Chi-Kwong Li Department of Mathematics, College of William and Mary

• A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .
- A hand of 5 tildes correspond to a quantum state in $M_2 \otimes \cdots \otimes M_2 \equiv M_N$ with $N = 2^5 = 32$.

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .
- A hand of 5 tildes correspond to a quantum state in $M_2 \otimes \cdots \otimes M_2 \equiv M_N$ with $N = 2^5 = 32$.
- The winning hand will be $X_1X_1X_1X_2X_2$ or $X_1X_1X_2X_2X_2$ up to permutation.

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .
- A hand of 5 tildes correspond to a quantum state in $M_2 \otimes \cdots \otimes M_2 \equiv M_N$ with $N = 2^5 = 32$.
- The winning hand will be $X_1X_1X_1X_2X_2$ or $X_1X_1X_2X_2X_2$ up to permutation.
- So, there are 2 possible winning states:

$$\rho_1 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \text{ and } \rho_2 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \otimes \textit{E}_{22}.$$

• The states ρ_1, ρ_2 may appear with probabilities p and 1-p, say, controlled by the casino.

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .
- A hand of 5 tildes correspond to a quantum state in $M_2 \otimes \cdots \otimes M_2 \equiv M_N$ with $N = 2^5 = 32$.
- The winning hand will be $X_1X_1X_1X_2X_2$ or $X_1X_1X_2X_2X_2$ up to permutation.
- So, there are 2 possible winning states:

$$\rho_1 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \text{ and } \rho_2 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \otimes \textit{E}_{22}.$$

- The states ρ_1, ρ_2 may appear with probabilities p and 1-p, say, controlled by the casino.
- We have to set up a positive operator valued measurement $\{M_1, M_2\}$ such that M_1, M_2 are positive semidefinite such that $M_1 + M_2 = I_N$ and maximize the expected winning probability:

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\rho_2).$$

- A quantum state with 2 measurable states is represented as a density matrix $A \in M_2$, i.e., positive semidefinite matrix with trace 1.
- We may assume the 2 measurements correspond to X_1, X_2 .
- A hand of 5 tildes correspond to a quantum state in $M_2 \otimes \cdots \otimes M_2 \equiv M_N$ with $N = 2^5 = 32$.
- The winning hand will be $X_1X_1X_1X_2X_2$ or $X_1X_1X_2X_2X_2$ up to permutation.
- So, there are 2 possible winning states:

$$\rho_1 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \text{ and } \rho_2 = \textit{E}_{11} \otimes \textit{E}_{11} \otimes \textit{E}_{22} \otimes \textit{E}_{22} \otimes \textit{E}_{22}.$$

- The states ρ_1, ρ_2 may appear with probabilities p and 1-p, say, controlled by the casino.
- We have to set up a positive operator valued measurement $\{M_1, M_2\}$ such that M_1, M_2 are positive semidefinite such that $M_1 + M_2 = I_N$ and maximize the expected winning probability:

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\rho_2).$$

• Because ρ_1 and ρ_2 are orthogonal, we can set $M_1=\rho_1$ and $M_2=I_N-\rho_1$ to get q=1.

• However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2)$$

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2)$$

• A quantum state with 3 measurable states is represented as a density matrix $A \in M_3$.

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2)$$

- A quantum state with 3 measurable states is represented as a density matrix $A \in M_3$.
- We may assume the 3 measurements correspond to X_1, X_2, X_3 .

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2)$$

- A quantum state with 3 measurable states is represented as a density matrix $A \in M_3$.
- We may assume the 3 measurements correspond to X_1, X_2, X_3 .
- A hand of 5 tildes correspond to a quantum state in $M_3 \otimes \cdots \otimes M_3 \equiv M_N$ with $N=3^5=243$.

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}\left(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2\right)$$

- A quantum state with 3 measurable states is represented as a density matrix $A \in M_3$.
- We may assume the 3 measurements correspond to X_1, X_2, X_3 .
- A hand of 5 tildes correspond to a quantum state in $M_3 \otimes \cdots \otimes M_3 \equiv M_N$ with $N = 3^5 = 243$.
- The winning hand will be $X_1X_2X_3X_jX_j$ for $j \in \{1, 2, 3\}$.

- However, the casino owner may use a different basis to represent ρ_2 , i.e., change ρ_2 to $\hat{\rho}_2 = U^* \rho_2 U$ for some unitary matrix $U \in M_N$.
- Then by Holevo-Helstrom theorem, the optimal probability

$$q = \operatorname{tr}\left(pM_1\rho_1 + (1-p)M_2\hat{\rho}_2\right)$$

- A quantum state with 3 measurable states is represented as a density matrix $A \in M_3$.
- We may assume the 3 measurements correspond to X_1, X_2, X_3 .
- A hand of 5 tildes correspond to a quantum state in $M_3 \otimes \cdots \otimes M_3 \equiv M_N$ with $N=3^5=243$.
- The winning hand will be $X_1X_2X_3X_jX_j$ for $j \in \{1, 2, 3\}$.
- So, there are three possible winning states $\rho_1, \rho_2, \rho_3 \in M_N$ with

$$\rho_j = E_{11} \otimes E_{22} \otimes E_{33} \otimes E_{jj} \otimes E_{jj},$$

corresponding to these patterns, say, with probability p_1, p_2, p_3 , controlled by the casino.

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 \rho_2 + p_3 M_3 \rho_3).$$

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 \rho_2 + p_3 M_3 \rho_3).$$

• Since ρ_1, ρ_2, ρ_3 are orthogonal, we can choose M_1, M_2, M_3 so that q = 1.

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 \rho_2 + p_3 M_3 \rho_3).$$

- Since ρ_1, ρ_2, ρ_3 are orthogonal, we can choose M_1, M_2, M_3 so that q = 1.
- However, the casino owner can change ρ_1, ρ_2, ρ_3 to $\rho_1, U^*\rho_2 U, V^*\rho_3 V$.

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 \rho_2 + p_3 M_3 \rho_3).$$

- Since ρ_1, ρ_2, ρ_3 are orthogonal, we can choose M_1, M_2, M_3 so that q = 1.
- However, the casino owner can change ρ_1, ρ_2, ρ_3 to $\rho_1, U^*\rho_2 U, V^*\rho_3 V$.
- Then the optimal value for

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 U^* \rho_2 U + p_3 M_3 V^* \rho_3 V).$$

could be smaller than 1.

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 \rho_2 + p_3 M_3 \rho_3).$$

- Since ρ_1, ρ_2, ρ_3 are orthogonal, we can choose M_1, M_2, M_3 so that q = 1.
- However, the casino owner can change ρ_1, ρ_2, ρ_3 to $\rho_1, U^*\rho_2 U, V^*\rho_3 V$.
- Then the optimal value for

$$q = \operatorname{tr}(p_1 M_1 \rho_1 + p_2 M_2 U^* \rho_2 U + p_3 M_3 V^* \rho_3 V).$$

could be smaller than 1.

• How small could it be?

Hope to tell you more next time!

Hope to tell you more next time!

Thank you for your attention!