -1 1{1 1 -1 1
A5_§ 1 -1 1 1 ’A6_§ 1 1 1 =1}/
1 1 -1 1 1 -1 1 1

and

D € {diag(1,51,5g,53) : 51,52,53 € {1, —1}}

5.3 Linear Preservers

Theorem 5.1 A linear operator ¢ : My(IR) — My(IR) on My(IR) satisfies ¢(F4) = Fy

if and only if there exist P,Q in the group G generated by Fy and B defined in (13) with
PQ € ¥, such that ¢ has the form

X PXQ or X+ PX'Q.

Consequently, N(F4) = G.

Proof. The assertion on N(F4) follows from the GP4 in Section 2. The (<) part of the
first assertion is clear. We consider the (=) part. Define S, as in (14). By Proposition 2.1,
if ¢ preserves Hy, then ¢ preserves the inner product (X,Y) = tr (XY"). By GP3 in Section
2, we may assume that ¢(Iy) = Iy and ¢(S,) = S, for each r. In the following, we will show
that ¢ has the form X — P'XP or X — P'X'P for some P € G. Throughout this proof
we will use the matrices Dy, D,, D3, Dy, Ay, ..., Ag and P;; as defined in §5.1 — 5.2. We also
refer to matrices in Sy as types (I), (II) and (III) as defined in §5.2.

Note that the four type (I) matrices Dy,..., D4 are mutually orthogonal matrices satis-

fying (D1 +---+ Dy4)/2 =14 Let ¢(D;) =Y, for j=1,...,4.

Case 1. If Y] is one of the four type (I) matrices, then (Y7 + Y3 + Y5 4+ Yy)/2 = I implies
that all Y; are type (I) matrices. We can assume that Y; = D; for all j = 1,...,4; otherwise,
replace ¢ by a mapping of the form X — Q¢(X)Q! for a suitable permutation matrix Q.

Now note that (D;, X) =1 for all X in type (III) of S and j = 1,...,4. For 1 < <
Jj < 4, let P;; be the set of 4 type (II) matrices of the form DP;;. Then for all X € P;j,
(D, X)=2if k =14,5 and (Dg,X) = 0 otherwise. The same must be true of ¢(X). Thus,
&(Pij) = Pij-

Let

1
Cl = Iz @ (O > € 7334 and qb(Cl) = Iz @ ( 0 yl) € 7334.

1 0 y2 0

We claim that y; = ys. Note that Z € S, satisfies (Cy,Z) = 1 if and only if one of the
following holds:

12



(a) Z is one of the type (II) matrices with only one diagonal entry overlapping with those of
C1. There are 16 such matrices having the form D P35, DP4, D Py3 and DP,,, with four

choices of diagonal orthogonal matrices D for each P;;.

(b) Z is one of the type (III) matrices such that the (3,4) and (4, 3) entries have different
signs. There are 32 such matrices having the form DA;D for j = 3,4,5,6, with eight
choices of diagonal orthogonal matrices D for each A;.

As a result, there should be 48 matrices Z in Sy such that (¢(C1),Z) = 1. However, if the

(3,4) and (4,3) entries of ¢(C;) have different signs, then Z € S, satisfies (¢(C4),Z) =1

can only happen if Z satisfies (a) or

(¢) Z is one of the type (III) matrices such that the (3,4) and (4, 3) entries have the same
sign. there are 16 such matrices having the form DA;D for j = 1,2, with eight choices

of diagonal orthogonal matrices D for each A;.

Thus, there are only 32 such matrices, which is a contradiction. Therefore, ¢ maps symmetric
matrices in Ps4 to symmetric matrices in Psy4. Note that one can generalize this argument

for all P;; for all 7, 5.
We may assume that ¢(Cy) = Cy; otherwise, replace ¢ by a mapping of the form X —

Dy¢p(X)Dy4. Now,

0

02:-72@<1

—1
is not a symmetric matrix in Psq, and thus ¢(Cy) € Ps4 is not symmetric. We may assume
that ¢(Cy) = Cy; otherwise, replace ¢ by the mapping X — ¢(X)".

Divide type (III) matrices into two subclasses:

71 is the set of type (III) matrices of the form PA; P!, where i = 1,2 (i.e., (X, E3) =
(X, Euy)), and

7T is the set of type (III) matrices of the form P A, P?, where i = 3,4,5,6 (i.e., (X, E3q) =
—(X, E43)).

Then (Cy,X) =1 for a type (III) matrix X if and only if X € 7. Let

es=(] o)eh a=we(] ,)em

Since the symmetric matrices in P are mapped to themselves, we may assume that ¢(Cs) =
Cs; otherwise, replace ¢ by a mapping of the form X — D;¢(X)D;. Since symmetric
elements of Py3 are mapped to themselves, we may assume that ¢(Cy) = C4; otherwise,
replace ¢ by a mapping of the form X — D13¢(X)Dy,.

Next, we show that ¢ fixes E = FEj3 + Ea3 + E34 + E4. Since (E,D;) = 0 for all
Jj€{1,...,4}, and (E,X) = 0 for all X € P;; with (¢,5) € {(1,3),(2,4)}, it follows that
¢(F) has a zero in all eight of the nonzero entry found among these eight matrices. Since
(E,C;) = (=1)7! for i = 1,2, we have (¢(E), Es4) = 1 and (¢(E), E43) = 0. So ¢(E) =
+Fi5+ Ey3s+ Esy+ Eyy. Since (E,C;) =1for i = 3,4, ¢(E) = E13+ Ess+ Esqs+ Es1 = E or
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O(FE)=FEia+ Eys+ Esqs— Eqyy = E. But (E,X) = 2 for exactly one matrix, namely Dy A4D,
in 7y, whereas (E,X) = 2 for 3 different matrices Doy A3Dqy, D1 AsDy, and Doy AgDoy in 7Ty.
Thus, ¢(E) = E. A similar argument shows that ¢(E*) = E".

Let
0 -1 0 -1
c=(] o )ek amd c=me(] )emw
Since (E,C;) = =1 and (E,C!) =1 for i € {5,6}, it follows that ¢(C;) = C; and ¢(C}) = C!
for 1 € {5,6}.
For each X € 7, define

f(X)=1[(1,X),(E,X),(E",X),(D,X),...,(D4,X),(Cy,X),...,(Ce,X)].

Then one can show (say, using MATLAB) that f(X) # f(Y) whenever X # Y in 7. Since ¢
fixes the matrices Iy, E, E', Dy,..., Dy, Cy, ..., Cs, it follows that ¢(X) = X for all X € T5.
One can check that

TiU{Dy,...,Dy,Cy,...,Cé}

span M, (IR); see the last section. Thus, ¢(X) = X for all X € M, (IR).

Case 2. Suppose Y] is a type (II) matrix. Then we may assume that Y; has the form

L@ (; y()1> We claim that y;y2 = 1. Otherwise, there are only 32 matrices Z in S,
2

satisfying (Y1, Z) = 1, whereas all the 48 type (III) matrices Z satisfy (Dy,Z) = 1. Now,
replace ¢ by a mapping of the form X — B¢(X)B. The modified mapping will satisfy
¢(Dy) = D; with j = 3 or 4. Thus, we are back to case 1.

