
Math 323 Operations Research Notes on Chapter 7 C.K. Li

Transportation, Assignment, and Transshipment problem

7.1 Transportation problem

Example Powerco has 3 plants P1, P2, P3 that can supply powers 35, 50, 45 million of kilowatts,

respectively, to 4 cities C1, C2, C3, C4 with demands of 45, 20, 30, 30 million of kilowatts. Shipping

costs, demands, and supplies constraints are summarized in the following table.

C1 C2 C3 C4 Supply

P1 $8 $6 $10 $9 ≤ 35
P2 $9 $12 $13 $7 ≤ 50
P3 $14 $9 $16 $5 ≤ 40

Demand ≥ 45 ≥ 20 ≥ 30 ≥ 30

Suppose xij is the number of kilowatts from Pi to Cj, and let cij be the cost (in $) from Pi to Cj.

The LP problem: minZ =
∑

i,j cijxij

Subject to x11 + x12 + x13 + x14 ≤ 35 (P1 supply constraint)

x21 + x22 + x23 + x24 ≤ 50 (P2 supply constraint)

x31 + x32 + x33 + x34 ≤ 40 (P3 supply constraint)

x11 + x21 + x31 ≥ 45 (C1 demand constraint)

x12 + x22 + x32 ≥ 20 (C2 demand constraint)

x13 + x23 + x33 ≥ 30 (C3 demand constraint)

x14 + x24 + x34 ≥ 30 (C4 demand constraint)

xij ≥ 0.

General Formulation Assume there are m suppliers shipping a certain product to n stores such

that the cost of shipment from Si (ith supply point) to Dj (jth demand point) is cij . We need to

solve the LP:

maxZ =
∑

i,j cijxij

subject to ∑
j xij ≤ si for i = 1, . . . ,m, (supply constraints)∑
i xij ≥ dj for j = 1, . . . , n, (demand constraints)

xij ≥ 0.

Remarks

1. The transportation company may want to solve the maxZ =
∑

i,j cijxij .

2. The problem is balanced if
∑

i si =
∑

j dj .

3. If
∑

i si >
∑

j dj , we may set up a dummy demand dn+1 with costs ci,n+1 = 0 for all i.

4. If
∑

i si <
∑

j dj , we may set up a dummy supplier sm+1 with costs cm+1,j equals to the unit

penalty amount imposed by Dj.





Inventory problem as transportation problem

Example Sailco manufactures sailboats.

Demands for the next 4 quarters are: 40, 60, 75, 25.

At the beginning, there are 10 sailboats in inventory.

Each quarter, have to make 40 sailboats at the cost of $400 each.

Additional sailboat can be made at a cost of $450 each.

Left over inventory cost $20 per sailboat for each quarter.

We can formulate the following transportation problem.

Supply points.

S1 inventory (s1 = 10)

S2 quarter 1 regular production (s2= 40)

S3 quarter 1 overtime production (s3 = 150)

S4 quarter 2 regular production (s4= 40)

S5 quarter 2 overtime production (s5 = 150)

S6 quarter 3 regular production (s6= 40)

S7 quarter 3 overtime production (s7 = 150)

S8 quarter 4 regular production (s8= 40)

S9 quarter 4 overtime production (s9 = 150)

Here, regular production must be 40 per quarter. Overtime production has no limit, the total

demand is 200, subtracting the initial inventory 10, and 40 regular production in the first quarter,

so the maximum should be 150.

Demand points

D1 quarter 1 demand (d1 = 40)

D2 quarter 2 demand (d2 = 60)

D3 quarter 3 demand (d3 = 75)

D4 quarter 4 demand (d4 = 25)

D5 dummy demand (d5 = 700-200 = 570)

See the next page for the costs.



TABLE 6 

Transportation Tableau 

for Sailco 

Point 1 = quarter 1 demand 

Point 2 = quarter 2 demand 

Demand Points Point 3 = quarter 3 demand 

(d1 = 40) 

(d2 = 60) 

(d3 = 75) 

Point 4 = quarter 4 demand (d4 = 25) 

Point 5 = dummy demand point (d5 = 770 - 200 = 570) 

A shipment from, say, quarter 1 RT to quarter 3 demand means producing 1 unit on regu­

lar time during quarter 1 that is used to meet 1 unit of quarter 3 's demand. To determine, 

say, c13, observe that producing 1 unit during quarter 1 RT and using that unit to meet quar­

ter 3 demand incurs a cost equal to the cost of producing 1 unit on quarter 1 RT plus the 

cost of holding a unit in inventory for 3 - 1 = 2 quarters. Thus, c13 = 400 + 2(20) = 440. 

Because there is no limit on the overtime production during any quarter, it is not clear 

what value should be chosen for the supply at each overtime production point. Total de­

mand = 200, so at most 200 - 10 = 190 ( -10 is for initial inventory) units will be pro­

duced during any quarter. Because 40 units must be produced on regular time before any 

units are produced on overtime, overtime production during any quarter will never exceed 

190 - 40 = 150 units. Any unused overtime capacity will be "shipped" to the dummy 

demand point. To ensure that no sailboats are used to meet demand during a quarter prior 

to their production, a cost of M (Mis a large positive number) is assigned to any cell that 

corresponds to using production to meet demand for an earlier quarter. 

2 3 4 Dummy Supply 

0 20 40 60 0 

Initial 10 10 

0 

Qtr 1 RT 30 40 

0 

Qtr 1 OT 150 150 

0 

Qtr 2 RT 40 

0 

Qtr 2 OT 140 150 

0 

Qtr 3 RT 40 

0 

Qtr 3 OT 115 150 

0 

Qtr 4 RT 15 40 

0 

Qtr 4 OT 150 150 

Demand 40 60 75 25 570 



7.2 Finding a basic feasible solution

For a balanced transportation problem, there are mn variables xij , and m + n − 1 linearly

independent equalities.

