Math 323 Operations Research Notes on Chapter 8 C.K. Li
Network models

Basic definitions

A graph or a network consists of a vertex set V = {v1,...,v,} and a set of arcs A containing
a selection of order pairs (vj,v;) of vertices. The vertex v; is the initial node, and the vertex if the
terminal node of the arc.

A chain is a sequence of arcs such that each arc (starting from the second one) has one vertex
in common with the previous arc.

A path is a chain such that (each arc starting from the second one) has the its initial node equal

to the terminal node of the previous arc.

—

FIGURE 1 '/
Example of a Network



8.2 Shortest path problems

Shortest path problem. Given a network so that every arc is associated with a distance. Find
a path from vertex ¢ to vertex ¢ with shortest distance, i.e., the sum of distance of the arcs of the

path is minimum.

Dijkstra’s algorithm

1. List the vertices [1,...,n] with 1 as the initial vertex, n is the final vertex, and set assign a

permanent label 0 to the initial vertex 1.

2. Assign temporary label to each other vertex j as the cost of the arc (1, 7), which is oo if (1, j)

is not an arc. Select a vertex with minimum label to be permanent.

3. Suppose k is the permanent vertex labeled most recently. Update the label of each non-
permanent vertex j using the minimum of the original label of j and the sum of label k£ and

the cost from k to j, which is oo if (4, k) is not an arc.

4. Select the undated temporary label with minimum cost as a new permanent labeled vertex. If
it is the terminal vertex, we are done. Back track the permanent label to recover the shortest
path. Else, go back to Step 3.

Example

3
4 %
FIGURE 2 Plant 1 2 @Ciryl
Network for Powerco 3 @/
: 3

Substations

[0* 4 3 o o o

[0* 4 3* o o oo



Remark We can formulate the shortest path problem as a transshipment problem.

e Set each vertex except the final one as a supply point with supply value 1.
e Set each vertex except the initial one as a demand point with demand value 1.
e Assign cost ¢;; from supply point ¢ to demand point j.

e Find the minimum cost for the transportation problem.

TABLE 3 Noda
Transshipment Representation Node H 3 4 5 6 Supply
of Shortest-Path Problem and
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B
B
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4 1 1
(| [ ] [of [z
b 1 1
‘Demand 1 1 1 1 1

To illustrate the preceding ideas, we formulate the balanced transportation problem as-
sociated with finding the shortest path from node 1 to node 6 in Figure 2. We want to send
one unit from node 1 to node 6. Node 1 is a supply point, node 6 is a demand point, and
nodes 2, 3, 4, and 5 will be transshipment points. Using s = 1, we obtain the balanced trans-
portation problem shown in Table 3. This transportation problem has two optimal solutions:

1 z=4+2+ 2 =28, x5 = X35 = Xg5 = X33 = xgq = | (all other variables equal 0).

This solution corresponds to the path 1-2-5-6.

2 z=3+3+2 =28 x13 = X35 = Xg5 = X33 = Xxqq = | (all other variables equal 0).

This solution corresponds to the path 1-3-5-6.



Related problem - equipment replacement. Suppose an equipment is purchased. There are
repair cost, trade in cost, etc.

Find the minimum net purchase cost = purchase cost + maintenance cost — trade in price.

Example Buying a new car costs $12000 For instance, annual maintenance cost (M) for a car of

n year old, and the trade in (T) price for a car of n year old.

n 0 1 2 3 4 )
M | 2000 4000 5000 9000 12000
T 7000 6000 2000 1000 O

Set up a network with vertices V' = {1,...,6}. The arc from (i, j) with ¢ < j has a cost
¢i; = buying price of a car + maintenance cost from year ¢ to j — 1 - trade in cost in year.

We can build up the network and find the “shortest path”.

