Learning Mathematics

by: Rachel Vasan

"I could never do that"

"I hate math"

"I'm just not good at math"

Constructivist Theory

 Children construct their own knowledge and understanding through their interactions with their environment

- Reality is determined the experiences of the student
- Students learn new things by building on previous knowledge that they had

Lev Vygotsky

- Russian Psychologist
- Social Constructivist
- Emphasizes the collaborative nature of learning
- Interaction with peers can be a form of learning

Zone of Proximal Development (Scaffolding)

- Student can work with someone else to complete a task they could not do on their own
- Then they can later do the task on their own
- Learning should build on previous learning so that the student is not presented with something too advanced

Mathematical Learning

- Paper by Barmby et al.
- Continuum where children build on a previous understanding
- Builds on Bruner
 - Spiral Curriculum
 - Introduce Topic and then Revisit it Later to Build on Previous Knowledge

Bruner Continued

- Three Phases
 - Enactive Phase
 - Concrete
 - Iconic Phase
 - Models and Images
 - Symbolic Phase
 - Abstract Ideas and Way of Representing the Mathematics

ELPS by Liebeck

- Experience
 - Practical Experience
- Language
 - Language of Mathematics (Different)
 - Describing the Experience in Language
- Pictures (or Diagrams)
 - Representing Math Concepts as Pictures
- Symbols
 - Formal Writing of Mathematics

ELPS Example

- Experience
 - Counting Objects (for learning numbers)
- Language
 - Describing What is Being Counted or How Many Have Been Counted
- Pictures (Diagrams)
 - If 3 balls have been counted these can be represented through 3 pictures of the ball
- Symbols
 - Writing the number 3

Skemp

- Understanding Mathematics (Secondary Level) & Mathematics in the Primary School
- Two Ways of Understanding Mathematical Ideas
- Instrumental
 - Shallower Understanding
 - Using a set of steps
 - If you forget the steps you cannot replicate the procedure
- Relational
 - Understanding how the steps work

National & Primary Numeracy Strategy

- Recommendations
 - "Real-Life" Problems
- Meaningful Contexts
 - Real or Fictional
- Give Children Choice
 - Builds Resilience
 - Helps with Problem Solving in Mathematics

Practical Methods

Physical Activity

- Helps Children Understand How to Turn Mathematical Ideas into Mental Images
- Objects
 - Interlocking Cubes
 - Bead Strings
 - Cuisenaire Rods

How does this apply to a word problem?

- Remove Information
- Headless
 - Remove Information Necessary to Solve Problem
 - Students need to determine what information they need
- Tailless
 - Students are asked to make observations about the information
 - Then create problems that could be solved with the given information

How does this apply to a word problem?

- Numberless
 - Understand the problem and how to solve it without the context of numbers
 - Teachers provide small amounts of information
 - Then numbers are added after

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Headless
 - What is the least amount of ribbon Neela will need to create a ribbon border for a place mat?

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Tailless
 - Neela is making 1 rectangular place mat that is 12 inches wide and 15 inches long.

Example

- Neela is making rectangular place mats that are 12 inches wide and 15 inches long. What is the least amount of ribbon that she will need to create a ribbon border around 1 place mat?
- Numberless
 - Neela is making rectangular place mats that have a length and a width. What is the least amount of ribbon that she will need to create a ribbon border around one place mat?

Variations By Country

United States

Common Core

- Use a Variety of Models to Demonstrate how to perform operations and solve problems
- Kindergarteners
 - Count a Number of Objects (Spoken)
 - Name the Quantity
 - Write Numbers up to 20
 - Represent Addition and Subtraction

England

- Broad View of Mathematics
- Start Math at 4 when they first go to school
 - Playful Study Method
- Age 6
 - Fractions
- Practice Base Understanding
- Connected to Real Life

China

- Interactive Learning
 - Whole Class Participation
- Playful Explanations
- High Standards for Teachers

Singapore

- Main Goal: Joint Activity of the Teacher and Children
- Topic is developed through problem situations and Dialog
- Good at Developing
 - Communication Skills
 - Critical Thinking
 - Creativity

Singapore

Finland

My Opinions

Concluding Thoughts