Case 3. Suppose Y] is one of the type (III) matrix. Note that ¥; cannot have the form
PA;P for j = 5,6, because
min{(D1,2): Z € S} =0,

but for {j,k} = {5,6} and we have
(PA;P, PD, AyD, P) = —2

and hence
min{(PA,;P,Z):Z € §;} < 0.
Now, suppose Y7 = PA;P for 7 = 1,2,3, or 4. We may assume that Y7 = A;; otherwise,
replace ¢ by X — Po(X)P. If' Yy = Ay, replace ¢ by A — B¢(A)B. The resulting mapping
satisfies ¢(D1) = E11 + Ez3 + Es» + F44. We are back to Case 2.
If Y1 = A,, As or Ay, replace ¢ by A — B¢(A)B. The resulting mapping satisfies
¢(D1) = Ey1 — Ess + Esy + E4, which is impossible by the argument in Case 2. O
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6 Eg

6.1 Matrix Realization

The group Eg has 2'*3°527 = 8127335 elements which can be divided into the following 3
classes.

(I) The 8!27 elements of Ds.
(IT) The 8!2" matrices of the form X AY, where X,Y € Dg and

A=1Iy—wuw'/4 with w=e—2e=(1,---,1,—-1)" € R®, (15)

The counting is done by: 278! choices for each of X and Y, and there are 2 - 8! pair of
(P, Q) in Dg x Dyg satisfying PAQ = A.
(IIT) The 8!2% - 35 matrices of the form X BY, where X,Y € Dg and

B - Bl @ Bz - A(—I4 @ I4)A, (16)
where

By =(1,1,1,1)(1,1,1,1)/2 = I, B, =1I,—(1,1,1,-1)"(1,1,1,—1)/2.

2
The counting can be done as follows. First choose 4 rows and 4 columns in (i) ways.

Then put matrix pairs (X;B1Y7, X3 BY3) in the two complementary blocks, where

(i) X1,Y7, X5, Y, € Dy,

(i1) X1,Y7, X5, Y, € (By \ Dy),

(iii) Xy, X; € Dy and Y1,Y; € (B4 \ Dy), or

(iv) X1, X3 € (B4 \ Dy) and Y7,Y; € Dy.
The number of choices for X;B;Y; in each case is |F4\ By|/4 = 4!2%. Since DB, D = B, with
D = diag(1,1,1,—1), we see that cases (i) and (ii) yield the same matrices, and also cases

ii1) and (iv) yield the same matrices. So, there are 2(4!23)% so many choices for the pairs.
y ) Yy p

Consequently, the total number of this class is 2(412%)? (i)z = 812770.

6.2 Maximum inner product

Let X € Eg with X # I. Then (I,X) < n — 2. The equality holds if and only if X =
I—(e; +e;)(e; £ ;) for some 1 <i < j<8or X = P'AP for some P € Dg. By GP2 in
Section 2, for each possible value of r = (I, X), define

S, ={X €Es: (Is,X) =r}. (17)

Note that the largest value for r is 6, and Sg consists of matrices of the following forms.

(a) The 56 matrices of the form
Xij=Is—(ei—e)(ei—e;)'  or  Yij=Is—(eite;)(eite),
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where 1 <1< 5 <8.
(b) The 64 matrices of the form DAD', where A is defined in (15) and D is a diagonal

orthogonal matrix in Dsg.

6.3 Linear Preservers

Theorem 6.1 A linear operator ¢ : Ms(IR) — Mgz(IR) satisfies ¢(Es) = Eg if and only if
there exist P, () € Eg such that ¢ has the form

X — PXQ or X PX'Q.

Consequently, N(Es) = Es.

Proof. The assertion on N(Eg) follows from GP4 in Section 2. The (<) part of the first
assertion is clear. We consider the (=) part. Define S, as in (17). By Proposition 2.1, if ¢
preserves Eg, then ¢ preserves the inner product (X,Y") = tr (XY?). By GP3 in Section 2,
we may assume that ¢(Is) = Iy and ¢(S,) = S, for each r. In the following, we will show

that ¢ has the form X — P'XP or X — P'X'P for some P € Eg. We shall use the matrices
A, X,; and Yj; as defined in §6.1 — 6.2 as well as the classification of elements of Sg as type

(a) and (b) as defined in §6.2.
Define D; = Is — 2E;;, and D;; = D;D;. Note that those D described in (b) have one of

three forms:

D;;, Dijsi = D;jDyy, or — Dyj.

Note the following four types of conjugations will be used extensively throughout this first
part. For ¢, 5, k distinct,

X,kX]letk = X,'j and Y;kY;kY;Z = X,]

Since X7s € Sg, it follows that ¢(Xr7s) = Z € Sg. If Z = X;; or Yj;, then replace ¢ by the
mapping X — P¢p(X)P! with

b [ XaXps 7 =X,
B {Xans it Z =Y.

Then ¢(X7s) = Xrs. If ¢(Xz3) = DAD?, then replace ¢ by the mapping X — Dg¢(X)D?
so that ¢(X7s) = A. Furthermore, replace ¢ by the mapping X — Q:¢(X)Q%L, where
Q7 = D78AD58, so that QD(X78) = X78.

Now consider those X € Sg such that (X, X75) = 5. They are of the following two forms.

(c) 24 matrices of the form X;; or Y;; where 1 <7 < j <8.
(d) 32 matrices of the form DAD" where (D, Er7) = (D, Egs) = 1.
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If X € S is not of these forms, then (X, X7zs) = 4. It is important to note the sign
pattern of the diagonal D in type (d). For any ¢, 7, if (DAD', X;;) = 5, then (DAD', E;;)

must be positive. Thus,
(D, E;) = (D, Ess) ifi<j=38

but
(D,E;;) = —(D, Ejj) ifi <y <8.
We change the signs in this argument if we are interested in (DAD!, X;,) = 4.

If ¢(Xe7) = Xi7 then replace ¢ be the mapping X — X;e0(X) XY, If ¢(Xe7) = Xis then
replace ¢ be the mapping X — Xr7sé(X)Xlg, thus reducing the problem to the previous
case. If ¢(Xg7) = Yi; then replace ¢ be the mapping X — D ¢p(X)Di, for k # 4,7,8. If
¢(Xe7) = DAD' where (D, E77) = (D, Egs), then replace ¢ be the mapping X — ﬁgD(X)ﬁt
where D is a diagonal orthogonal matrix such that ¢(Xe7) = @7 where Q7 is defined as
before. Now replace ¢ by the mapping X — Qsd(X)Qf where Q¢ = Des ADEg Therefore
&(Xer) = Xer.

Now consider those X € Sg such that (X, X75) = 4 and (X, Xg7) = 5. They are of the

following two forms.

(e) 10 matrices of the form X6 or Yig, ¢ < 6.
(f) 16 matrices of the form DAD' where D = Dgs, D;jes or —D;; for i < j < 6.