2 =2+12-7=17 Clg=2+4+5+9+12+4+12-0=44
3=2+4+12-6=12 cy=2+12-7=7
ca=2+4+5+12-2=1] cyy=2+4+12—-6=12

g =2+4+5+9+12=1=31 s =2+12=-7=17
Ca=2+12=7=17 Cys=2+4+12=6=12
cs=2+4+12=-6=12 g =2+12=-7=17

cw=2+4+5+12=-2=121

FIGURE 3
Network for Minimizing

Car Costs




8.3 Maximum flow - minimum cut problems

Problem In a network so that each arc (4, j) has a flow capacity ¢;; constraint. Find the maximum

flow value from a source vertex so to a sink vertex si.

EXAMPLE 3 Maximum Flow

Sunco Oil wants to ship the maximum possible amount of oil (per hour) via pipeline from
node so to node si in Figure 6. On its way from node so to node si, oil must pass through
some or all of stations 1, 2, and 3. The various arcs represent pipelines of different di-
ameters. The maximum number of barrels of oil (millions of barrels per hour) that can be
pumped through each arc is shown in Table 8. Each number is called an arc capacity.
Formulate an LP that can be used to determine the maximum number of barrels of oil per

hour that can be sent from so to si.
TABLE 8
Arc Capacities for
Sunce 0
Are Capacity
(so, 1) 2
(s0, 2) 3 FIGURE 6
(1,2) 3 Network for Sunco 0il
(1,3) 4
(3, si) 1
@, si) 2
max z = X
8.t. Xep1 = 2 (Arc capacity constraints)
Xso,2 =3
X112 = 3
x2,.s'l' =2
X113 =4
I3’"- =1
Xg = X1 t Xg62 (Node so flow constraint)
Xep1 = X12 + Xp3 (Node 1 flow constraint)
Xeo2 t X2 = Xo (Node 2 flow constraint)
X13 = X3 (Node 3 flow constraint)
X3g+t X2y =X (Node si flow constraint)
x; =0

One optimal solution to this LPisz = 3, x,,) = 2, x13 = L, a2 = 1, X500 = 1, X2 =
1, x3 5 = 2, xo = 3. Thus, the maximum possible flow of oil from node so to 5i is 3 mil-
lion barrels per hour, with 1 million barrels each sent via the following paths: so—1-2—si,
so—1—3—si, and so—2—si.



Remark We can always set up the maximum flow problem as a transportation problem:
max Z = xg
subject to: > . fi; = > , fik=0, j=1,...,n.
> fsoi = o, > fisi = o, 0 < fij < cij.
Ford-Fulkerson Algorithm
Consider a capacitated network with source vertex so and sink vertex si. Partition V =S U S

with so € S,si € S. Define the cut associated with (S,5) as K(S,S) = Z(i’j)E(ngcij. Then

maximum flow in the network equals the minimum cut.

1. Set initial flow to be 0.
2. Find a chain from so to si consisting of non-saturated forward arcs ¢;; — f;; > 0 , and backward
arcs with non-zero flows f,4; increase the flow by the minimum of the values ¢;; — f;; and f;s.

This can be done by labeling the vertices starting from so; after adding a new round of newly
labeled vertices, move on to the next round by labeling those vertices connected with those
labeled in the last round by forward non-saturated forward arcs or and backward arcs with

positive flow until we reach si, or find it impossible.

3. If no such chain exists, then we have an optimal flow. (Letting S be the vertices reachable

from so with a positive chain. Then K (S, S) is a minimum cut.)
Example
Los Angeles

FIGURE 7
Network for Fly-by-

3
Night Airlines Q/
Tuneau Seattle Dallas

Solution The appropriate network is given in Figure 7. Here the capacity of arc (i, j) is the maxi-
mum number of daily flights between city 7 and city j. The optimal solution to this max-
imum flow problem is z = xp = 3, x;5 = 3, x5, = L, xsp. = 2, x;p = L, xp.p = 2.
Thus, Fly-by-Night can send three flights daily connecting Juneau and Dallas. One flight
connects via Juneau—Seattle-L.A.—Dallas, and two flights connect wia
Juneau—Seattle—Denver—Dallas.



