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Background

● In talking about the Continuum Hypothesis and the set theory 
surrounding it, there are many places to start
○ Cantorʼs establishment of set theory and proposal of the problem would probably be a good place to 

start
○ I started slightly earlier than this, in an effort to show Cantorʼs career building to this point

● Naive set theory used implicitly in math since at least Aristotle (384–322 BCE)
● For many years, people mostly worked on higher subjects in math, thinking that 

there wasnʼt much of interest to be found in the basic principles they had been 
assuming for forever

● “Formalization” of math took place over many years and spread through different 
subjects at different rates

● Gradually became a push toward axiomatizing math
○ Enumerating the basic principles, and building everything else formally from that point



Cantor’s early 
career

How did the “founder of set 
theory” stumble into the topic?

“The beginning is the most important 
part of the work.”

–Plato, The Republic



Georg Cantor (1845–1918)

● German-Russian mathematician at the end of the 19th century
● One of the first people to begin enumeration of set theory
● At the beginning of his career, he worked with number theory for a 

short time
● Edward Heine (1821–1881) was a fellow mathematician who convinced Cantor to 

switch from working with number theory into functional analysis
○ This would lead almost directly into his work with set theory



Cantor’s early analysis work

● Heine specifically asked Cantor to work on the question of whether a function 
represented by a trigonometric series was unique
○ Heine had already proved this for a specific series

● Dirichlet, Lipschitz, and Riemann had all failed at completing this endeavor
○ Foreshadowing

● He focused on representing 0 with trigonometric series and soon found that it was 
equivalent to the coefficients being 0, which allowed him to make the general 
statement that a trigonometric series is unique for a function it represents

● He was able to solve this problem within the same year Heine had published his 
more specific solution (1870)



Cantor’s uniqueness developments

● Cantorʼs original uniqueness theorem required that the trigonometric series that 
represents f(x) was convergent for every value of x

● He generalized it further, allowing the representations to be divergent at some 
values of x (“exceptional values”, leading to the idea of finite exceptional sets)

● Cantor thus wanted to generalize it further to infinite exceptional sets, but required 
a more rigorous theory of real numbers

● He built irrationals based off of the limits of convergent sequences of rational 
numbers, so that any real number could be expressed from rationals, in order to 
build a connection to the real line



Derived sets

● To the same ends, Cantor took a “set of points” (not fully defined yet) P and 
considered the set of limit points of P, called Pʼ
○ This was the first derived point set of P
○ If P was the set of rational numbers, Pʼ would be the real numbers, as shown before by treating 

irrationals as limits of rational sequences

● Continue this process to find P(v) for some natural number v
● It became interesting when P(v) would have only a finite number of points, and thus 

P(v+1) didnʼt exist
○ Such sets that had a finite vth kind were part of the derived sets of the first species

● He was able to use such derived sets of the first species to show that the 
uniqueness theorem worked for these infinite exceptional sets



Second species of derived sets
● The next question was what happened when P(v+1) would still exist for any finite number v
● The second species of derived sets were the ones where v was infinite, and thus could be 

built off even further
● This whole example highlights how ready Cantor was to jump forward by generalizing 

further toward infinite processes in any way imaginable, something that would 
characterize his greatest accomplishments
○ In fact, Cantor would use this idea of derived sets constantly, and thought about his later infinite ideas as 

extensions of this same idea

● Dedekind criticized this whole process, since while deriving from the rationals gave the 
real numbers, deriving from the real numbers just gave the real numbers over and over

● Weʼre lucky Cantor didnʼt listen to this, since he wouldnʼt have found his most famous 
results if he hadnʼt continued down this road of abstracting to infinity



Cantor’s analysis work as a stepping stone

● We saw earlier the deriving process to P(∞), and in this context Cantor had called ∞ 
the first number beyond all finite numbers, but he hadnʼt really built this notion
○ He had even written P(∞ʼ) as P(∞+1), a subtle establishment of later ideas of transfinite ordinal 

arithmetic

● His work in analysis (in particular with irrationals) also led him to ask whether 
there was a correspondence between the set of integers and the set of real 
numbers (in an 1873 letter to Dedekind)

● “On a Property of the Collection of all Real Algebraic Numbers” (1874) he published 
his first proof that the set of real numbers was nondenumerable
○ Interestingly to us, this was separate from his diagonalization argument we associate now with the 

statement



Cantor’s first uncountability proof

● By contradiction, assume the real numbers are countable and list w1, w2, w3 …
● Let a<b be real numbers. Then let a ,̓ bʼ be the first two numbers within the 

countable set of real numbers within the open interval (a,b)
● Similarly to his derived sets from before, continue this process to an arbitrary 

nested open interval (a(v),b(v)) for some v
● If this is a finite process: that meant there was only one more of the w1, w2, w3, … in 

the interval, so you can still find a real number that is in the interval and not 
enumerated