Since Xse is in this set, so must ¢(Xse). If ¢(Xs6) = Xjg, then replace ¢ by the mapping
X = Xisd( X)X, If ¢(Xs6) = Yie, then replace ¢ by the mapping X +— D;¢(X)D;i, where
k < 6. If $(Xs6) = DAD" where (D, Egs) = —(D, Ez7r) = (D, Ess), then replace ¢ by the
mapping X — qu(X)Dt where D = DDgs. Next replace ¢ by the mapping X — Qs6(X)Qk
where s = Dss ADL,.

We can fix first, Xys5, second, X34, and third, Xs3, in the same way as we fixed X5¢ by

the following arguments. For £ = 5, 4 and then 3, consider those X € Sg that have inner
product of 5 with the matrix Xy g4+1 (which has just been shown to be fixed by ¢) but inner

product of 4 with X4y for ¢ > k + 1. Then ¢(Xj_1 ) have one of three forms: X;;_q,
Y k-1 and DAD where D = ZA)Dk_Lg. If it is one of the first two forms, then replace ¢ by a

mapping of the form X — P@(X)P! where P is a appropriate matrix of one of the first two
forms. If it is of the third form, replace ¢ by the mapping

X = Qk—1D¢(X)DQk—1 for Qr—1 = Dyp_18ADy_; 5.

Now define Q; = D1sAD%,. Then @ is the only type (b) matrix such that @1 € Sg and
(Q1,Xiit1) = 4 for 1 = 2,...,7. There are no type (a) matrices where this property holds,
thus ¢(Q1) = Q1. Consider those X € Sg such that (X, Xy3) =5 and (X, X ,;41) =4 for i =
3,...,7. Then X = Xj3, Y15 or Q3. Inspecting the sign pattern, we have (X;;, Q1) # (Yi;, Q1)
for all 7, j. Thus, we may assume that ¢(X;3) = X13. Otherwise ¢(X12) = Q2 and replace ¢
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by the mapping X — Q1¢4(X)Q1. Thus, ¢(Z) = Z for Z = I5,Q1, X; i1 fori =1,...,7. One
can check that this is sufficient to show that ¢(X) = X for all X € Sg; see the last section.
Suppose that ¢(X) =Y for some X € Eg. Then

20X, Eij + Ej) = (X, X5 = Y55) = (V. Xy = Y55) = 2(Y, Eij + Eji).

Also, for all « # 7, I — (X;; + Y;j)/2 = E;; + Ej;. Therefore, (X, E;;) = (Y, E;;) for all 7 and
thus
H(X) =X or X! for all X € Es.

Let Xijx = X;;jXix € S5 for each © < j < k. Then X,j; is the type (I) matrix with the
following principal submatrices

0 1 0
1 0 0

Here Z[i, j, k] denotes the submatrix of Z lying in rows and columns ¢, j, and k; and Z(¢, j, k)
denotes the matrix obtained from Z by deleting its rows and columns indexed by ¢, 7, and &.

Then we may assume that ¢(Xers) = Xgrs. Otherwise, ¢(Xers) = X&-g, and replace ¢ by the
mapping X — ¢(X)". Note that (X;jr, Xers) = 5 if and only if i < 6 < j < k < 8. But then
(ijk,st) = 4. Thus ¢(X;jx) = X,j for all X,jp where 1 < 6 < j < k < 8. Continuing in
this manner, we can fix all matrices of the form Xjj,. Therefore ¢(Z) = Z whenever X,

foralll <i<j <k <S8
Let

8
P — E18 —|— Z E]‘J‘_l € Mg(IR,)

J=2

Then, for all @ € Sg of type (b), ¢(PQ) = PQ or (PQ)". But clearly, (PQ,Xi23) #
((PQ)', X123), therefore, ¢(PQ) = PQ for all Q € Sg of type (b). Thus, ¢(Z) = Z for
Z = I, X, where 1 < 5 < k, X;; where ¢ < j and for Z = () and P(Q) for all Q) € Ss of type
(b). One can check that these matrices span Mz(IR); see the last section. Thus ¢(X) = X
for all X € Eg. O

7 E,

Let
w=¢e— 2¢es € RE.

Then E; has a natural realization as a subgroup of Eg C My defined and denoted by

E={X €eEs: Xw=uw}
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acting on the 7-dimensional subspace w' in IR®. Suppose U is an orthogonal matrix with
w/+/8 as the first column. Then for every A € &, we have

U AU = <(1) Ex) (18)

The collection of such A € M7 (IR) will form a matrix realization of E; in M7(IR). Moreover,
for any A, B € & and the corresponding A, Be E;, we have

(A,B) = tr (AB") = 1 + tr (AB") = 1 + (A, B). (19)

Of course, one may have different realizations of E; in M7(IR) by a different choice of U.
Nonetheless, it is well known that all the realizations of E; in O(7) are orthogonally similar.
In this section, we will study E; via & as mentioned in GP5 of section 2.

7.1 Matrix Realization

The group & = {X € Eg : Xw = w} has 8!72 elements which can be divided into the
following three classes.
(I) The 8! elements in Dg N &7, those elements X € Dg such that Xw = w.

(II) The 8!36 matrices of the form X'AY satisfying X'AYw = w, where X,Y € Dg and
A= Ig—ww'/4 withw = e—2eg = (1,---,1,—1)! € IR®. The counting is done as follows.
Counsider the equation AYw = Xw, i.e., Yw — Xw = w(w'Yw)/4. There are 3 cases.

(1) w'Yw =8, Yw — Xw = 2w. Then Yw = w = —Xw. There are 8! choices for each of X
and Y and there are 8! pairs (P, Q) in Dg x Dg such that PAQ = A with Qw = w and

w'P = w'. So, there are 8! elements in this case. Clearly, these must coincide with the
8! elements of the form —PA where P is a matrix of type (I).

(i) w'Yw = =8, Yw — Xw = —2w. Then Yw = —w = —Xw. Every pair (X,Y) in
(b.1) can be converted to (—X, —Y) to this case, and we actually get the same XAY =
(=X)A(-Y) matrix. So, no new addition in this case.

(iii) w'Yw = 0, Yw = Xw. For each of the 70 choices of w; € w', where all entries of
w; are 1, we have a fixed P; € Dg such that Pw = w;, ¥ = P,'Y and X = P,»)A( with
Yuw=w=Xw. Now, there are 8! choices for each of X and f/, and we have to factor out
the 8! so many (R, S) pairs such that R'(P!AP;)S = P! AP; with Sw = w = Rw. Thus,
there are 8! so many X*AY corresponding to each choice of w;. However, for each w;, the

8! matrices X' AY corresponding to w; are the same as the 8! matrices corresponding to
—w;. Thus, we have 8!70/2 = 8!35 matrices in this case. These are the matrices of the

form PDAD' where P is a type (I) matrix and D is a diagonal matrix whose diagonal

entries are permutations of (1,1,1,1,—1,—1,—1, —1). In other words, Dw € w>.