A special case - Matching problem. Try to match n boys by, ..., b, with n girls g1, ..., g, with

ci; = 1if b; know g;. Set a source vertex so and a sink vertex si such that capacity constraint

from so to b; equals 1, and the capacity constraint from g; to si equals 1, fori =1,...,n.
Example
Gompatibilities for Matching
Leni Meryl Katharine Linda Victoria
Anderson Streep Hepburn Evans Principal
Kevin Costner — C — — _
Burt Reynalds C — — — —
Tom Selleck C C — — —
Michael Jackson C C — — C
Tom Cruise — — C C C

FIGURE 8
Network for
Matchmaker

Hall’s Theorem There is a complete matching if and only if every group of k boys know at least
kgirls for k=1,...,n.

Theorem Given a capacitated network with source vertex so and sink vertex si. Then there is a

flow with value zg if and only if

Z Cij— Z ciijo.

i,jESXS i,jJESX S



Additional Examples and Algorithms

Example 1. Shortest Path
0. [0%,3,7,4,00,00]
1. [0%,3%,7,4, 00, ]

2. [0%,3%,5,4%, 00, 12]

3. [0%,3%,5%,4%,7,12]
4. [0%,3%,5%,4%, 7% 11]

5. [0%,3%,5%,4%, 7%, 10%]

Example 2. A maximal flow problem




Example 3. Another maximal flow example with an undirected arc




Example 4. A transshipment example with multiple sources and sinks

15, 10}
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8.4 Critical Path Method (CPM), Project Evaluation and Review Techniques (PERT)
One can use network models to deal with scheduling problem of large complex projects with
many activities - construction, building, manufacturing, launching (scientific, commercial, indus-

trial) projects, etc.

Basic set up

1. Node 1 represents the start of the project. An arc should lead from node 1 to represent each

activity that has no predecessors.

2. A node (called the finish node) representing the completion of the project should be included

in the network.

3. Number the nodes in the network so that the node representing the completion of an activity
always has a larger number than the node representing the beginning of an activity (there

may be more than one numbering scheme that satisfies rule 3).
4. 4 An activity should not be represented by more than one arc in the network.

5. Two nodes can be connected by at most one arc.

FIGURE 26
Activity A Must Be

A B
Completed Before @ @ @
Activity B Can Begin
A
FIGURE 27 ®\A‘ FIGURE 29 (D:%
Activities A and B Must C Violation of Rule 5 B
Be Completed Before B
Activity C Can Begin @/

FIGURE 28
Activity A Must Be FIGURE 30

Completed Before @L“ c Use of Dummy Activity

Activities B and C
Can Begin

Remark To avoid violating rules 4 and 5, it is sometimes necessary to utilize a dummy activity

that takes zero time.

Example Suppose activities A and B are both predecessors of activity C and can begin at the
same time. In the absence of rule 5, we could represent this by Figure 29. However, because
nodes 1 and 2 are connected by more than one arc, Figure 29 violates rule 5. By using a dummy
activity (indicated by a dotted arc), as in Figure 30, we may represent the fact that A and B are
both predecessors of C. Figure 30 ensures that activity C cannot begin until both A and B are

completed, but it does not violate rule 5.
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Example Widgetco is about to introduce a new product (product 3).

e One unit of product 3 is produced by assembling 1 unit of product 1 and 1 unit of product 2.

e Before production begins on either product 1 or 2, raw materials must be purchased and

workers must be trained.

e Before products 1 and 2 can be assembled into product 3, the finished product 2 must be
inspected. A list of activities and their predecessors and of the duration of each activity is

given in Table 12. Draw a project diagram for this project.

TABLE 12
Duration of Activities and Predecessor Relationships for Widgetco

Duration
Activity Predecessors (Days)
A = train workers — 6 =@ Fl2 =@
B = purchase raw materials — 9 A6
C = produce product 1 A B 8
D = produce product 2 A'B 7
E = test product 2 D 10 B9
F = assemble products 1 and 2 C, E 12

Node 1 = starting node
Node 6 = finish node

Definition The early event time for node i, represented by ET(i), is the earliest time at which the
event corresponding to node ¢ can occur.
The late event time for node i, represented by LT'(i), is the latest time at which the event

corresponding to node i can occur without delaying the completion of the project.

12



Computation of early event time
Set ET(1) = 0. In gneral, if ET(j) is known for j < i, we can find LT(i) as follows.