● If the process is infinite: a∞, b∞ must be bounded by (a,b).
○ If a∞<b∞, just as above there is a real number in the interval not enumerated
○ If a∞=b∞, then this element was the one that couldnʼt be enumerated in the original list, since all 

enumerables have already been excluded as the endpoints of earlier open intervals



Cantor uncountability consequences   

● This process is still used for actually numerable sets to find digits of transcendental 
numbers

● Cantor actually used this for any real interval, to show that any interval was 
uncountable, not just the whole real line

● Cantor developed and redid this proof multiple ways, including one with 
topological density, and the more famous diagonalization method
○ We donʼt need to go through all these

● This led Cantor further into studying the infinite, and building a strong base of set 
theory to allow for this



Cantor’s Set 
Theory

What the hell are transfinite 
numbers??

“Some infinities are bigger than other 
infinities”

–John Green, The Fault in Our Stars

–Probably Cantor too at some point 
when he discovered this



Beginnings of set theory

● In order to build to his idea of “different infinities,” Cantor started from scratch 
essentially

● First sentence of a later text on set theory (the Beiträge): “By a ʻsetʼ we mean any 
collection M into a whole of definite, distinct objects m (which are called the 
ʻelementsʼ of M) of our perception or of our thought.”

● This is still what would be considered naive set theory, but this was one of the first 
times someone actually tried to enumerate what a set was, and use that as the first 
step in a process



Ordinals vs cardinals

● Natural numbers implicitly play two simultaneous roles:
● Using them to indicate size/cardinality of a set (cardinals)
● Using them to indicate order (ordinals)
● With finite numbers, these donʼt have a real difference, but Cantor discovered they 

absolutely do when it comes to infinite numbers, so we must make the distinction 
now



Transfinite ordinals

● Consider the set of natural numbers. Notice how it consists of repeated addition of 
units
○ Cantor calls this the first principle of generation

● Now consider the first number after this entire set. This is the first transfinite 
number, ꞷ
○ Itʼs possible to consider this number as a limit of the natural numbers that they can never reach

● Now consider the first number after this, ꞷ + 1
● This is where the distinction between ordinals and cardinals becomes important:

○ For ordinals, ꞷ + 1 is distinct from ꞷ since it is generated after it
○ If considered as cardinals, ꞷ + 1 would not be distinct from ꞷ since they have the same cardinality 

(in fact, this idea of where ordinals become distinct as cardinals is essentially the focus of this 
presentation)



Transfinite ordinals

● You can continue farther to get ꞷ + 2, ꞷ + 3, … , ꞷ + v, … , ꞷ + ꞷ = ꞷ · 2
● Transfinite ordinal arithmetic is strange compared to integers, since itʼs not 

commutative
● This idea of taking a succession of ordinals which has no end and “jumping ahead” 

to the first ordinal after all of those is what Cantor called the second principle of 
generation

● You can continue these principles to get many different transfinite numbers
○ One could even say, an infinite amount of different transfinite numbers



Classes of numbers

● Using his idea of transfinite numbers, he called the class of all finite whole numbers 
the first number class (I)

● He then defines the second number class (II) as the collection of all transfinite 
ordinals formed by the two principles of generation, with the stipulation that each 
element of (II) has predecessors forming a countably infinite set

● Similarly to his uncountability proof, Cantor showed that the cardinality of (I) was 
strictly less than that of (II)

● He was even able to show that (II) had the very first cardinality higher than (I)
● Since (I) corresponded to the cardinality of the natural numbers, Cantor assumed 

based on his earlier work that (II) corresponded to the cardinality of the real 
numbers, and thus that the cardinality of the real numbers was just after the 
cardinality of the natural numbers



The Continuum Hypothesis

● Weʼll adjust our statement to be more concise in a minute based on study of 
transfinite cardinals, but this statement just now was in fact the continuum 
hypothesis

● Cantor specifically stated “it will be concluded that the linear continuum has the 
power of the second number class (II)”
○ “Power” was what he called the cardinality of sets at the time (I thought this would be confusing to 

use regularly)
● This was the idea that the cardinality of the real numbers was the next highest 

cardinality after that of the natural numbers, that you canʼt find a set of a size 
strictly between that of the natural numbers and real numbers

