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LP problem and Simplex algorithm

• Linear algebra techniques are useful in solving LP: maximize or minimize a linear function on decision
variables x1, . . . , xn under linear constraints. (Chapters 1, 2.)

• Standard form max z = cTx subject to Ax ≤ b, x ≥ 0. Find optimal basic feasible solution(s).

• If x = (x1, x2), one can use graphical methods. (Chapters 3, 5.)

• Simplex algorithm for the LP: max z = cTx subject to Ax = b, x ≥ 0. (Chapter 4.)

Set up the initial Tableau if there is a basic feasible solution:

c1x1 + · · ·+ cnxn constraints

cB xB B−1A B−1b

C̃ cT − cTBB
−1A Z =?

Our last row is the first row in the book.
In the book, cBB

−1A− c is computed.

Select a new basic variable xj (with maximum relative cost) if not yet optimal.

Replace a current basic variable xi based on the minimum b̃i/ãi,j among those ãi,j > 0,

where b̃ = B−1b = (b̃1, . . . , b̃m)T and (ã1,j , . . . , ãm,j)
T is the jth column of B−1A.

In the final tableau, we can read out B−1A,B−1b, and c̃ = cT − cTBB
−1A.

If Im appears in A, then the corresponding matrix in the final tableau is B−1.

• In order to set up the LP to apply Simplex algorithm, we may need to

* change min z = cTx to max z̃ = (−c)Tx,

* add slack variables, excess variables, artificial variables.

• If artificial variables are used, one may use big-M methods or two-phase method.

If an artificial variable stays at the optimal solution, then the LP has no solution.

• In each step of the simplex algorithm, the submatrix [A|b] in the initial tableau changes to [B−1A|B−1b]
with B = Bk · · ·B1, where B1, . . . , Bk are the elementary matrices associated with the Gaussian-Jordan
elimination in the previous steps.

• If at a certain step, there is a nonbasic variable xj with positive c̃j such that column B−1Aj has
nonnpositive entries, the the problem is unbounded.

• Otherwise, we always get the optimal solution (apart from the cycling issue).

• We may set up preemptive goal programming to achieve certain goal priorities by solving

minW = P1z1 + · · ·+ Pkzk subject to Ax = b, x ≥ 0.

In practice, for j = 1, . . . , k, we solve minWj = zj subject to Ax = b, x ≥ 0, with the additional
constraints zi = b̃i, i = 1, . . . , j − 1 for b̃1, . . . , b̃j−1 attaining the minimum in the previous steps.

Sensitivity analysis (Chapters 5 & 6)

We consider maxZ = cTx subject to Ax = b with b ≥ 0.

• If we change c to ĉ, then C̃ = cT − cTBB
−1A changes to C̃ = ĉT − ĉTBB

−1A.

* We may still have optimal solution x with different Z value.

* We may have not have optimal, and need to apply simplex algorithm further.

* We can examine C̃ = ĉT − ĉTBB
−1A to determine the range of change from c to ĉ that will

not affect the optimal solution x.



• If we change b to b̂, we change xB = B−1b changes to xB = B−1b̂.

* We still have the optimality condition determined by C̃.

* If B−1b̂ is nonnegative, then we can use the same optimal basis, but a different optimal

solution xB = B−1b̂ and a different Z value accordingly.

* If B−1b̂ has negative values, we use dual simplex method.

* We can compare B−1(b + ei) and B−1b for i = 1, . . . ,m, to determine the range of

change of bi that will affect the optimal solution if B−1(b + ei) remain feasible.

* The value cTB[B−1(b + ei)−B−1b] = cTBB
−1ei is the shadow price for the ith constraint.

• If we add a variable xn+1, then we add a column An+1 to the tableau and cn+1 to the initial tableau so
that the final tableau has a column B−1An+1 and c̃n+1 = cn+1 −B−1An+1.

* If c̃n+1 ≤ 0, the xB remains to be optimal with the same value Z.

* Else, we apply simplex algorithm to move xn+1 to the optimal basis.

• If we add a constraint am+1,1x1 + · · ·+ am+1,nxn = bm+1, then we add a row to A to get Ã.

We may add a slack, excess, or artificial variable xn+1 and apply Gaussian-Jordan elimination to get

c1x1 + · · ·+ cnxn + 0xn+1 constraints

cB xB B−1A B−1b

0 xn+1 R̂m+1 b̂

C̃ cT − cTBB
−1A 0 Z =?

* If b̂ ≥ 0, then the same optimal solution

with the same Z as cn+1 = 0.

* If b̂ < 0, apply the dual simplex method.

Dual simplex method (Chapter 6)

• Consider primal LP and the dual LP. There is a standard conversion table.

Primal (Maximize) Dual (Minimize)
maxZ = cTx minW = bT y

A: coefficient matrix AT : coefficient matrix
b: Right-hand-side vector Cost vector
c: Price vector Right-hand-side vector
ith constraint is an equation The dual variable yi has urs
ith constraint is ≤ type The dual variable yi ≥ 0
ith constraint is ≥ type The dual variable yi ≤ 0
xj has urs jth dual constraint is an equation
xj ≥ 0 jth dual constraint is ≥ type
xj ≤ 0 jth dual constraint is ≤ type

• Solving the problem by “luck”. If x0, y0 are primal and dual feasible such that CTx0 = Z = W = bT y0,,
then they are the optimal solutions.