Step 1 Find each prior event to node i that is connected by an arc to node . These events are the

immediate predecessors of node i.

Step 2 To the ET for each immediate predecessor of the node ¢ add the duration of the activity

connecting the immediate predecessor to node 1.
Step 3 ET'(i) equals the maximum of the sums computed in step 2.

Computation of late event time

Set LT'(n) to be the finish time. In general, if LT(j) is known for j > i, we can find LT(i) as
follows:

Step 1 Find each node that occurs after node ¢ and is connected to node ¢ by an arc.

These events are the immediate successors of node 3.

Step 2 From the LT for each immediate successor to node i, subtract the duration of the activity

joining the successor the node 1.

Step 3 LT(7) is the smallest of the differences determined in step 2.

C8 Fl12
@0

TABLE 13
ET and [T for Widgetco

E10 Node ET(i) LT(I)
1 0 0
2 9 9
3 Q s}
4 16 16
5 26 26
Node 1 = starting node 6 38 38

Node 6 = finish node

13



Total flow

For an arbitrary arc representing activity (i, ), the total float, represented by T'F(i,j), of the
activity represented by (7,j) is the amount by which the starting time of activity (i,7) could be
delayed beyond its earliest possible starting time without delaying the completion of the project
(assuming no other activities are delayed). So, TF(i,j)+ ET(i) 4+ t;; < LT(j), and hence

TFG,j) = LT(j) - ET() — t,;.

Activity B: TF(1,2) =LT(2) — ET(1) —9=0
Activity A: TF(1,3)=LT3) — ET(1) —6 =3
Activity D: TF3,4)=LT4) — ET3) —7=0
Activity C: TF3,5)=LT(5) — ET(3) —8=9
Activity E: TF4,5)=LTG5) — ET4) —10=0

Activity F: TF(5,6) = LT(6) — ET(5) — 12 =0

Dummy activity: TF(2,3) = LT(3) — ET(2) —0=0

Find a Critical Path Definitions Any activity with a total float of zero is a critical activity.

A path from node 1 to the finish node that consists entirely of critical activities is called a

critical path.

e In our example, activities B, D, E, F, and the dummy activity are critical activities and the
path 1-2--3-4-5-6 is the critical path.

e We can use the minimal path algorithm to find the critical path with T'F'(7, j) as the distance.
e [t is possible for a network to have more than one critical path.

e A critical path in any project network is the longest path from the start node to the finish

node.

e Any delay in the duration of a critical activity will delay the completion of the project, so it

is advisable to monitor closely the completion of critical activities.

C8 F12

E 10

Node 1 = starting node
Node 6 = finish node

14



Free float

The free float of the activity corresponding to arc (i, 7), denoted by F'F(i,j), is the amount by
which the starting time of the activity corresponding to arc (i, ) (or the duration of the activity)
can be delayed without delaying the start of any later activity beyond its earliest possible starting
time. So, ET (i) + t;; + FF(i,j) < ET(j), and hence

FF(i,j) = ET(j) - ET() - t;.

In our example, we have the following.
Activity B: FF(1,2)=9—-0—-9=0
Activity A: FF(1,3)=9-0—-6=3
Activity D:  FF(3,4)=16—-9—-7=0
Activity C: FF(3,5)=26—9—-8=9
Activity E: FF(4,5) =26 — 16 — 10 =0
Activity F: FF(5,6) =38 =26 —12=0

Using Linear Programming to Find a Critical Path

min z = xg — X,

s.t. X3=x, +6 (Arc (1, 3) constraint)
X, =x;+9 (Arc (1, 2) constraint)
Xs = x; + 8 (Arc (3, 5) constraint)
Xy =x3+ 7 (Arc (3, 4) constraint)

xs = x4 + 10 (Arc (4, 5) constraint)

Xg = x5 + 12 (Arc (5, 6) constraint)

X3 = Xy (Arc (2, 3) constraint)
All variables urs

An optimal solution to this LPisz =38, x; = 0,x, = 9, x3 = 9, x4 = 16, x5 = 26, and
x¢ = 38. This indicates that the project can be completed in 38 days.