● Cantor would work his whole life trying to prove this, and never could
● He developed further a lot more about set theory and transfinite numbers, largely 

in pursuit of proving this statement



Transfinite cardinals

● Remember cardinals correspond to the order/cardinality of a set
● Two sets have the same cardinality if there is a one-to-one correspondence 

between them
● For finite sets, our cardinal numbers are still the natural numbers that are also 

finite ordinal numbers
● Define the cardinality of the set of all the finite cardinal numbers to be 0 א

○ This is the first transfinite cardinal number, called aleph null
● So the cardinality of the natural numbers is equal to |ꞷ| = |ꞷ+1| = … = |ꞷ · 2| = … = 

0 א
● Cantor showed that while many operations of transfinite cardinal numbers simply 

produced the same cardinal, it was always possible to find a higher one by raising it 
to the power of 2
○ 0 א < 0 א2



Transfinite cardinals

● Now consider the class of all countable transfinite ordinal numbers (recall this is 
also the second number class (II))

● Cantor shows that the cardinality of this class must be greater than 0 א, and in fact 
that it is the very next transfinite cardinal number, 1 א

● He also shows that the cardinality of the continuum is 20 א

● This is another way of seeing that the set of real numbers is larger than the set of 

natural numbers, since 0 א2 > 0 א



Restating the Continuum Hypothesis

● Now we know that 1 א is the cardinality just after 0 א, which is the cardinality of the 
natural numbers

● So Cantorʼs idea of the size of the continuum corresponding to the very next 
cardinality after the size of the natural numbers can be written succinctly as:

○ 1 א = 0 א2
● Cantor never proved or disproved this in his lifetime, and so this is where we leave 

him



Development 
after Cantor

Popularization of his work and 
discovery of paradoxes in set 

theory

“This sentence is false.”

“Um, true. Iʼll go with true. There, that 
was easy. To be honest, I might have 
heard that one before.”

“Itʼs a paradox! There is no answer.”

–Portal 2



Hilbert’s first problem
● David Hilbert (1862–1943) was known as a defender of Cantorʼs set theory and transfinite 

numbers
● Hilbert made a speech at the 1900 conference of the International Congress of 

Mathematicians about multiple unsolved problems in math which could have important 
implications

● He later published a list of these problems and more (23 in total) that he wanted solutions 
for, known as Hilbertʼs Problems

● The first of both of these lists was the continuum hypothesis, indicating that it was very 
important to Hilbert and the wider math community

● Hilbert wanted formal axiomatic systems but also wanted there to be a proof or a 
counterexample to each problem, under the belief that every true statement has a proof
○ As have seen and soon will see, this would not be possible for more than one of his problems



Burali-Forti’s Paradox

● Consider the succession of all ordinal numbers
● Then there is an ordinal number greater than all the ordinal numbers
● But then this collection must also include the ordinal number strictly greater than 

all the ordinals in the collection
○ Contradiction



Russell’s Paradox

● Let R be the set of all sets that are not members of themselves
● Then R isnʼt a member of itself, but then it must be a member of itself, but then it 

canʼt, and so on
● Yet another paradox inherent in Cantorʼs set theory



Resolutions

● There was some back and forth between mathematicians about the implications of 
these paradoxes, and how much of Cantorʼs set theory they were able to undo

● There were many sides and positions, some thinking that certain properties were 
no longer consistent, some thinking that there were some implicit assumptions 
that shouldnʼt have been made

● Ultimately, multiple people saw the solution to this to be to fully axiomatize set 
theory, and make it so that these inconsistencies couldnʼt exist in the first place

● There were multiple attempts at this, but Ernst Zermelo would make the most 
impact



Axiomatic Set 
Theory

Zermelo and Fraenkel develop 
their set of axioms about sets

"Smokey, this is not Nam, this is 
bowling, there are rules."

-The Big Lebowski



Zermelo-Fraenkel Set Theory

● Zermelo listed 7 axioms that could define an entire base of set theory
● Fraenkel later noticed that these axioms couldnʼt prove the existence of certain sets 

and cardinal numbers that mathematicians would want to work with, so he 
amended an axiom and added another

● ZF is Zermelo-Fraenkel Set Theory
● It would later be shown that the Axiom of Choice is independent of ZF, so ZF with 

the Axiom of Choice is called ZFC
● ZFC is the standard model of set theory used today



Basis of ZFC
● Assume nothing except these logical symbols:

● And also any variable is a set. Donʼt ask what a set is yet. It will be implicitly defined by the 
axioms, along with multiple other concepts 

● Then ZFC is these 9 axioms usually written completely logically from these
○ Technically there are a couple different constructions equivalent to ZFC (of course) so Iʼll be following 

