1. (4 points) Let \(P: 25 \text{ is odd}, \) \(Q: 15 \text{ is prime} \) and \(R: \frac{1}{3} \in \mathbb{N} \). State each of the following in words, and determine whether they are true or false.

(a) \(P \lor Q \)
(b) \(P \land Q \)
(c) \(\sim P \lor Q \)
(d) \(P \land (\sim Q \lor R) \)

2. (4 points) In each of the following, two open sentences \(P(x) \) and \(Q(x) \) over a domain \(S \) are given. For each part, determine \(T = \{ x \in S : "P(x) \Rightarrow Q(x)" \text{ is true} \} \) with explanation.

(a) \(P(x) : x - 3 = 5; Q(x) : x > 8; S = \mathbb{N}. \)
(b) \(P(x) : x \in [-1, 3); Q(x) : x^2 \leq 4; S = [-10, 10]. \)

3. (4 points) Let \(P, Q \) be statements. Show that \(\sim (P \implies Q) \) and \(P \land (\sim Q) \) are logically equivalent using truth table.

Solution.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
<th>(\sim (P \implies Q))</th>
<th>(P \land (\sim Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

4. (6 points) Write the statements so that there are no \(\sim \) symbols. Then, rewrite the statements so that there are no \(\forall, \exists, \in \) or \(= \) symbols.

(a) \(\sim (\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy = 1) \);
(b) \(\sim (\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, xy = 0) \);
(c) \(\sim (\exists n \in \mathbb{Z}, \exists m \in \mathbb{Z}, m \leq n) \);

5. (4 points) Consider the statement:
 “For every integer \(n > 0 \) there is some real number \(x > 0 \) such that \(x < 1/n. \)”
(a) Without using words of negation, write a complete sentence that negates the sentence.
(b) Determine the original statement or its negation is true with explanation.

6. (8 points) For \(\alpha > 0 \), let \(S_\alpha = (-\alpha, \alpha) \), i.e., the open interval with endpoints \(-\alpha, \alpha\). Prove or disprove the following statements. (Note that “\(\subset \)” means proper subset.)

(a) \(\forall \alpha \in (0, 1), \exists \beta \in (0, 1), S_\alpha \subset S_\beta. \)
 [Hint: Find \(\beta \) if \(\alpha = 0.9, 0.99, 0.999 \), etc. and find the general rule for specifying \(\beta \) for a given \(\alpha \).]
(b) \(\exists \alpha \in (0, 1), \forall \beta \in (0, 1), S_\alpha \subset S_\beta. \)
 [Hint: For \(\alpha = 0.1, 0.01, 0.001 \), etc. see whether one has \(S_\alpha \subset S_\beta \) for all \(\beta \in (0, 1) \). Then ...]