(III) The 8!35 matrices of the form X*BY satisfying X'BYw = w, where X,Y € Dg and
B =B, & B, = A(—1, & I4)A, where

By =(1,1,1,1)(1,1,1,1)/2 = I, B, =1I,—(1,1,1,-1)"(1,1,1,—1)/2.
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The counting is done as follows. In order to have X'BYw = w, the last row of X*BY
must contain either a row of X, ByY; with a nonzero (8, 8) entry or a row of X; B1Y; with

the (8,8) equal to zero. In the first case, we have (D (1)4! ways to put X;B;Y] so as

to make the first 4 entries of X*BY w equal to 1, and then 4! ways to put the X,;B,Y;

matrices so that the last 4 entries of X*BY w are 1,1,1, —1. In the second case, we have

(D (1)4! ways to put XyB,Y; so as to make the first 4 entries of X*BYw equal to 1,
and then 4! ways to put the X, B;Y; matrices so that the last 4 entries of X!BY w are
1,1,1,—1. Thus, total number is 2((1) (D (41)?) = 8!35.

b ]

7.2 Maximum inner product

Let X € & with X # I. Then (Is, X) < 6 and hence the inner product on the irreducible
subspace E7 is bounded by 5. Using the matrix realization in Mg(IR) and by GP2 in Section
2, for each possible value of r = (I, X), define

S, ={Xe€e&: (s X)=r}. (20)
Note that Sg consists of matrices in one of the following two forms.
(a) The 28 matrices X;; of the form

X,'jzfg—(e,'—ej)(e,'—ej)tfor1§i<j§7

Xig = Is — (&; + es)(e; +eg) for 1 <4 < 7.

(b) The 35 matrices of the form X = DAD' for some diagonal orthogonal D such that
Dw € w.

7.3 Linear Preservers

Theorem 7.1 A linear operator ¢ : M:(IR) — M;(IR) satisfies (E7) = E; if and only if
there exist P, () € E; such that ¥ has the form

X PXQ or X PX'Q.
Consequently, N(E;) = E.

Proof. The assertion on N(E;) follows from GP4 in Section 2. The (<) part of the first
assertion is clear. We consider the (=) part. Let ¢ : M7(IR) — M-(IR) be a linear map
satisfying ¥ (E;) = E;. By Proposition 2.1, if ¢ preserves E;7, then ¢ preserves the inner

product (X, f/) = tr ()A(f/t) Also, by GP3 in Section 2, we may assume that ¢ ([7) = I7.
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Let V7 be the affine space generated by &7, and let U be an orthogonal matrix establishing
the correspondence between &; and E7 as described in (18). Consider an affine map ¢ : V; —

V: defined by
o000 x)v) =0l )0 (o oo)

Then ¢(&7) = &;. Since 9 preserves inner product in M7 (IR), we have (¢(X), d(Y)) = (X,Y)
for all X,Y € & by (19). Define S, as in (20). Since ¢(I7) = I, therefore, ¢(Ig) = Is and
by GP3 in Section 2, ¢(S,) = S, for each r. In the following, we will show that for some
P € &, ¢ has the form

X +— P'XPforall X € & or X — P'X'P for all X € &;.

We shall use the matrices A and X;; for 1 <1 < j < 8 as defined in §7.1—7.2. We also refer to
matrices in Sg as type (a) and (b) matrices as defined in §7.2. Furthermore, let D; = Is—2FE;;,
and D;; = D,;D;. Note that those D described in (b) will be of the form D,y = D;; Dy
where 4,7, k,[ are all distinct. If ¢, j', k', I" are such that {:,7,j, 7', k, k', 1,I'} = {1,....8},
then

D;jtiAD;jii = Djrjigv ADjs iy

Also, for ¢, 7, k distinct and X5, X, and X;; all of type (a),
X,kX]letk = X,]

We may assume that ¢(Xrzs) = Xzs. Otherwise ¢(Xzs) = X;; or ¢(Xzs) = DAD for
an appropriate D. If ¢(X7s) = X;;, then replace ¢ by the mapping X +— P¢(X)P" where
P is an appropriate type (a) matrix. If ¢(X7s) = DAD', then consider D. If D = D,z
for 7,7,k < 7, then replace ¢ by the mapping X — QAQ" where Q = D;jrsAD;jks. If
D = D,jzs, Then replace ¢ by the mapping X — Xpsd(X)X}g for some k # 7,j. Thus
&(X7s) = DijrrAD;jk7, which has already been discussed. Therefore, ¢(Xrs) = Xrs.

Now, consider those X € Sg such that (X, X73) = 5. They are of two forms.

(¢) 12 matrices of the form X;; for ¢t < 7 < 5.
(d) 20 matrices of the form DAD where D = D;jir and i < j < k < 7.

We may assume that ¢(Xe7r) = Xg7. Otherwise ¢(Xg7) = X;; where 1 < 6 and 7 < j or
¢(Xe7) = DAD where D = D;jpr and @ < j < k < 7. If ¢(Xg7) = X;7 where 1 < 6 then
replace ¢ by the mapping X — X;e(X) XL, If ¢(Xgr) = Xis where ¢ < 6, then replace ¢
by the mapping X — X75¢(X) XL and we are back to the previous case. If ¢(Xe7) = DAD
where D = Djjr7 and © < j < k < 7, then either k = 6 or k # 6. If & # 6, then replace ¢
by the mapping of the form X — QAQ" where Q = D, jrs AD;jre. If k = 6, replace ¢ by the
mapping X — Xped(X)Xpe where k' # 1, j and also k' < 6. Therefore, ¢(Xer) = Xer.

Now, consider those X € Sg such that (X, X7s) = 4 and (X, Xg7) = 5. They are of two

forms.
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(e) 5 matrices of the form X,s for 1 < 6.
(f) 10 matrices of the form DAD where D = D,jie and i < j < k < 6.

We may assume that ¢(Xss) = Xs6. Otherwise ¢(Xs6) = Xjg where 1 < 5 or ¢(Xs6) =
DAD where D = Dijis and 1 < j < k < 6. If ¢(X56) = X,6 where ¢ < 5 then replace ¢ by
the mapping X — X;5é(X)X5. If ¢(Xs6) = DAD where D = D6 and @ < j < k < 6,
then either k =5 or k # 5. If k # 5, then replace ¢ by the mapping of the form X — QAQ*
where Q = D;jsAD;jrs. If k = 5, replace ¢ by the mapping X — Xps5é(X)Xps where
k' # 1,5 and also k' < 5. Therefore, ¢(Xs56) = X56. We may also fix Xy5 in a similar manner,
using those X € Sg such that (X, X56) = 5, but has inner product 4 with the other fixed

matrices.
Now, consider those X € Sg such that

(X, X7s), (X, Xe7), (X, Xs6), (X, Xu5)] = [4,4,4,4].

Then X = X2, X3 or Xp3. We may assume that ¢(X12) = Xy2. Otherwise ¢(X12) = X5 for
i = 1 or 2, in which case, replace ¢ by the mapping X — X;3¢(X)X 5 where {¢,5} = {1, 2}.
We may also assume that ¢(Xa3) = Xas; otherwise ¢(Xa3) = Xi3. If this is the case, replace
¢ by the mapping X — X12¢(X)X12. Thus ¢(Z) = Z for

Z = X127X237X457X567X67 and Xvs.

