
Natural Language Processing &
Information Retrieval

Kwaku Ofosu-Tuffour

2

Natural Language Processing:
Background

Artificial Intelligence

3

● AI: Machines that perform jobs that mimic

human behavior

● Machine Learning: Machines that get better

at a task without explicit programming

● Deep Learning: Machines that have an

artificial neural network to solve complex

problem (inspired by the human brain

Natural Language Processing
Natural Language Processing (NLP) is a machine

learning technology that gives computers the

ability to interpret, manipulate, and comprehend

human language.

4

https://aws.amazon.com/what-is/nlp/

5

Natural Language Processing:
Important Tools

NumPy
NumPy (Numerical Python): Foundational package

for scientific computation in Python

• Provides an n-dimensional array object, along

with many important mathematical operations

6

Tensors
Tensors: generalizes the concept of vectors and matrices

to higher dimensions

• Important framework for ML frameworks

• ability to run on GPUs for faster computation

• used to compute gradients

7

Pandas
Pandas: Python library that provides

high-level data structures and other

tools for data analysis. A common

data structure is the dataframe

8

9

Natural Language Processing:
Important Terms

Tokenization
Tokenization: A preprocessing procedure where a text is split up into

individual tokens

ex) “I study mathematics at W&M”

-> [“I”, “study”, “mathematics”, “at”, “W&M”]

10

Stop Words
Stop Words: Commonly used that are not taken into

account during a preprocessing phase due to lack of

semantic significance

ex) a, of, on, I, for, with, the, at, from, in, to

11

Stemming and Lemmatization
Stemming: The process of removing word
endings

Lemmatization: The process of reducing a
word to a base/root form

12

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Stemming and Lemmatization
ex) The boy’s cars are different colors

are, am, is ⇒ be
car, cars, car’s, cars’ ⇒ car

The boy car be differ color

13

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Normalization
The process of transforming a vector into a unit sphere. This process is necessary when data

points within a vector are skewed.

There are various types of normalization:

• scaling to a range

• clipping

• log scaling

• z-score

14
https://developers.google.com/machine-learning/data-prep/transform/normalization

Normalization: Scaling

15
https://developers.google.com/machine-learning/data-prep/transform/normalization

Normalization: Clipping

16
https://developers.google.com/machine-learning/data-prep/transform/normalization

Normalization: Log Scaling

17
https://developers.google.com/machine-learning/data-prep/transform/normalization

Normalization: Z-Score

18

μ = mean / average

𝝈 = standard deviation
https://developers.google.com/machine-learning/data-prep/transform/normalization

Normalization: Use Cases
Linear Scaling: When a feature is uniformly distributed across a

certain range

Clipping: When a feature contains extreme outliers

Log Scaling: When a feature adheres to a logarithmic pattern

Z-Score: When a feature does NOT contain extreme outliers

19
https://developers.google.com/machine-learning/data-prep/transform/normalization

Vectorizer
A vectorizer is a tool that converts textual data into numerical

format. This concept is crucial for many machine learning

concepts, as many algorithms typically deal with numerical input.

This process can involve multiple steps, including:

• tokenization

• counting word frequencies

• normalization

20

Vector Semantics

21

Important Terms
• Word Similarity: a measure of semantic similarity

between a given set of words

• Embedding: Defining the meaning of a word as a

vector

22

Embeddings
The method of defining a word as a vector.

• This process is a standard way of representing meaning in NLP

• Called an "embedding" because it's embedded into a space

Words (vectors) in the vector space that are similar in a vector context

tend to have similar semantic meaning

23
https://web.stanford.edu/~jurafsky/slp3/

Embeddings
Which of these words are similar?

a) [18, 27, 41]
b) [-4, -1, 30]
c) [16, 25, 45]

24

Word2Vec
An approach for representing a word in a vector
space

“not only will similar words tend to be close to each
other, but that words can have multiple degrees of
similarity” (Mikolov et al., 2013)

25

Word2Vec
Word2Vec can use two approaches:

● Continuous Bag-of-Words Model (CBOW)

a. predicts current token based on the context

● Continuous Skip-gram Model

a. predicts context from current token

Drawback: Frequency of words are disregarded

26

27

Cosine Similarity
A method of computing the similarity
between two words (as vectors)

28

Dot Product

29

Cosine Similarity

30

Cosine Similarity
cos(x, y) → 1 : similar

cos(x, y) → 0 : orthogonal (not-related)

31

Cosine Similarity

cos(cherry, information) = 0.017

cos(digital, information) = 0.996

32

pie data computer

cherry 442 8 2

digital 5 1683 1670

information 5 3982 3325

Information Retrieval

33

Information Retrieval
Process of scoring various documents in terms of

relevancy to a user’s query.

