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Natural Language Processing: 
Background



Artificial Intelligence
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● AI: Machines that perform jobs that mimic 

human behavior

● Machine Learning: Machines that get better 

at a task without explicit programming

● Deep Learning: Machines that have an 

artificial neural network to solve complex 

problem (inspired by the human brain



Natural Language Processing
Natural Language Processing (NLP) is a machine 

learning technology that gives computers the 

ability to interpret, manipulate, and comprehend 

human language.
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https://aws.amazon.com/what-is/nlp/
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Natural Language Processing: 
Important Tools



NumPy
NumPy (Numerical Python): Foundational package 

for scientific computation in Python

• Provides an n-dimensional array object, along 

with many important mathematical operations
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Tensors
Tensors: generalizes the concept of vectors and matrices 

to higher dimensions

• Important framework for ML frameworks

• ability to run on GPUs for faster computation

• used to compute gradients
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Pandas
Pandas: Python library that provides 

high-level data structures and other 

tools for data analysis.  A common 

data structure is the dataframe
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Natural Language Processing: 
Important Terms



Tokenization
Tokenization: A preprocessing procedure where a text is split up into 

individual tokens

ex) “I study mathematics at W&M”

-> [“I”, “study”, “mathematics”, “at”, “W&M”]
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Stop Words
Stop Words: Commonly used that are not taken into 

account during a preprocessing phase due to lack of 

semantic significance

ex) a, of, on, I, for, with, the, at, from, in, to
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Stemming and Lemmatization
Stemming: The process of removing word 
endings

Lemmatization: The process of reducing a 
word to a base/root form
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https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html



Stemming and Lemmatization
ex) The boy’s cars are different colors

are, am, is ⇒ be
car, cars, car’s, cars’ ⇒  car

The boy car be differ color
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https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html



Normalization
The process of transforming a vector into a unit sphere.  This process is necessary when data 

points within a vector are skewed.

There are various types of normalization:

• scaling to a range

• clipping

• log scaling

• z-score
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https://developers.google.com/machine-learning/data-prep/transform/normalization



Normalization: Scaling
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https://developers.google.com/machine-learning/data-prep/transform/normalization



Normalization: Clipping

16
https://developers.google.com/machine-learning/data-prep/transform/normalization



Normalization: Log Scaling
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https://developers.google.com/machine-learning/data-prep/transform/normalization



Normalization: Z-Score
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μ = mean / average

𝝈 = standard deviation
https://developers.google.com/machine-learning/data-prep/transform/normalization



Normalization: Use Cases
Linear Scaling: When a feature is uniformly distributed across a 

certain range

Clipping: When a feature contains extreme outliers

Log Scaling: When a feature adheres to a logarithmic pattern

Z-Score: When a feature does NOT contain extreme outliers
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https://developers.google.com/machine-learning/data-prep/transform/normalization



Vectorizer
A vectorizer is a tool that converts textual data into numerical 

format.  This concept is crucial for many machine learning 

concepts, as many algorithms typically deal with numerical input.

This process can involve multiple steps, including:

• tokenization

• counting word frequencies

• normalization
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Vector Semantics
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Important Terms
• Word Similarity: a measure of semantic similarity 

between a given set of words

• Embedding: Defining the meaning of a word as a 

vector

22



Embeddings
The method of defining a word as a vector.  

• This process is a standard way of representing meaning in NLP

• Called an "embedding" because it's embedded into a space

Words (vectors) in the vector space that are similar in a vector context 

tend to have similar semantic meaning
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https://web.stanford.edu/~jurafsky/slp3/



Embeddings
Which of these words are similar?

a) [18, 27, 41]
b) [-4, -1, 30]
c) [16, 25, 45]
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Word2Vec
An approach for representing a word in a vector 
space

“not only will similar words tend to be close to each 
other, but that words can have multiple degrees of 
similarity” (Mikolov et al., 2013)
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Word2Vec
Word2Vec can use two approaches:

● Continuous Bag-of-Words Model (CBOW)

a. predicts current token based on the context

● Continuous Skip-gram Model

a. predicts context from current token

Drawback: Frequency of words are disregarded
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Cosine Similarity
A method of computing the similarity 
between two words (as vectors)
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Dot Product
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Cosine Similarity
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Cosine Similarity
cos(x, y) → 1 :  similar

cos(x, y) → 0 : orthogonal (not-related)
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Cosine Similarity

cos(cherry, information) = 0.017

cos(digital, information) = 0.996
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pie data computer

cherry 442 8 2

digital 5 1683 1670

information 5 3982 3325



Information Retrieval
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Information Retrieval
Process of scoring various documents in terms of 

relevancy to a user’s query.

