I I

"I could never do that"
Why?
"I hate math"
"I'm just not good at math"

Constructivist Theory

- Children construct their own knowledge and understanding through their interactions with their environment
- Reality is determined the experiences of the student
- Students learn new things by building on previous knowledge that they had

Lev Vygotsky

- Russian Psychologist
- Social Constructivist
- Emphasizes the collaborative nature of learning - Interaction with peers can be a form of learning

Zone of Proximal Development (Scaffolding)

- Student can work with someone else to complete a task they could not do on their own
- Then they can later do the task on their own
- Learning should build on previous learning so that the student is not presented with something too advanced

Mathematical Learning

- Paper by Barmby et al.
- Continuum where children build on a previous understanding
- Builds on Bruner
- Spiral Curriculum
- Introduce Topic and then Revisit it Later to Build on Previous Knowledge

Bruner Continued

- Three Phases
- Enactive Phase
- Concrete

- Iconic Phase
- Models and Images
- Symbolic Phase
- Abstract Ideas and Way of Representing the Mathematics

ELPS by Liebeck

- Experience
- Practical Experience
- Language
- Language of Mathematics (Different)
- Describing the Experience in Language
- Pictures (or Diagrams)
- Representing Math Concepts as Pictures
- Symbols
- Formal Writing of Mathematics

ELPS Example

- Experience
- Counting Objects (for learning numbers)
- Language
- Describing What is Being Counted or How Many Have Been Counted
- Pictures (Diagrams)
- If 3 balls have been counted these can be represented through 3 pictures of the ball
- Symbols
- Writing the number 3

Skemp

- Understanding Mathematics (Secondary Level) \& Mathematics in the Primary School
- Two Ways of Understanding Mathematical Ideas
- Instrumental
- Shallower Understanding
- Using a set of steps
- If you forget the steps you cannot replicate the procedure
- Relational
- Understanding how the steps work

National \& Primary Numeracy Strategy

- Recommendations
- "Real-Life" Problems
- Meaningful Contexts
- Real or Fictional
- Give Children Choice
- Builds Resilience
- Helps with Problem Solving in Mathematics

Physical Activity

- Helps Children Understand How to Turn Mathematical Ideas into Mental Images
- Objects
- Interlocking Cubes
- Bead Strings
- Cuisenaire Rods

Cuisenaire ${ }^{\circledR}$ Rods Measurement Key

How does this apply to a word problem?

- Remove Information
- Headless
- Remove Information Necessary to Solve Problem
- Students need to determine what information they need
- Tailless
- Students are asked to make observations about the information
- Then create problems that could be solved with the given information

How does this apply to a word problem?

- Numberless
- Understand the problem and how to solve it without the context of numbers
- Teachers provide small amounts of information
- Then numbers are added after

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Headless
- What is the least amount of ribbon Neela will need to create a ribbon border for a place mat?

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Tailless
- Neela is making 1 rectangular place mat that is 12 inches wide and 15 inches long.

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Numberless
- Neela is making rectangular place mats that have a length and a width. What is the least amount of ribbon that she will need to create a ribbon border around one place mat?

United States

- Common Core
- Use a Variety of Models to Demonstrate how to perform operations and solve problems
- Kindergarteners
- Count a Number of Objects (Spoken)
- Name the Quantity
- Write Numbers up to 20
- Represent Addition and Subtraction

England

- Broad View of Mathematics
- Start Math at 4 when they first go to school
- Playful Study Method
- Age 6
- Fractions
- Practice Base Understanding
- Connected to Real Life

China

- Interactive Learning
- Whole Class Participation
- Playful Explanations
- High Standards for Teachers

Singapore

- Main Goal: Joint Activity of the Teacher and Children
- Topic is developed through problem situations and Dialog
- Good at Developing
- Communication Skills
- Critical Thinking
- Creativity

Singapore

Finland

Concluding Thoughts