15



Crashing the project

Suppose that by allocating additional resources to an activity, Widgetco can reduce the
duration of any activity by as many as 5 days. The cost per day of reducing the duration
of an activity is shown in Table 14. To find the minimum cost of completing the project
by the 25-day deadline, define variables 4, B, C, D, E, and F as follows:

A = number of days by which duration of activity 4 is reduced

17 = number of days by which duration of activity / is reduced
TABLE 14

x; = time that the event corresponding to node j occurs

A B c D E F
Then Widgetco should solve the following LP: $10 20 $3 $30 $40 $50
min z = 104 + 208 + 3C + 30D + 40K + 50F
st A=3 X, =x, +9—8B (Arc (1, 2) constraint)
B=>5 X3 =x, +6 — 4 (Arc (1, 3) constraint)
€=5 xs=x3+8—C (Arc (3, 5) constraint)
D=5 X3 =x3+7—D (Arc (3, 4) constraint)
E=5 Xs=x, +10 — E  (Arc (4, 5) constraint)
=5 Xe = x5+ 12 — F (Arc (5, 6) constraint)
X3 =x, + 0 (Arc (2, 3) constraint)
X —x; =25

A, B, C,D,E, F=0,xurs

The first six constraints stipulate that the duration of each activity can be reduced by at
most 5 days. As before, the next seven constraints ensure that event j; cannot occur until
after node / occurs and activity (i, j) is completed. For example, activity B (arc (1, 2)) now
has a duration of 9 — B. Thus, we need the constraint x, = x; + (9 — B). The constraint
Xe¢ — x; = 25 ensures that the project is completed within the 25-day deadline. The ob-
jective function is the total cost incurred in reducing the duration of the activities. An op-
timal solution to this LP is z = $390, x; = 0, x; = 4, x3 = 4, x4 = 6, x5 = 13, x¢ = 25,
A=2,B=5C=0,D=35,FE =3, F = 0. After reducing the durations of projects B,
A, D, and E by the given amounts, we obtain the project network pictured in Figure 35.
The reader should verify that A, B, D, E, and F are critical activities and that 1-2—3—4-5-6
and 1-3—4-5—6 are both critical paths (each having length 25). Thus, the project deadline
of 25 days can be met for a cost of $390.

A4

FIGURE 35

Duration of Activities B4 E7 F12
after Crashing @ O @



Matlab code

[000O0O0O0 10 20 3 30 40 50];
[1-100000-10000; 1
0010-1000-1000; 0
0001-100000-10;0
01-1000000000; -1
b [-9 -6 -8 -7 -10 -12 0 25];
AA [1000000000O0O0];
bb = [0];

LB [-20 -20 -20 -20 -20 -20 0 0 O 0 O 0O];

UB [100 100 100 100 100 100 5 5 5 5 5 5];
[x,fval] = linprog(c,A,b,AA,bb,LB,UB)

Optimal solution found.

xT=[0 4 4 6 13 25 2 5 0 5 3 0]
fval = 390

(¢}
1

-1000-10000 0;
1-100000-10 0;
001-100000 -1;

0
0
0
000010000O0O0];

17



PERT: Program Evaluation and Review Technique

CPM assumes that the duration of each activity is known with certainty.
For many projects, this is clearly not applicable.

PERT is an attempt to correct this shortcoming of CPM by modeling the duration of each

activity as a random variable.

For each activity, PERT requires that the estimate the following three quantities:
a = estimate of the activitys duration under the most favorable conditions
b = estimate of the activitys duration under the least favorable conditions
m = most likely value for the activitys duration

Let T;; (random variables are printed in boldface) be the duration of activity (7, j).

PERT requires the assumption that T;; follows a beta distribution.

The specific definition of a beta distribution need not concern us, but it is important to realize
that it can approximate a wide range of random variables, including many positively skewed,

negatively skewed, and symmetric random variables.
If T;; follows a beta distribution, then it can be shown that the mean and variance of T;
may be approximated by

4 b—a)?
E(TU) = HTW and ’UCLT(TZ‘j) = (3661)

PERT requires the assumption that the durations of all activities are independent.