Commonly used to create search engines.

34
https://web.stanford.edu/~jurafsky/slp3/14.pdf

Information Retrieval
Important Terms:

• document: any unit of text the system indexes and
retrieves

• collection: a set of documents
• term: a word in a collection
• query: the user’s information need expressed as a set of

terms

35
https://web.stanford.edu/~jurafsky/slp3/14.pdf

TF-IDF (Term Frequency-Inverse Document
Frequency)

A statistical measure used to evaluate the importance of a

word in a document, which is part of a corpus (a collection

of documents).

• commonly used in information retrieval and text mining

36

Term Frequency
Measures how frequent a word appears in a document. With

this method, all terms are given the same weight/importance

TF(t) = (Number of times term t appears in a document) / (Total

number of terms in the document)

37

Inverse Document Frequency (IDF)
Measures how important a term is within a set of documents.
Terms that are common across multiple documents are given a
lower IDF score.

IDF(t) = log(Total number of documents / Number of documents
with term t)

38

TF-IDF
TF-IDF(t) = TF(t) * IDF(t)

39

Information Retrieval: ad hoc

40

Information Retrieval: ad hoc
• uses a vector-space model to map queries &

documents to vectors

• uses cosine similarity between the vectors to rank the

documents based on the query

• can use Word2Vec Bag-Of-Words

41

Information Retrieval
Suppose we have a query q and a set of documents D = {d1,
d2, d3}.

After vector embedding, we can find the cosine similarity
between the query and each document:

42

Information Retrieval

43

Information Retrieval
ex)

Query: sweet love

Document 1: Sweet sweet nurse! Love?

Document 2: Sweet sorrow

Document 3: How sweet is love?

Document 4: Nurse!

44

Information Retrieval
ex)

Preprocessing:

• tokenize query and documents
• create a set of all tokens
• perform stemming and lemmatization

[‘sweet’, ‘nurse’, ‘love’, ‘how’, ‘sorrow’, ‘is]

45

Information Retrieval
ex)

Sort Documents:

• Embed query/documents into vectors (TF-IDF)

• Find cosine similarity between query and documents;

order in descending order

46

47

Evaluation of Information Retrieval
We can measure the performance of the ad

hoc algorithm using two metrics: precision

and recall

• TP + FP represents all documents

returned from a query

• TP represents all documents that are

truly relevant to the query

• TP+FN represents all documents in

the collection that are relevant to the

request

48

Information Retrieval and Dense Vectors

Normal embeddings are static and do not take
semantic meaning of tokens into account.

ex)

“I went to the bank to deposit some money”

“The player made a bank shot in the last quarter”

“They met me at the river bank”
49

Information Retrieval and Dense Vectors

Solution: Use Contextualized Embeddings

● ELMo

● ULMFiT

● OpenAI ChatGPT

● BERT: Bidirectional Encoder Representations from
Transformers

50

https://arxiv.org/abs/1810.04805

Project Implementation

51

52

Market app for W&M
The goal of the project is to create a mobile application

where W&M students can sell and buy various products

from other students. Similar to Facebook marketplace,

except catered and limited to W&M students

53

HuggingFace
A machine learning (ML) and data science

platform and community that helps users build,

deploy and train machine learning models.

Offers many trained, open-source ML models

54

Tools/Frameworks Used
• Front-end: React Native (TypeScript/JavaScript)

• Back-end: Django (Python)

– ML model: Sentence Transformers via

HuggingFace

• Deployment: Amazon Web Services (AWS),

App Store (internal-testing), Google Play Store

(internal testing)

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://docs.google.com/file/d/1LxOHwQKQ3r7Gg3jDMoGUaDbaOcSM4w3H/preview

55

Search Algorithm
def get_embeddings(documents):
 """
 Transforms the each document in the list into an embedded vector
 """
 response = requests.post(api_url, headers=headers, json={"inputs": documents, "options":{"wait_for_model":True}})
 return response.json()

def rank_similarity(input):
 """
 Ranks the similarity between the input vector and the document vectors using cosine similarity.
 In other words, it ranks the posts based on the user's search input
 """
 posts = Post.objects.all()
 documents = [post.product for post in posts]
 documents.insert(0, input)
 documents_ids = [post.id for post in posts]

 embeddings = get_embeddings(documents)
 query = embeddings.pop(0)
 documents.pop(0)
 return similarity(query, embeddings, documents, documents_ids)