One can check that this requires that ¢(X) = X for all X € Sg; see the last section.

Consider those X € &; such that X;;X € Sg and (X;;X,X,;) = 5. In other words,
X € S5 and (X, X,;) = 6. So X is of the form X;; X, where k & {i,5} but [ € {7,5}, or
the form X;; DAD' where Dw € w* and (D, E;;) = —(D, E;;). If we add the condition that
(X, Xr) =6 and (X, Xj;) = 6, then X must be of the form X;; X, or X;; X = (X;; Xir)".
Let X;jx = X;;Xu € S5 for each 1 < 7 < k. Then X;; is the type (I) matrix with the
following principal submatrices.

0 1 0
Xijw(i,5,k) = I, Xijklt, 5, k=10 0 ¢ |,
€9 0 0

where € = e = 1 if k < 8 and —1 if k = 8. Thus, ¢(Xijx) = Xijx or ¢(Xijk) = ijk for
all i < j < k. Then we may assume that ¢(Xers) = Xers. Otherwise, ¢(Xgrs) = X&.g and
replace ¢ by the mapping X +— ¢(X)". Thus, also ¢(X{-g) = X&-5. Consider those X such
that (X, Xers) = 5. Then either {j,k} = {6,7} or {j,k} = {7,8}. But for those X,ji,
(Xijr, Xbrs) = 4. So ¢(Xijx) = Xijx for all such X;;. Using these newly fixed matrices,
continue in the same manner until ¢(X,jx) = X,jx for all X such that 1 <7 < j <k <8.

We have shown that ¢(X) = X for all X € S, X = Is and all X of the form X,j.. It

can be shown (see the last section) that there are 50 linearly independent matrices in this
collection. Given this, and the fact that

-} e
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we see that the linear map

P(X) —¢(0)
is completely determined. In particular, ¢(X) = X for all X € &. It follows that the
original affine map ¢ on V; has the form

X+ P'XP or X+ P'X'P
for some P € &;. Note that if P, X € &7, there exists P,X € E; such that

PIXP = U<8 ﬁt%ﬁ) Ut+U<(1) 8) Ut

Thus, there exists a P € E; such that
¢(X) = P'XP for all X € E; or ¢(X) = P'X'P for all X € E-.

Since E; spans M7(IR), ©» on M7(IR) has the asserted form. O

Note that in the above proof, we showed that an affine map ¢ on V; satisfies ¢(&7) = &
and preserves the inner product on V7 if and only if there exists P,() € &; such that ¢ has
the form

X+ PXQ or X PX'Q (21)

on V;. The same proof can actually be used to show that a linear map gg : span &; — span
& satisfies qAD'(&) = &7 and preserves the inner product on span & if and only if there exists

P,Q € & such that ¢ has the form (21).

8 Eg

In this section, we let
w=¢e—2es € R® and v=e;—es € RE.
Then Eg has a natural realization as a subgroup of Eg C My defined and denoted by

Es={Xe& : Xv=v}={X € Eg: Xv=vand Xw=w}

acting on the 6-dimensional subspace span (v, w)* in IR®. Suppose U is an orthogonal matrix

with w/+/8 as the first column and the normalization of the component of v orthogonal to
w as the second column. Then for every A € &, we have

o (I q>
UAU_<O i) (22)

The collection of such A € Ms(IR) will form a matrix realization of Eg in Mg(IR). Moreover,
for any A, B € & and the corresponding A, Be Eg, we have

(A,B) = tr (AB") = 2+ tr (AB") = 2 + (A, B). (23)
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Of course, one may have different realizations of Eg in Mg(IR) by a different choice of U.

Nonetheless, it is well known that all the realizations of Eg in O(6) are orthogonally similar.
In this section, we will study Eg via & as mentioned in GP5 of section 2.

8.1 Matrix Realization

The group & = {X € Es : Xw = w, Xv = v} has 6!72 elements which can be divided into

the following 3 classes of matrices arising from &.

(I) The 6!2! elements in Dg N Eg, namely, those elements X € Dg of the form X = X; & X,
for suitable choices of X; € Bg and

0 -1
X2:_[2 or X2:<_1 0>
(II) The 6!40 matrices of the form X'AY satisfying X*AYw = w and X'AYv = v, where
XY € Dg and A = Iy — ww!/4 with w = e — 2eg = (1,--+,1,—1)* € R®. The counting
is done as follows. Consider the equations AYw = Xw and AYv = Xv, i.e.,
Yw— Xw=w(wYw)/4 and Yv — Xv = w(w'Yv)/4.
Clearly, we must have w'Yv = 0. Thus, we are studying the (ILiii) matrices of & in §7.1.
First, if w; € {w,v}* such that all entries of w; are £1, then the last two entries of w;

have the same sign, and 3 of the first six entries equal to 1. So, there are 2 - (g) = 40

possibilities. For each of the 40 choices of w; € {w,v}*, where all entries of w; are £1,
we have a fixed P; € Dg such that Pw = w;, ¥ = P,'Y. There are 8! choices of such Y,

and for a fixed Y there are 612! choices of X € Dy so that Xw = w and PXv = PYw.
We have to factor out the 8! so many (R, S) pairs such that R(P!AP;)S = P!AP; with

Sw = w = R'w. Thus, there are 6!2! so many X*AY corresponding to each choice of
w;. However, for each w;, the 6!2! matrices X*AY are the same as those corresponding
to —w;. Thus, we have 20(6!2!) = 6!40 matrices of Eg in this class. And we also see that
they are equivalent to matrices of the form Y DAD where Y is a matrix of type (I) and

D is a diagonal orthogonal matrix such that Dw € w' and (D, E7;) = —(D, Fgs).
(III) The 6!30 matrices of the form X*BY satisfying X'BYw = w and X'BYv = v, where
X, Y € Dgand B =By & By = A(—I, & I;) A, where
B =(1,1,1,1)'(1,1,1,1)/2 — I, By =1I,—(1,1,1,~1)'(1,1,1,~1)/2.

The counting is done as follows. In order to have X'BYw = w and X*BYv = v, the
2 x 2 submatrix of X*BY at the right bottom corner cannot contain zero entries. Thus,
we have to choose from the first 6 rows and the first 6 columns a 4 x 4 submatrix to

2
accommodate an X;B,Y; as described in E7, and there are (i) 4! ways and there are 4

2
ways to fixed the matrix X3 ByY;. Thus there are (i) 414 = 6!30 matrices in this case.

24



8.2 Maximum inner product

Let X € & with X # I5. Then (Is, X) < 6. Therefore the inner product on the irreducible
subspace Eg is bounded by 4. Using the matrix realization in Mg(IR) and by GP2 in Section
2, for each possible value of r = (I, X), define

S, ={X€&: (I X)=r} (24)

Note that Sg consists of matrices in one of the following two forms.