1. To form a bfs, one needs to choose m+ n− 1 variables xij .

2. Arbitrary choices of m+ n− 1 variables may not correspond to a basic feasible solution.

3. The selection of those {xij} do not contain a loop. That is, it contains a sequences

xi1,j1 , xi1,j2 , xi2,j2 , xi2,j3 , . . . , xik,jk , xik,j1

so that i1, . . . , ik are distinct, and j1, . . . , jk are distinct.

Example (s1, s2) = (4, 5), (d1, d2, d3) = (3, 2, 4), (x11, x12, x21, x22) cannot form a bsf.

Reason. We have to solve


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





x11
x12
x13
x21
x22
x23

 =


4
5
3
2
4

 .

Removing a redundant equality, we have to solve


0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




x11
x12
x13
x21
x22
x23

 =


5
3
2
4

 .

If (x11, x12, x21, x22) yields a bsf, then
0 0 1 1
1 0 1 0
0 1 0 1
0 0 0 0



x11
x12
x21
x22

 =


5
3
2
4

 ,
which is impossible.



Three ways of finding basic feasible solutions

1. Northwest corner method.

From the (1, 1) entry, try to fulfill the row or column sum constraint in each step.

Example: (s1, s2, s3) = (5, 1, 3), (d1, d2, d3, d4) = (2, 4, 2, 1).

2. Minimum cost method.

Use the cheapest cost in each step to satisfy the row or column in each step.

Example: (s1, s2, s3) = (5, 10, 15), (d1, d2, d3, d4) = (12, 8, 4, 6), C =

2 3 5 6
2 1 3 5
3 8 4 6

.

3. Vogel’s method. Choose cheap costs and avoid future heavy penalty.

Compute row/column penalties (difference of the two minimum costs in each row/column).

Select basic variable at the row or column with maximum penalty.
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7.3 The transportation simplex method

1. Set up the balanced transportation problem with m supply points and n demand points to

minimize Z =
∑

i,j cijxij .

2. Find an initial basic feasible solution.

3. Find (u1, . . . , um, v1, . . . , vn) with u1 = 0 and ui + vj = cij for those cij corresponding to the

basic variables xij .

Note that (u1, . . . , um, v1, . . . , vm) is a “proposed” solution of the dual LP problem:

maxW =
m∑
i=1

siui +
n∑

j=1

djvj Subject to At

[
u
v

]
≤

 c11...
cmn

 ,
u = [u1, . . . , um]t, v = [v1, . . . , vn]t have entries with unrestricted signs.

4. If ui + vj ≤ cij for all (i, j) pairs, then (u1, . . . , um, v1, . . . , vn) is dual feasible. So, we get an

optimal solution.

5. Otherwise, choose the (i, j) pair such that ui + vj − cij > 0 is maximum to be the entering

variable.

6. Find a (the) loop using xrs in the basic feasible solutions together with xij , and use xij as

entry 0 in the loop.

7. Find the maximum δ > 0 to add to the the even entries xrs in the loop, and subtract δ from

the odd entries in the loop.

[An odd entries xrs in the loop that is reduced to 0 after the procedure is the basic variable

changing into a non-basic variable (as xij becomes a basic variable).]

8. Go back to Step 3 until an optimal solution (both primal and dual feasible) is found.

Remark For the maximization problem maxZ =
∑

i,j cijxij , the dual problem is:

minW =
m∑
i=1

siui +
n∑

j=1

djvj Subject to At

[
u
v

]
≥

 c11...
cmn

 ,
u = [u1, . . . , um]t, v = [v1, . . . , vn]t have entries with unrestricted signs.

So, we modify (4), (5) to:

4’ The current solution is optimal if the proposed solution (u1, . . . , um, v1, . . . , vn) of the dual

problem satisfies ui + vj ≥ cij for all (i, j).

5’ Otherwise, find the (i, j) pair such that cij − (ui + vj) > 0 is maximum to be the entering

variable.



Example Solve the Powerco problem.

C1 C2 C3 C4 Supply

P1 $8 $6 $10 $9 ≤ 35
P2 $9 $12 $13 $7 ≤ 50
P3 $14 $9 $16 $5 ≤ 40

Demand ≥ 45 ≥ 20 ≥ 30 ≥ 30

City1 City2 City3 City4 Supply

Plant1 8 6 10 9
35

Plant2 9 12 13 7
50

Plant3 14 9 16 5
40

Demand 45 20 30 30

u1 = v1 =

u2 = v2 =

u3 = v3 =

v4 =

∆ =

City1 City2 City3 City4 Supply

Plant1 8 6 10 9
35

Plant2 9 12 13 7
50

Plant3 14 9 16 5
40

Demand 45 20 30 30

u1 = v1 =

u2 = v2 =

u3 = v3 =

v4 =

∆ =

City1 City2 City3 City4 Supply

Plant1 8 6 10 9
35

Plant2 9 12 13 7
50

Plant3 14 9 16 5
40

Demand 45 20 30 30

u1 = v1 =

u2 = v2 =

u3 = v3 =

v4 =

∆ =

City1 City2 City3 City4 Supply

Plant1 8 6 10 9
35

Plant2 9 12 13 7
50

Plant3 14 9 16 5
40

Demand 45 20 30 30

u1 = v1 =

u2 = v2 =

u3 = v3 =

v4 =

∆ =