Search Algorithm
def similarity(query, embeddings, documents, documents_ids):
 """
 Function that calculates the cosine similarity between the query and document vectors.
 Return a list of posts in descending order by their search ranking
 """
 data = []
 for vector in embeddings:
 dot_product = np.dot(query, vector)
 query_magnitude = np.linalg.norm(query)
 vector_magnitude = np.linalg.norm(vector)
 data.append((dot_product) / (query_magnitude * vector_magnitude))
 df = pd.DataFrame({
 "Post_id": documents_ids,
 "Name": documents,
 "Score": data
 })
 df = df.sort_values(by=['Score'], axis=0, ascending=False)
 return list(df['Post_id'])

56

Results
Query: “Bottle”

57

Post_id Name Score

23 Shaker Bottle 0.72448

35 Black water bottle 0.717623

45 Purple water bottle 0.63708

34 W&M water bottle 0.604581

1 Cups 0.457705

48 V8 Juice 0.413679

40 Helmet 0.380746

6 Bird 0.37847

15 Spicy Sauce 0.371038

37 TV 0.369128

Precision:

(5)/(5+1) = 0.833

Recall:

(5)/(5+0) = 1

Results
Query: “Sports”

58

Post_id Name Score

37 TV 0.509026

12 Tennis Balls 0.465537

40 Helmet 0.456399

7 Purple Soccer Ball 0.447629

8 Soccer sweatshirt 0.414176

1 Cups 0.386867

6 Bird 0.355266

5 Dog 0.306227

38 Road Bike 0.277349

33 Boots 0.276298

Precision:

(5)/(5+0) = 1.0

Recall:

(5)/(5+0) = 1.0

Results
Query: “Pencils”

59

Post_id Name Score

18 BIC Mechanical Pencils 0.687582

1 Cups 0.365652

22 Five Star Paper 0.357549

36 Printer 0.347954

19 Mini Stapler 0.345633

25 Coat 0.324235

12 Tennis Balls 0.302151

46 Coffee creamer 0.286429

37 TV 0.272269

33 Boots 0.271016

Precision:

(1)/(1+0) = 1.0

Recall:

(1)/(1+1) = 0.5

Results
Query: “Instrument”

60

Post_id Name Score

13 Oboe 0.688479

50 Oboe Reed 0.646337

24 Handheld vacuum 0.337073

12 Tennis Balls 0.320299

37 TV 0.315224

40 Helmet 0.30879

19 Mini Stapler 0.308068

18 BIC Mechanical Pencils 0.305089

6 Bird 0.281814

5 Dog 0.263972

Precision:

(2)/(2+0) = 1.0

Recall:

(2)/(2+0) = 1.0

Results
Query: “Cooking”

61

Post_id Name Score

39 Pressure Cooker 0.49696

15 Spicy Sauce 0.42063

1 Cups 0.415951

37 TV 0.412203

6 Bird 0.362832

47 Frozen vegetables 0.346326

5 Dog 0.323628

36 Printer 0.322787

25 Coat 0.316749

49 Blanket 0.312194

Precision:

(3)/(3+1) = 0.75

Recall:

(3)/(3+5) = 0.375

Results
Query: “Technology”

62

Post_id Name Score

37 TV 0.440683

36 Printer 0.409767

5 Dog 0.312691

1 Cups 0.286745

40 Helmet 0.243689

22 Five Star Paper 0.24185

6 Bird 0.237662

46 Coffee creamer 0.234185

44 Stationeries 0.220467

10 Twix candy 0.22043

Precision:

(2)/(2+0) = 1

Recall:

(2)/(2+2) = 0.5

Results
Query: “School”

63

Post_id Name Score

37 TV 0.481606

5 Dog 0.434241

6 Bird 0.353587

1 Cups 0.352532

40 Helmet 0.334864

36 Printer 0.3288

25 Coat 0.313415

46 Coffee creamer 0.283103

33 Boots 0.27802

38 Road Bike 0.270293

Next Steps
• Refine current search engine

algorithm

• Do more research in

contextualized embeddings

• Develop our own contextualized

embedding ML model

64

https://docs.google.com/file/d/1nJg8wM83XZWibxJx5BY3ZZ6JxqZU3WSG/preview

Bibliography
Jurafsky, Dan, and James H. Martin. Speech and Language Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech Recognition. Pearson, 2022.

Manning, Christopher D., et al. An Introduction to Information Retrieval. Cambridge University Press, 2022.

“Normalization.” Google, Google, developers.google.com/machine-learning/data-prep/transform/normalization.
Accessed 19 Mar. 2024.

“What Is NLP? - Natural Language Processing Explained - AWS.” Amazon Web Services,
aws.amazon.com/what-is/nlp/. Accessed 20 Mar. 2024.

James M. Tucker, DATA 340 - Natural Language Processing
(https://github.com/JamesMTucker/DATA_340_NLP/tree/master)

65

https://github.com/JamesMTucker/DATA_340_NLP/tree/master

66

http://www.youtube.com/watch?v=5sLYAQS9sWQ