(a) The 16 matrices of the form X;; = Is — (e; — ¢;)(e; — ¢;)! for some 1 < i < j < 6 and

Xrs = Is — (er + es)(er + €)'
(b) The 20 matrices of the form X = DAD where D is an orthogonal diagonal matrix such
that Dw € w* and (D, Ez;) = —(D, Fss).

8.3 Linear Preservers

Theorem 8.1 A linear operator ¢ : Mg(IR) — Ms(IR) satisfies ©(Eg) = Eg if and only if
there exist P, () € Eg such that ¥ has the form

X PXQ or X PX'Q.
Consequently, N(Eg) = Eg.

Proof. The assertion on N(Eg) follows from GP4 in Section 2. The (<) part of the first
assertion is clear. We consider the (=) part. Let ¢ : Mg(IR) — Ms(IR) be a linear map
satisfying (Eg) = Eg. By Proposition 2.1, if ¢ preserves Eg, then ¢ preserves the inner

product (X,}A/) = tr ()A(}A/t) on Mg(IR). Also, by GP3 in Section 2, we may assume that

@ZJ(Ig) - -[6-
Let Vi be the affine space generated by &, and let U be an orthogonal matrix establishing
the correspondence between & and Eg as described in (22). Consider an affine map ¢ : Vg —

Vs defined by
, I 0 t)_ (02 0A> ¢ (fz 0> ¢
o(v (¢ 3)0)=v( o)) U0 (g o) U

Then ¢(&) = &. Since v preserves inner product in Mg(IR), we have (¢(X), 4(V)) = (X,Y)
for all X,Y € & by (23). Define S, as in (24). Since ¢(lg) = Ig, therefore, ¢(Ig) = Is and
by GP3 in Section 2, ¢(S,) = S, for each r. In the following, we will show that for some
P € &, ¢ has the form

X — P'XPforall X € & or X — P'X'P for all X € &.

We shall use the matrices A and X;; as defined in §8.1 — 8.2. Also, we shall use the classifi-
cation of matrices in Sg into types (a) and (b) as defined in §8.2.
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Define D; = Is — 2E;;, and D;; = D;D;. Note that those D described in (b) will be
of the form D;jxz = D;jDyr where 1,5,k # 7 are all distinct. If ¢/, 5", k' are such that
{Z.7Z-/7j7j/7 k’ k/} = {17 "'76}7 then

D”k7AD”k7 — Di’j’k’SADi’j’k’S'
Also, for i, 7, k distinct, ¢, 7,k < 7 and Xji, X, and X;; all of type (a),
X,kX]letk = X,]

Let ¢(X7s) = Z. If Z = Xy then we are done. If Z = DAD, where D = D;jx7, then
replace ¢ by the mapping X — Q&(X)Q" where Q@ = D;jxs AD;jrs. And so ¢(Xqz) = Xrs.
If, on the other hand, Z = X;; for ¢ < j < 7, then replace ¢ by the mapping X — Q¢(X)Q'
where Q = Dz AD;r for k1 #14,7,7,8. Thus ¢(Xs7) = DAD where D = Djy7, and this
case has already been covered. Therefore, ¢(Xrs) = Xrs.

Note that if X € Sg is of type (a), then (X, Xrzs) = 4, while if X is of type (b), then
(X, X73) = 5. Thus, those X € Sg that are of type (a) are mapped to themselves, and those
of type (b) are mapped to themselves.

We may assume that ¢(Xs6) = Xs6. Otherwise, ¢(Xs6) = X;; where (7,7) # (5,6) and
i < j < 6. Then replace ¢ by the mapping X — Po(X)P" where

X, ifj =6
P:{Xi if j =5,
Xis X6 if: <j < 5.

Now consider those X € Sg of type (a) such that (X, X56) = 5. Then X = X;; where
i < jand j € {5,6}. We may assume that ¢(Xus5) = Xy5. Otherwise ¢(Xy5) = X;; where
Jj € {5,6}. If j = 5, then replace ¢ by the mapping X — X;4¢(X)X,4. If 7 = 6, then replace
¢ by the mapping X — X56¢(X)Xs6 and so we are back to the case where j = 5.

Now consider those X € Sg of type (a) such that (X, Xs56) = 4 and (X, Xy45) = 5. They
must be of the form X;y. We may assume that ¢(Xs34) = X34. Otherwise it equals X4 for
i € {1,2}, in which case, replace ¢ by the mapping X +— X;36(X)Xs.

Now consider those X € Sg of type (a) such that (X, Xs56) = 4, (X, X45) = 4 and
(X, X54) = 5. Then X = X3 or Xos. If ¢(Xa3) = X3, then replace ¢ by the mapping X
X12¢0(X)Xi12. And thus, ¢(Xz3) = Xss. By considering the inner products, we also see that
d(X12) = X12. Thus ¢(Z) = Z for Z = Iz, Xrs, Xs6, Xas, X34, Xo3 and X2, This is sufficient
to show that ¢(X;;) = Xi; whenever ¢ < j < 6 and that ¢(D;jk7AD;jk7) = Dijkr ADijir or
D;iksAD;jis.

Now consider those X € Sg that are of type (b). In particular, consider ¢(DaserADyser) =

Z. It Z = Dyse1ADys¢7, then we are done. If Z = Dysgs AD4ses, then replace ¢ by the
mapping X — Xzs(X)X7s. It can be shown (see the last section) that

(Dijkr ADijkr, Daser ADuser) # (Dijrs ADijks, DaserADuaser).
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Thus, for all X € S, ¢(X) = X.
Let Xijx = X;;Xir. Then X, i is the type (I) matrix as defined in §8.1 with the following
principal submatrices.

0 1 0
1 0 0

In a manner similar to that of section 7.3, we consider those matrices X € S5 such that
(X,X,’j) = 6, (X,X,k) = 6 and (X,X]k) =6 for 1 < ] < k. Then X = X,'jk or Xlt]k If
d(X123) = X1,3, then replace ¢ by the mapping X — ¢(X)'. Thus ¢(Xi23) = Xi23. Note
that (X, Xi93) =5 ifandonly if i +1 = 5 < 3 < k < 6. But if (Xjjz, X123) = 5, then
(Xijk, Xls3) = 4. So ¢(Xiar) = Xiqor for B = 4,5,6. Using these newly fixed matrices,
continue in the same manner until ¢(X,jx) = X,jr for all X, such that 1 <7 < j < k <6.
Note that for any X € Eq, if Y € Eg and (Y, X) = 6, then Y = X Z for some Z € Ss.
Thus, for all ¢ < 7 < k < 6, if ¥V is such that (Y, X;;x) = 6 and (Y, X7s) = 6, then
Y = XiXrs. Thus, ¢(X;uXrs) = XipXrs for all @ < j < k < 6. In particular, let
Y = Xj23X7s, and consider those X such that (Y X, Ig) = 6 and (Y X, X75) = 5. They will
be of the form X = Y DAD where D = D,j;r and ¢ < 7 < k < 6. For each such X, define

f(X) = [(X127 X)7 ) (X567 X)7 (D1237AD12377 X)v ) (D4567AD45677 X)]