Then for any path in the project network, the mean and variance of the time required to

complete the activities on any path P are given by
Z E(T”) and Z var(Tij).
(i,j)epP (ig)ep
Let CP be the random variable denoting the total duration of the activities on a critical path

found by CPM.

PERT assumes that the critical path P found by CPM contains enough activities to allow us

to invoke the Central Limit Theorem and conclude that

CP= Y Ty

(ij)eP
is normally distributed.

Then one can answer questions concerning the probability that the project will be completed

by a given date.

18



Example Consider

TABLE 15
a, b, and m for Activities in Widgeto

Activity a b

=

(1,2) 5 13 9
(1,3) 2 10 6
3.5 3 13 8
3.4 1 13 7
. 4, 5) 8 12 10
Node 1 = staf‘ﬂng node (5. 6) 9 15 12
Node 6 = finish node
Then we have
_[5+13436) 13-57° _
E(Ty,) . v 1.78
(2 + 10 + 24} (10 — 2)?
= 1— f S~ - 77 =
E(Ty3) . 0 1.78
(3413 + 32} (13 — 3)?
E(Ty) = — 1 =g 2297
(Tss) p 3%
(1+ 13 + 28} (13 -1y
ETy) ="+ =T =4
(Ts4) 6 36
(8 + 12 + 40} (12 — 8y
EMTy)=————L =10 = =044
(Tas) 6 36
1 o2
E(Ty) = 9 + 12 +48) _ |, varTog = 1536 9 _,

Of course, the fact that arc (2, 3) is a dummy arc yields
E{ng) = var T23 =0
Recall that the critical path for Example 6 was 1-2-3-4-5-6. From Equations (6) and (7),

ECP)=9+0+7+10+12=738
varCP =178 + 0+ 4+ 044 + 1 =722

Then the standard deviation for CP is (7.22)"% = 2.69.

Question What is the probability that the project will be completed within 35 days?

Answer Assume that 1-2-3-4-5-6 is always the critical path. Then project will be completed
within 35 days is just Prob(C'P < 35), and assume that CP is normally distributed. Then by the
transformation Z = (CP — 38)/2.69 so that Z is a standardized normalized distributed random

variable with mean 0 and standard deviation 1, we have
Prob(CP < 35) = Prob((CP — 38)/2.69 < (35 — 38)/2.69) = Prob(Z < —1.12) = 0.13

by the standard normal distribution table.

19



Difficulties with PERT

1.

2.

3.

The assumption that the activity durations are independent is difficult to justify.
Activity durations may not follow a beta distribution.

The assumption that the critical path found by CPM will always be the critical path for the
project may not be justified.

The last difficulty is the most serious.
For instance, in our example, we assumed that 1-2-3-4-5-6 would always be the critical path.

If, however, activity A were significantly delayed and activity B were completed ahead of
schedule, then the critical path might be 1-3-4-5-6.

One needs probability, simulation techniques to deal with the problem.

20



Minimum Spanning Tree Problems

The following method (MST algorithm) may be used to find a minimum spanning tree
for a network:

Step 1 Begin at any node 7, and join node i to the node in the network (node ;) that is
closest to node i. The two nodes i and j now form a connected set of nodes C' = {i, j}
and arc (i, j) will be in the minimum spanning tree. The remaining nodes in the network
(C'") are the unconnected set of nodes.

Step 2 Choose a member of C’(n) that is closest to some node in C. Let m represent the
node in C that is closest to n. Then the arc (m, n) will be in the minimum spanning tree.
Update C and (. Because n is now connected to {i, j}, C now equals {7, j, n}, and we
must eliminate node n from C".

Step 3 Repeat this process until a minimum spanning tree is found. Ties for closest node
and arc may be broken arbitrarily.

Remark

We assume that the network is connected and has undirected arcs (edges) with costs.