Commonly used to create search engines.
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https://web.stanford.edu/~jurafsky/slp3/14.pdf



Information Retrieval
Important Terms:

• document: any unit of text the system indexes and 
retrieves

• collection: a set of documents
• term: a word in a collection
• query: the user’s information need expressed as a set of 

terms
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https://web.stanford.edu/~jurafsky/slp3/14.pdf



TF-IDF (Term Frequency-Inverse Document 
Frequency)

A statistical measure used to evaluate the importance of a 

word in a document, which is part of a corpus (a collection 

of documents). 

• commonly used in information retrieval and text mining
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Term Frequency
Measures how frequent a word appears in a document.  With 

this method, all terms are given the same weight/importance

TF(t) = (Number of times term t appears in a document) / (Total 

number of terms in the document)
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Inverse Document Frequency (IDF)
Measures how important a term is within a set of documents.  
Terms that are common across multiple documents are given a 
lower IDF score.

IDF(t) = log(Total number of documents / Number of documents 
with term t)
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TF-IDF
TF-IDF(t) = TF(t) * IDF(t)
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Information Retrieval: ad hoc
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Information Retrieval: ad hoc
• uses a vector-space model to map queries & 

documents to vectors

• uses cosine similarity between the vectors to rank the 

documents based on the query

• can use Word2Vec Bag-Of-Words
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Information Retrieval
Suppose we have a query q and a set of documents D = {d1, 
d2, d3}.

After vector embedding, we can find the cosine similarity 
between the query and each document:
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Information Retrieval
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Information Retrieval
ex)

Query: sweet love

Document 1: Sweet sweet nurse! Love?

Document 2: Sweet sorrow 

Document 3: How sweet is love?

Document 4: Nurse! 

44



Information Retrieval
ex)

Preprocessing:

• tokenize query and documents
• create a set of all tokens
• perform stemming and lemmatization

[‘sweet’, ‘nurse’, ‘love’, ‘how’, ‘sorrow’, ‘is]
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Information Retrieval
ex) 

Sort Documents: 

• Embed query/documents into vectors (TF-IDF)

• Find cosine similarity between query and documents; 

order in descending order

46



47



Evaluation of Information Retrieval
We can measure the performance of the ad 

hoc algorithm using two metrics: precision 

and recall

• TP + FP represents all documents 

returned from a query

• TP represents all documents that are 

truly relevant to the query

• TP+FN represents all documents in 

the collection that are relevant to the 

request
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Information Retrieval and Dense Vectors

Normal embeddings are static and do not take 
semantic meaning of tokens into account.

ex)

“I went to the bank to deposit some money”

“The player made a bank shot in the last quarter”

“They met me at the river bank”
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Information Retrieval and Dense Vectors

Solution: Use Contextualized Embeddings

● ELMo

● ULMFiT

● OpenAI ChatGPT

● BERT: Bidirectional Encoder Representations from 
Transformers
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https://arxiv.org/abs/1810.04805


Project Implementation
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Market app for W&M
The goal of the project is to create a mobile application 

where W&M students can sell and buy various products 

from other students.  Similar to Facebook marketplace, 

except catered and limited to W&M students
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HuggingFace
A machine learning (ML) and data science 

platform and community that helps users build, 

deploy and train machine learning models.

Offers many trained, open-source ML models
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Tools/Frameworks Used
• Front-end: React Native (TypeScript/JavaScript)

• Back-end: Django (Python)

– ML model: Sentence Transformers via 

HuggingFace

• Deployment: Amazon Web Services (AWS), 

App Store (internal-testing), Google Play Store 

(internal testing)

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://docs.google.com/file/d/1LxOHwQKQ3r7Gg3jDMoGUaDbaOcSM4w3H/preview
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Search Algorithm
def get_embeddings(documents):
    """
    Transforms the each document in the list into an embedded vector
    """
    response = requests.post(api_url, headers=headers, json={"inputs": documents, "options":{"wait_for_model":True}})
    return response.json()

def rank_similarity(input):
    """
    Ranks the similarity between the input vector and the document vectors using cosine similarity.
    In other words, it ranks the posts based on the user's search input
    """
    posts = Post.objects.all()
    documents = [post.product for post in posts]
    documents.insert(0, input)
    documents_ids = [post.id for post in posts]

    embeddings = get_embeddings(documents)
    query = embeddings.pop(0)
    documents.pop(0)
    return similarity(query, embeddings, documents, documents_ids)