One can show that f(X) # f(Z) whenever X # Z where X and Z are both of the form
Y DAD with D # D137, Dass; see the last section.
These 18 matrices together with those X € Sg and those matrices of the form Xjj, for

i < j <k <6 all have the property that ¢(X) = X. It can be shown that there are 37
linearly independent matrices among this group; see the last section. Given this, and the
fact that

o0 =0 (§ )0

we see that

$(X) — (0)
is completely determined. In particular, ¢(X) = X for all X € &. It follows that the
original affine map ¢ on V4 has the form

X+ P'XP or X P'X'P

for some P € &. Note that if P, X € &, there exists p,f( € Eg such that

t _ * 02 AOAA> *<Iz 0)
PXP_U(O pxp ) VT (0 o) U

Thus, there exists a P € Eg such that
;/)()A() = P'XP for all X € Eq or ;/)()A() = P'X'P for all X € Eq.
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Since Eg spans Mg(IR), ¢ on Mg(IR) has the desired form. O

As in the case of E7, the above proof would also show a similar result if we replace the
linear map ) on Ms(IR) satisfying (Eg) = Eg with either an affine map ¢ : V5 — V5 or a

linear map g; : span & — span & satisfying ¢(&) = & and preserving inner product on

Ve.

9 Matlab Programs

Matlab Program for Hj

In the proof of the linear preserver of Hs, we stated that 12 matrices
Dy,Dy,D3,H, X1,..., X3

span M3(IR). We put these 12 matrices as row vectors of the matrix “R”. The rank command
will then show that there are 9 linearly independent vectors among these 12 matrices.

a=(1+sqrt(5))/4;b=(-1+sqrt(5))/4;c=1/2;
R=[-1 00010 001; 100 0-1000 1;
100010 00-1; abc bc-a c -a-b;
-a -b -c b ¢ -a c-a-b; —-ab ¢ -b ¢c -a -c -a -b;
-a -b ¢ b ¢ a -¢c a-b; —-ab-¢c -b ¢ a c a -b;
a b ¢ -b-c a c -a -b; a-bec b -¢c -a c a -b;
a b-c -b-c-a -¢c a-b; a-b-c b-c a -c -a-b];
rank (R)

Matlab Program for H,

In the proof of the linear preserver of Hy, we stated that 24 specific matrices could be
shown to span My(IR). We put these twelve matrices in row vector form stared in “R”. The
rank command will then show that there are 16 linearly independent vectors among these
24 matrices.

a=(1+sqrt(5))/4;b=(-1+sqrt(5))/4;c=1/2;

D(:,:,1)=[-1 000; 0 100; 00 10;000 1];
D(:,:,2)=[1000; 0-100; 00 10; 000 1];
D(:,:,3)=[1000; 0 100; 00-10; 000 1];
D(:,:,4)=[1000; 0 100; 00 10; 000 -1];
B(:,:,1)=[1000; 0abc; Obc-a; 0 c -a -b];
B(:,:,2)=[a b0 c; bc0=-a; 001 0; c-a 0 -b];
B(:,:,3)=[c0Ob=-a; 010 0; b0Oa c; a0 c -b];

B(:,:,4)=D(:,:,3)*B(:,:,1); B(:,:,5)=D(:,:,2)*B(:,:,2);
B(:,:,6)=D(:,:,1)*B(:,:,3); k=0; for i=1:4
for j=1:6
k=k+1; y=D(:,:,1)*B(:,:,j)*D(:,:,1i);
Rk, )=[y(1,:) y(2,:) y(3,:) y&,:)];
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end
end
rank (R)

Matlab Program for F,

In the proof of the linear preserver of F,, we stated that we could show that the 16
matrices of the form DA;D for « = 1,2 and D = diag(l,+1,+1,41) were mapped to
themselves by comparing the inner products of these matrices with those already fixed by ¢.
Below follows the MATLAB code comparing the inner products of these 16 matrices with
those of C; for 1 = 1,3,5 and 6. A simple comparison of the inner products will verify that
these matrices must indeed be mapped to themselves. We put the 16 matrices in row vector
form, storing them in ‘y’. The other matrices are also on row vector form, stored in ‘x’.
Finally, we use the ‘rank’ command to show that there are 16 linearly independent matrices
among the 26 listed.

el=[1 0 0 0];e2=[0 1 0 0];e3=[0 0 1 0];ed4=[0 0 0 1];
D=f111 1;1-11 1;1 1-1 1;1-1-11;
111-1;11-1-1;1-11-1;1-1-1-1];
A(:,:,1)=eye(4)-ones(4)/2;
AC:,:,2)=[11-1-1;1111;1-11-1;1 -1 -1 11/2;

k=0;
for j=1:8
for i1=1:2
k=k+1;B=diag(D(j,:))*A(:,:,i)*diag(D(j,:));
y(k,:)=[B(1,:) B(2,:) B(3,:) B(4,:)];
end
end

x=[-el e2 e3 ed; el -e2 e3 e4; el e2 -e3 e4; el e2 e3 -e4;
el e2 e4 e3; el e2 -ed e3; e2 el e3 e4;
-e2 el e3 ed; el e3 e2 e4; el -e3 e2 e4];
y*[x(5,:);x(7,:);x(9:10,:)]’;
rank([x;y])

Matlab Program for Eg
In the proof of the linear preserver of Es, we showed that ¢(X) = X for

X = Ig, Ql = DlgADlg and Xi(i—}—l) for 2 = ]_, ceey 7.

We stated that by comparing the inner product of these matrices with the rest of the elements
in Sg, that we could show that ¢(X) = X for all X € Sg. We store those X that are fixed in
row vector form in “rset” and store matrices of the forms DAD, X;; and Y;; in row vector
forms in “rA8”, “rX8” and “rY8” respectively. Direct comparison of the inner product shows
that each matrix must be fixed. We also stated that the matrices of the forms

I87 DAD7 Xija Y;j7 Xijlm and PDAD7
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as defined in section 3.3, could be shown to span Mg(IR). We form these matrices and put
them in row vector form stored in “rI”, “rA8”, “rX8”, “rY8”, “rP8” and 'rPA8” respectively.
The rank command will then show that there are 64 linearly independent vectors among these
matrices.

de=[11111-1-11;1111-11-11;111-111-11;11-1111-11;
1-11111-11;-111111-11;1111-1-111;111-11-111;
11-111-111;1-1111-111;-11111-111;111-1-1111;
11-11-1111;1-111-1111;-1111-1111;11-1-11111;
1-11-11111;-111-11111;1-1-111111;-11-111111;
-1 -1111111];

d4=[111 -1 -1 -1 -1
-1 -11-111-1
-1111-1-1-1

;-1 -1-1111-1
;1 -111-1-1-1
;1 -1-1-111-1

1 1, 11-11-1-1-1
1 1, -11-1-111-1
1 1,11 -1-11-1-1
-1-111-114-114;1-11-11-1-11;-11-11-11-1
-111-11-14-114;1-1-11-11-11;1-1-111-1-1
-111-1-114-114;-11-111-1-11;1-11-1-11-1