Example

C=[12] C =[1,2,5]
C = [3.4.5] C' = [3,4]
€ =[1.235] Arcs (1, 2, (2, 3), (5, 3),
C = [4] and (5, 4) are the MST
FIGURE 49
MST Algorithm for
Computer Example ¢ lterstion 3 i Tteration 4: MST has been found
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Minimum-Cost Network Flow Problems

The transportation, assignment, transshipment, shortest-path, maximum-flow, and critical
path problems are all special cases of the minimum-cost network flow problem (MCNEFP).

x; = number of units of flow sent from node i to node j through arc (i, j)

b; = net supply (outflow — inflow) at node i

¢y = cost of transporting one unit of flow from node i/ to node j via arc (i, j)

L; = lower bound on flow through arc (7, j) (if there is no lower bound, let L; = 0)
U; = upper bound on flow through arc (7, j) (if there is no upper bound, let U; = o)

Then an MCNFP may be written as

min Z CUxU

all arcs

s.t. Z Xy — Z X = b; (for each node i in the network)
7 T

Ly <x;=<Uj; (for each arc in the network)

The first set of constraints are the flow balance equations, and the second set of con-
straints express limitations on arc capacities.

Transportation problems as MCNF problems

TABLE 28 1 2
4 (Node 1)
2] [+ ]
5 (Nodc 2)
(s} 3
(Node 3) (Node 4)
Supply point 1 Demand point 1

FIGURE 45
Representation of
Transportation Prohlem

Supply point 2 Demand point 2
as an MCNFp “UPPyPom fand potn

TABLE 29
MCNFP Representation of Transportation Prohlem

min Z = Xg + 2xg + 3 + dag

Iy Xy Xog Xoa rhs Canstralnt
1 1 0 0 — 4 Node 1
0 0 1 1 = 5 Node 2
—1 U —1 0 = —b Mode 3
1 —1 0 —1 = —3 Node 4

All variables non-negative
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Maximum flow problems as MCNF problems

TABLE 30
MCNFP Representation of Maximum-Flow Problem

max Z = Ky
Xs1 Xsa2 I X X5 Xy X ths Constraint
1 1 0 0 0 0 -1 = 0 Node so
-1 0 1 1 0 0 0 = 0 Node 1
0 -1 0 -1 0 1 0 0 Node 2
0 0 —1 0 1 0 0 = 0 Node 3
0 0 0 0 -1 -1 1 = 0 Node si
1 0 0 0 0 0 0 = 2 Arc (so, 1)
0 1 0 0 0 0 0 = 3 Arc (so, 2)
0 0 1 0 0 0 0 = 4 Arc (1, 3)
0 0 0 1 0 0 0 = 3 Arc(1,2)
0 0 0 0 1 0 0 = 1 Arc (3, si)
0 0 0 0 0 1 0 = 2 Arc (2, si)
All variables nonnegative
Remarks

One can formulate other network problems as MCNF problems; see Example 7 in Chapter 8.

One can apply a change of variables x;; — L;; and assume that L;; = 0. Note that b; will be

bi=bi—> Lij+Y Li>Y (wij—Lij) = > (wri — Lg)-
J k J

k

changed to

One can use linprog(c,A,b,AA,bb,LB,UB) command in Matlab to solve the network problem
by setting up

(1, b=1[1,
LB, UB.

the cost vector c =

[c_{ij}], A =

AA x = bb, the network constraints,

Note that we can delete one of network constraints Az = b to get AAx = bb because each

column of A has a “1” and a “—17.

So, the sum of rows of A = [0,...,0], i.e., the rows are linearly dependent.
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Network Simplex Method

Step1 Determine a starting bfs. The n — 1 basic variables will correspond to a spanning
tree. Indicate nonbasic variables at their upper bound by dashed arcs.

Step 2 Compute yy, y,, . ..y, (often called the simplex multipliers) by solving y; = 0,
Vi — ¥; = ¢;; for all basic variables x;;. For all nonbasic variables, determine the row 0 co-
efficient ¢;; from ¢; = y; — y; — ¢;. The current bfs is optimal if ¢; = 0 for all x; = L
and ¢; = 0 for all x; = Uj. If the bfs is not optimal, then choose the nonbasic variable
that most violates the optimality conditions as the entering basic variable.