Search Algorithm
def similarity(query, embeddings, documents, documents_ids):
    """
    Function that calculates the cosine similarity between the query and document vectors.
    Return a list of posts in descending order by their search ranking
    """
    data = []
    for vector in embeddings:
        dot_product = np.dot(query, vector)
        query_magnitude = np.linalg.norm(query)
        vector_magnitude = np.linalg.norm(vector)
        data.append((dot_product) / (query_magnitude * vector_magnitude))
    df = pd.DataFrame({
        "Post_id": documents_ids,
        "Name": documents,
        "Score": data
    })
    df = df.sort_values(by=['Score'], axis=0, ascending=False)
    return list(df['Post_id'])
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Results
Query: “Bottle” 
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Post_id Name Score

23 Shaker Bottle 0.72448

35 Black water bottle 0.717623

45 Purple water bottle 0.63708

34 W&M water bottle 0.604581

1 Cups 0.457705

48 V8 Juice 0.413679

40 Helmet 0.380746

6 Bird 0.37847

15 Spicy Sauce 0.371038

37 TV 0.369128

Precision: 

(5)/(5+1) = 0.833

Recall:

(5)/(5+0) = 1



Results
Query: “Sports” 
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Post_id Name Score

37 TV 0.509026

12 Tennis Balls 0.465537

40 Helmet 0.456399

7 Purple Soccer Ball 0.447629

8 Soccer sweatshirt 0.414176

1 Cups 0.386867

6 Bird 0.355266

5 Dog 0.306227

38 Road Bike 0.277349

33 Boots 0.276298

Precision: 

(5)/(5+0) = 1.0

Recall:

(5)/(5+0) = 1.0



Results
Query: “Pencils” 
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Post_id Name Score

18 BIC Mechanical Pencils 0.687582

1 Cups 0.365652

22 Five Star Paper 0.357549

36 Printer 0.347954

19 Mini Stapler 0.345633

25 Coat 0.324235

12 Tennis Balls 0.302151

46 Coffee creamer 0.286429

37 TV 0.272269

33 Boots 0.271016

Precision: 

(1)/(1+0) = 1.0

Recall:

(1)/(1+1) = 0.5



Results
Query: “Instrument” 
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Post_id Name Score

13 Oboe 0.688479

50 Oboe Reed 0.646337

24 Handheld vacuum 0.337073

12 Tennis Balls 0.320299

37 TV 0.315224

40 Helmet 0.30879

19 Mini Stapler 0.308068

18 BIC Mechanical Pencils 0.305089

6 Bird 0.281814

5 Dog 0.263972

Precision: 

(2)/(2+0) = 1.0

Recall:

(2)/(2+0) = 1.0



Results
Query: “Cooking” 
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Post_id Name Score

39 Pressure Cooker 0.49696

15 Spicy Sauce 0.42063

1 Cups 0.415951

37 TV 0.412203

6 Bird 0.362832

47 Frozen vegetables 0.346326

5 Dog 0.323628

36 Printer 0.322787

25 Coat 0.316749

49 Blanket 0.312194

Precision: 

(3)/(3+1) = 0.75

Recall:

(3)/(3+5) = 0.375



Results
Query: “Technology” 
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Post_id Name Score

37 TV 0.440683

36 Printer 0.409767

5 Dog 0.312691

1 Cups 0.286745

40 Helmet 0.243689

22 Five Star Paper 0.24185

6 Bird 0.237662

46 Coffee creamer 0.234185

44 Stationeries 0.220467

10 Twix candy 0.22043

Precision: 

(2)/(2+0) = 1

Recall:

(2)/(2+2) = 0.5



Results
Query: “School” 
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Post_id Name Score

37 TV 0.481606

5 Dog 0.434241

6 Bird 0.353587

1 Cups 0.352532

40 Helmet 0.334864

36 Printer 0.3288

25 Coat 0.313415

46 Coffee creamer 0.283103

33 Boots 0.27802

38 Road Bike 0.270293



Next Steps
• Refine current search engine 

algorithm

• Do more research in 

contextualized embeddings

• Develop our own contextualized 

embedding ML model
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https://docs.google.com/file/d/1nJg8wM83XZWibxJx5BY3ZZ6JxqZU3WSG/preview
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https://github.com/JamesMTucker/DATA_340_NLP/tree/master
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http://www.youtube.com/watch?v=5sLYAQS9sWQ