Fraenkelʼs amended list, with the axiom of choice added (this is what Cohen used in his book)
● Weʼre going to just gloss over them without the full logic



1 Axiom of extensionality

Two sets are equal (are the same set) if they have the same elements

This also introduces the relation of membership, but the rest of the axioms work with 
this one to define it



2 Axiom of the null set

There is an empty set defined by saying that there are no elements in the set



3 Axiom of Unordered Pairs

If there are two sets, we can form another set out of the two of them in a set



4 Axiom of union

The union of two sets exists



5 Axiom of Infinity

If we have an ordinal, its successor will be the union of it and the set containing it

Then there is a set that contains the empty set, and if it contains an ordinal, it also 
contains its successor

This is what induction is based off of



6 Axiom of Replacement

If a statement describes a set uniquely as a function of a given set, then the image of 
any set under this function is itself a set

This is very carefully constructed to avoid allowing sets to be defined by ridiculous 
statements, and therefore preventing common paradoxes



7 Axiom of the Power Set

For any set, the set of all of its subsets exists



8 Axiom of Regularity

Every nonempty set has a minimal element with respect to membership

Also a set canʼt be a member of itself

This often exists just to block paradoxes of self-reference



9 Axiom of Choice

For any set of nonempty sets, there is a choice function that maps each member set to 
an element of that set

There are many equivalent statements to this

“Given any family of nonempty sets, their Cartesian product is a nonempty set”

Itʼs since been discovered that this is a very important axiom to many areas of math, 
and also that itʼs independent of the other axioms



Effects of ZFC

● Itʼs from these axioms that much of modern math is based
● ZFC is the standard set theory, and so most math is built off of these founding 

principles
● The axiom of infinity makes it so that we canʼt technically say that this is a finite 

collection of axioms
● So far we havenʼt found contradictions within this framework, but of course we 

know that we canʼt prove the consistency of ZFC within ZFC
○ This result is thanks to Gödel

■ Foreshadowing



Gödel and 
Cohen’s Results
Cantor and Hilbertʼs nightmare

“Deep in the human unconscious is a 
pervasive need for a logical universe 
that makes sense. But the real universe 
is always one step beyond logic.”

–Frank Herbert, Dune



Gödel

● Kurt Gödel (1906–1978) was a German mathematician
● He greatly developed logic in math and the proof theory underlying all of math
● As we know, he showed that the consistency of a system cannot be proven within 

the system
● In 1937, Gödel also specifically proved that both the continuum hypothesis and the 

axiom of choice were consistent with ZF
● So from him, weʼre able to say both of these cannot be disproven from ZF



Cohen

● Paul J. Cohen (1934–2007) was an American mathematician
● Cohen developed a technique called forcing

○ This involves constructing an expanded universe from an old one with a new generic object, but 
specifically forcing it to have certain properties

● In 1963, he used it to show that not CH is also consistent with ZF(C)



Independence of the continuum hypothesis

● Together, since both CH and not CH are consistent with ZFC, we can conclude that 
CH is independent of ZFC, or undecidable, that it cannot be proven one way or 
another within the system

● Cantor wanted a yes, and Hilbert wanted a clear yes or no, so they probably both 
would have been disappointed by this result

● This proof of the independence of the continuum hypothesis from ZFC  is 
considered very difficult, especially the proof by Cohen

● I would have given an overview of it, but itʼs so technical and difficult that there 
both wouldnʼt be enough time for the presentation, and I wouldnʼt have had time 
to actually understand it



How did we get here? What did we learn?
● Think back to the original ideas: Cantor showed early on that the continuum is strictly 

larger than the integers
● He developed transfinite ordinals from this
● He had an idea that the continuum was the next largest level of infinity above the integers
● He developed transfinite cardinals and further fleshed out his basic set theory in pursuit 

of this question
● Hilbert brought multiple unsolved problems to the forefront of mathematiciansʼ minds
● Zermelo developed axiomatic set theory based on the paradoxes found in naive set 

theory
● The axiom of choice was enumerated along the way
● Gödel developed incompleteness
● Cohen finished the job by showing the job canʼt be finished



Conclusions

● We now know that when using ZFC, we can simply choose whether we assume CH 
is true or not

● Many different theories and ideas in different branches of math were developed on 
the road to this solving this problem

● In particular, the formalization and axiomatization of math was developed along 
the way

● Unsolved problems are a fuel to mathematicians that feeds their fire and lights the 
flames revealing many other areas of math along the way

● There are still so many unsolved problems, and I hope we keep making up even 
more math to try to get at answers
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