• At the optimal solution x0 and y0, we have the complementary slackness principle:

(yT0 A− cT )x0 = 0 = yT0 (b−Ax0).

• Solve the primal LP max z = cTx, Ax = b, x ≥ 0.

* If we get an optimal solution, then the dual LP has solution yT = cTBB
−1.

* If the primal LP is unbounded, then the dual is infeasible.

* If the primal LP is infeasible, then the dual is infeasible or unbounded.

• If the tableau of the primal attains optimal, but infeasible, then we can apply the dual simplex method
to find the feasible solution.

• If b̃j < 0, choose ãij < 0, determine i so that |c̃i/ãij | is minimum, and use aij as the pivoting entry.



Chapter 7 Transportation problem and transshipment problem

Transportation problem min z =
∑

ij cijxij s.t.
∑

j xij ≤ si,
∑

i xij ≥ dj , xij ≥ 0.

1. Convert it to a balanced problem. Add dummy demand column with 0 cost;

add dummy supply with penalty cost (in different form).

2. Use NW corner method, minimum cost, or Vogel;s method to find a bfs.

3. Set u1 = 0 and solve ui + vj = cij for the basic variables.

4. If (ui + uj) ≤ cij for all i, j, then we have optimal.

5. Else choose xij to be the entering basic variable, where maximum ui − uj − cij > 0.

6. Choose a loop and ∆ to determine the leaving variable; determine the new feasible solution.

Remarks a) Do suitable adjustment if one considers max z = cijxij .

b) One can do sensitivity analysis by changing cij or changing si, dj simultaneously.

c) One can use the techniques do inventory problem, and transshipment problem, etc.

d) One can also do assignment problem; the Hungarian method is preferred.

Chapter 8 Network models

Shortest path problem Dijkstra’s algorithm.

Remarks a) One can formulate the problem as a transshipment problem.

b) One can use the method to solve equipment replacement problem.

Maximum flow / minimum cut problem Ford-Fulkerson Algorithm.

1. Find an initial flow; then find so− si chain to improve the flow.

2. If there is no s0− si chain then the flow is maximum; one can determine the minimum cut.

Remark Special case include the optimal matching.

Critical Path Method and Project Management and Review Techniques

1. Formulate the network problem (label the activities as edges).

2. Find the critical path (by minimum path algorithm (in terms of the total flow).

3. One may crash the project in m days by solving the LP problem with n nodes:

min z =
∑

ij cijAij s.t. xj − xi ≥ dij −Aij , xn − x1 ≤ m, xj urs, 1 ≤ Aij ≤ mij .

4. Note that one can set x1 = 0 so that xj ≥ 0.

5. Using statistical techniques, one can evaluate and estimate the completion day. But there are limitation.

Mimumum spanning tree An easy greedy algorithm.



Minimum cost network problem min z = cijxij ,
∑

j xij − xki = bi, Lij ≤ xij ≤ Uij .

Network Simplex method

1 Determine a starting bfs. The n− 1 basic variables will correspond to a spanning tree.

Indicate nonbasic variables at their upper bound by dashed arcs.

2 Compute y1, y2, ...yn (often called the simplex multipliers) by solving

y1 = 0, yi − yj = cij for all basic variables xij .

For all nonbasic variables, determine the first / last row coefficient c̃ij = yi − yj − cij .

The current bfs is optimal if c̃ij ≤ 0 for all xij = Lij and c̃ij ≥ 0 for all xij = Uij .

If the bfs is not optimal, choose the nonbasic variable that most violates the optimality conditions as

the entering basic variable.

3 Identify the cycle (there will be exactly one!) created by adding the arc corresponding to the entering

variable to the current spanning tree of the current bfs.

Use conservation of flow to determine the new values of the variables in the cycle.

The variable that exits the basis will be the variable that first hits its upper or lower bound as the value

of the entering basic variable is changed.

4 Find the new bfs by changing the flows of the arcs in the cycle found in step 3. Now go to step 2.

Integer Programming

• Many LP program may require some or all the variables xito be integers.

• We have mixed or pure IP. Sometimes, we require xi ∈ {0, 1}.

• One may change all IP constraints to 0-1 constraints using binary numbers x = un2n + · · ·+ u0.

Branch and bound method

1. Solve Subproblem - LP relaxation.

2. Branch at the variables assuming fractional values.

3. Each branching remove some non-integral points in subproblem 1.

4. For each subprogram, one may fathom the corresponding node if:

a) an integer optimal solution (a candidate solution) for the subproblem is found,

b) the subproblem is infeasible,

c) the subproblem has optimal solution less than or equal to a candidate solution.

Remarks One may consider the special cases:

a) knapsack problem (use ci/ai ratios to find an initial solution),

b) TSL problem, and 0-1 (use assignment problem to solve subproblem),

c) 0-1 problem, use optimal choices of xi for max z =
∑

i cixj and
∑

j aijxj ≤ bi;

implicit enumeration method can be employed.