Step 3 Identify the cycle (there will be exactly one!) created by adding the arc corre-
sponding to the entering variable to the current spanning tree of the current bfs. Use con-
servation of flow to determine the new values of the variables in the cycle. The variable
that first hits its upper or lower bound as the value of the entering basic variable is
changed exits the basis.

Step 4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3.
Go to step 2.
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EXAMPLE 9 Network Simplex Solution to MCNFP

Use the network simplex to solve the MCNFP in Figure 56.

Solution A bfs requires that we find a spanning tree (three arcs that connect nodes 1. 2, 3, and 4
and do not form a cycle). Any arcs not in the spanning tree may be set equal to their up-
per or lower bound. By trial and error, we find the bfs in Figure 57 involving the span-
ning tree (1, 2), (1, 3), and (2, 4).

To find vy, v, v3. and y, we solve

v =0, yvi —y2 =4, Y2 —ya =3, yi—yz =3

FIGURE 56

Example of (1O 681 1652 o (-10)
Network Simplex

783 5%6

FIGURE 57

(10) (-10)
bfs for Example 9
This yields y; = 0, y, = —4, y3 = —3, and y, = —7. The row 0 coefficients for each
nonbasic variable are
Ciy = —3 —(—=7) — 6 = =2 (Violates optimality condition)
cry = —4 — (—3) — 1 = —2 (Satisfies optimality condition)
G2 = —3 — (—4) — 2 = —1 (Satisfies optimality condition)
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Thus, x4 enters the basis. We set x34 = 5 — 6 and obtain the cycle in Figure 58. From
arc (1,2),wefind5 + 6 =7 or 6 = 2. From arc (1, 3), we find5 — 0 =0orf = 5.
From arc (2, 4), we find 5+ § <8 or 6 < 3. From arc (3,4), we find5 — 08 =0orf§ <
5. Thus, we can set 6 = 2. Now x5 exits the basis at its upper bound, and x, enters, yield-
ing the bfs in Figure 59.

The new bfs is associated with the spanning tree (1, 3), (2, 4), and (3, 4). Solving for
the new values of the simplex multipliers, we obtain

=0y =p;3=3 y3—ys=06, »-y=3
This yields y; = 0, y, = —6, y3 = — 3, y4 = —9. The coefficient of each nonbasic vari-
able in row 0 is given by
cp=0-(-6)—4=2 (Satisfies optimality condition)
ey =—6—(-3)—1
cp=—3-(-6)—-2

—4  (Satisfies optimality condition)

1 (Violates optimality condition)

Now x3; enters the basis, yielding the cycle in Figure 60. From arc (2, 4), we find 7 +
0 =8or6 = 1); from arc (3, 4), we find 3 — 6 = 0 or § = 3. From arc (3, 2), we find
0 = 6. So we now set § = I and have x4 exit from the basis at its upper bound. The new
bfs is given in Figure 61.
The current set of basic values corresponds to the spanning tree (1, 3), (3, 2), and
(3, 4). The new values of the simplex multipliers are found by solving
n=0 =y =3 pmon=2 y3p=06

which yields y; = 0, y, = =5, y3 = =3, y4 = —9. The coefficient of each nonbasic vari-
able in row 0 is now

in=—5—-(-3)-1=-3 (Satisfies optimality condition)

cp=0—-(=5—-4=1 (Satisfies optimality condition)

Cu=—5-(-9-3=1 (Satisfies optimality condition)
Thus, the current bfs is optimal. The optimal solution to the MCNEP is

Basic variables:  x;3=3, xp =1, x3,=2

Nonbasic variables at their upper bound: ~ x;, =7, x4 =8

Nonbasic variable at lower bound:  x53=0

The optimal z-value is obtained from

z=7(4) +33) + 1(2) + 8(3) + 2(6) = $75
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FIGURE 58
Cycle Created When
Kay Enters the Basis

FIGURE 59
bis After x,, Exits
and Xy Enters

FIGURE 60
Cycle Created When |6 o 10}
Xz Enters Basis

FIGURE 61
New bfs When x,
Enters and x,, Exits