1 1

1 1

1 1

1 1

1 1

“we we we we

. =

-1-1111-14-114;11-1-1-11-11;11-1-1-1-11
{i-11-1-1-111; -111-1-1-1 ;1 -1 -11 -1 -1
-11-11-1-11 ;1 -1 -1 -11 -1
-11-1-11-11 ; -1 -1 -111 -1
1
1

-

-

1
;-1 -111-1-11
;-1 -11-11-11
1
1

-

-

T Y Y

1-1-1-1-11 ; -11 -1 -1 -11 ; -1 -11-1-11
-1-1-11-11 1; -1 -1 -1 -111 1];
d6=f1 -1 -1 -1 -1 -1-11; -11-1-1-1-1-11;-1-11-1-1-1-11;
-1-1-11-1-1-11; -1-1-1-11-1-11; -1-1-1-1-11-11;
-1 -1-1-1-1-111];
d_8=[d6;d4;d2;ones(1,8)];w=[1 111111 -1]’; A=eye(8) - wxw’/4;
for i=1:64;
a=diag(d_8(i,:))*A*diag(d_8(i,:)); A_8(:,:,i)=a;
rA8(i,:)=[a(l,:) a(2,:) a(3,:) a(4,:) a(5,:) a(6,:) a(7,:) a(8,:)];
end
k=0;
for j=2:8
for i=1:(j-1);
a=eye(8); a(i,1)=0; a(j,j)=0;
b=zeros(8); b(i,j)=1; b(j,1i)=1;
X=a+b; Y=a-b; k=k+1;
rX8(k, :)=[X(1,:) X(2,:) X(3,:) X(4,:) X(5,:) X(6,:) X(7,:) X(8,:)];
rY8(k,:)=[Y(1,:) Y(2,:) Y(3,:) Y(4,:) Y(5,:) Y(6,:) Y(7,:) Y(8,:)]1;
end

-

end
k=0;
for m=3:8;
for j=2:(m-1)
for i=1:(j-1)
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k=k+1;P=eye(8);P(i,1)=0;P(j,j)=0;P(m,m)=0;P(i,j)=1;P(j,m)=1;P(m,i)=1;
rP8(k,:)=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,:)];

P_8(:,:,k)=P;
end
end
end
p=[zeros(1,7) 1; eye(7) zeros(7,1)];
for i=1:64

P=p*A_8(:,:,1);

rPA8(i,:)=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,:)];
end
a=[1 zeros(1,8)]; rI=[a a a a a a a 1];
rset=[rI;rA8(1,:);rX8(1,:);rX8(3,:);rX8(6,:);rX8(10,:);

rX8(15,:);rX8(21,:);rXx8(28,:)];

ip=[rA8;rX8;rY8] *rset’
rank([rI;rA8;rX8;rY8;rP8;rPA8])

Matlab Program for E;

In the proof of the linear preserver of E;, we stated that we could show that the matrices
of the form DAD and X;;, both in S were mapped to themselves by comparing the inner
products of these matrices with those already fixed by ¢. Below follows the MATLAB code
comparing the inner products of these 63 matrices with those of X;;1; fors =1,2,4,5,6,7. A
simple comparison of the inner products verifies that these matrices must indeed be mapped
to themselves. Since the matrix realizations used for E; form a subset of those used for Eg,
we use the matrices previously defined in for Eg. We put the 63 matrices in row vector form,
storing them in “rA7” and “rX8” respectively. The other matrices are also on row vector
form, stored in “rset”. We also stated that these matrices together with Iy and matrices of
the form X as defined in section 3.3, could be shown to span the 50 dimensional subspace

of Ms(IR). We store these new matrices in row vector form in “rI” and “rP7”respectively.
The rank command will then show that there are 50 linearly independent vectors among
these matrices.

rA7=rA8(8:42,:); rX7=[rX8(1:21,:);r¥8(22:28)]; rP7=rP8(1:35,:);

P_7=P_8(:,:,36:56);

for 1=36:56
P=diag([1,1,1,1,1,1,1,—1])*P_S(:,:,i)*diag([l,1,1,1,1,1,1,—1]);
rP7(i,:)=[P(1,:) P(2,:) P(3,:) P(4,:) P(5,:) P(6,:) P(7,:) P(8,:)];

end

rset=[rI;rX7(1,:);rX7(3,:);rX7(10,:);rX7(15,:);rX7(21,:);rX7(28,:)];

ip=[rA7;rX7]*rset’

rank([rI;rA7;rX7;rP7])

Matlab Program for Eg
In the proof of the linear preserver of Eg, we stated that we could show that the matrices
of the form X;; were mapped to themselves and matrices of the form DAD were mapped to
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themselves or to DAA (for D and D of particular forms) by comparing the inner products of
these matrices with those already fixed by ¢. Below follows the MATLAB code comparing
the inner products of these matrices with those of X,y for ¢+ = 1,2,3,4,5,7. A simple
comparison of the inner products will verify that these matrices must indeed be mapped
to themselves. Since the matrix realizations used for E; form a subset of those used for
Eg, we use the matrices previously defined in for Eg. We put the matrices in row vector
form, storing them in “rX6” and “rA6” respectively. The fixed matrices are also in row
vector form, stored in “rset”. Next, we fixed one of these matrices of the form DAD and
compare inner products of the remaining with those fixed, whose row vectors are once again
stored on “rset’. Comparison will once again verify that all matrices of the form DAD are
mapped to themselves. We store the matrices of the form PDAD (as defined in section 5.3)
in row vector in “rZA6”. Comparing inner products with those already fixed (whose row
vector forms are once again stored in “rset”), shows that these matrices must be mapped
to themselves. Finally, we stated that these matrices together with Iy and matrices of the
form X as defined in section 5.3, could be shown to span the 37 dimensional subspace of

Ms(IR). We store these new matrices in row vector form in “rI” and “rP6”respectively. The
rank command will then show that there are 37 linearly independent vectors among these
matrices.

A_6=A_8(:,:,8:27); rA6=rA8(8:27,:); rX6=rX8(1:15,:);
Y=[eye(6) zeros(6,2);zeros(2,6) eye(2)-ones(2)]; rY=r¥8(28,:);
rP6=rP8(1:20,:);
rset=[rI;rX6(1,:);rX6(3,:);rX6(6,:);rX6(10,:);rX6(15,:);rY];
ip=[rA6;rX6]*rset’
rset=[rI;rX6;rY;rA6(1,:)];
ip=[rA6]*rset’
z=P_6(:,:,1,2,3)*Y;
for i1i=1:20

Z=z*A_6(:,:,1);

rZA6(i,:)=[Z2(1,:) Z(2,:) Z(3,:) Z(4,:) Z(5,:) Z(6,:) Z(7,:) Z(8,:)];
end
rset=[rI;rX6;rY;rA6];
ip=[rZA6] *rset’
rank([rI;rA6;rX6;rY;rP6;rZA6(3:20,:)]1)

Note added in proof.

Our results are on invertible linear preservers of reflection groups. A natural related
problem is to characterize group automorphisms of reflection groups. By private communi-
cation, Professor Robert Guralnick informed us that such characterizations can be obtained
readily from results in group theory.
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