
OPTIMIZING NETWORKS PT.2



RECAP OF FIRST 
PRESENTATION

Networks and graphs are fundamental mathematical structures used to model 
relationships and connections between entities.

Basic Concepts:

•Nodes (vertices) and edges: Nodes represent entities, and edges represent 
relationships or connections between them.
•Types of graphs: Simple, weighted/unweighted, directed/undirected, 
cyclic/acyclic, connected/disconnected.

•Common Greedy algorithms: Shortest Path algorithms (e.g., Dijkstra's 
algorithm), Minimum Spanning Trees (e.g., Prim's and Kruskal's algorithms), 
•Common Non-Greedy algorithms: Graph Traversal (Depth-First and Breath-
First search).
•Minimum Spanning Trees: Subset of edges that connect all vertices together 
with minimum total edge weight.

Network Applications in Nature:

•Ant Colony Optimization and Physarum Polycephalum slime mold

Future Advancements/Challenges:
• Integration with smart city technologies.
•Advancements in machine learning and AI.
•Consideration of environmental factors and multi-modal transportation 
systems.



DIJKSTRA’S ALGORITHM

Dijkstra Steps:

1) Mark all nodes as unvisited

2) Assume all nodes have a tentative value of infinity before visiting

3) Determine the current node

4) At the current node, compare the distance to any unvisited neighbor nodes

5) Update the shortest distance if applicable

6) Mark current node as visited

7) Choose the next current node as unvisited node with shortest distance
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A* ALGORITHM

A* score = Cost of Path + Heuristic

A heuristic is a method used to solve a 

problem more quickly.

A* score [f(n)] = g(n) + h(n) 

Where f(n) is final cost, g(n) is distance 

between nodes, and h(n) being a heuristic 

estimate for a nodes value. 

We can calculate the heuristic exactly or make 

an approximation:



Approximating Heuristic 

Techniques 

Euclidean Distance:

-Calculates Distance between current node and goal 

node as a straight line

-This method can be used when trying to move in any 

direction. 

This method can be utilized assuming every node has 

some (x,y) coordinate. An advantage of this path is that 

it will never overestimate the optimal route. Essentially, 

the travel distance to your destination will never be 

shorter than the given line.



APPROXIMATING HEURISTIC 

TECHNIQUES 

Manhattan Distance:

-This method calculates the sum of absolute 

value differences between the current node’s 

(x,y) coordinates and the goal nodes (x,y) 

coordinates.

-This method can be utilized when moving in 

one of the 4 cardinal directions (up, down, left, 

right) 



1. Initialization:

• Mark all nodes as unvisited.

• Assign a tentative distance value to each node, typically set 

to infinity.

• Set the initial node as the current node and its tentative 

distance value to 0.

2. Explore Neighbors:

-For each unvisited neighbor of the current node:

• Calculate the tentative distance from the start node to the 

neighbor node.

• Update the tentative distance if it's lower than the previous 

value.

• Calculate the heuristic estimate (typically the Euclidean 

distance) from the neighbor node to the goal node.

• Calculate the total estimated distance (tentative distance + 

heuristic) for the neighbor node.

• Update the neighbor node's tentative distance and total 

estimated distance.

3. Select Next Node:

• Mark the current node as visited.

• Choose the unvisited node with the lowest 

total estimated distance as the next current 

node.

4. Termination:

• Continue until the goal node is reached or 

there are no more unvisited nodes.

5. Path Reconstruction:

• If the goal node is reached, reconstruct the 

shortest path from the start node to the goal 

node using the recorded tentative distances.

A* STEPS



A* ALGORITHM
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A* ALGORITHM
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A* ALGORITHM
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A* 

ALGORITHM

BEHAVIOR

How different heuristic estimates affect A*:

If h(n)=0, 

- A* score, f(n),= g(n).

-The algorithm will essentially only follow Dijkstra’s Algorithm.

If h(n) < the cost from the current node to the goal node:

-A* is guaranteed to find a shortest route. 

If h(n) is exactly equal to the cost from the current node to the goal 

node:

-A* only follows the best route, never expanding, hence very fast.

If h(n) > the cost from the current node to the goal node, A* is not 

guaranteed to find a shortest path, but it can still run faster



http://www.youtube.com/watch?v=-hDiXYoKJlw


Operations 

Research

Operations Research (OR) is a discipline that deals with 

the application of advanced analytical methods to help 

make better decisions. It employs mathematical modeling, 

statistical analysis, and optimization techniques to solve 

complex problems in various domains, including logistics, 
supply chain management, finance, healthcare, and 

transportation, among others.

1.Transportation Networks: Network algorithms, such as 

shortest path algorithms (like Dijkstra's algorithm) and 
minimum spanning tree algorithms, are used to find the 

most efficient routes, minimizing costs or travel time.

2.Supply Chain Networks: Network optimization 

techniques help in determining the optimal locations for 

warehouses and distribution centers, as well as the most 
efficient routes for transporting goods between them.

3.Facility Location and Network Design: Operations 

Research helps in determining the optimal locations for 

facilities, such as factories, hospitals, or schools, 

considering factors like demand, transportation costs, and 
facility capacities. Network algorithms aid in designing the 

layout of the network to minimize overall costs or 

maximize service coverage.



Maximum Flow

(Some basics)
Let g(v) denote edges for vertices, v.

Let g^{+}(v) denote outgoing edges that start at vertices, v, and end 

elsewhere.

Let g^{-}(v) denote incoming edges that start elsewhere and end at 

vertices, v. 

EX:     g^{+}(C)={(C,T)}

g^{-}(C)={(A,C),(B,C), (D ,C), (E ,C)}
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Maximum Flow
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Flow on a directed graph must satisfy the 

following requirements:

1) An edges flow can not be greater than its 

capacity

f(e) ≤ c(e) for all e ∈ E

2) The amount of flow entering a node 

must equal the amount of flow exiting that 

node (barring the source and sink)

∑             f(e)     =         ∑              f(e)
e ∈ g^{-}(v)              e ∈ g^{+}(v) 

The value of the flow, val (f), is the net flow leaving the source node or 

entering the sink node.

∑          f(e)     - ∑         f(e)     =     ∑             f(e)   - ∑       f(e) 
e ∈ g^{+}(S)              e ∈ g^{-}(S)             e ∈ g^{-}(T)             e ∈ g^{+}(T)  



An augmented path , P, is a path from 

the source to the sink node on an 

undirected version of the graph such 

that:

1) Every edge traversed in the forward 

direction by P has a flow less than 

that edges capacity.

f(e) < c(e) 

2) Every edge traversed in the backward 

direction has a flow greater than zero:

f(e) > 0

Ford-Fulkerson algorithm for Maximum-Flow:

Given a graph, G = (V, E) with edge capacities 
c : E -> ℤ+ and node s,t ∈ V

1.Set flows f(e) = 0 for all edges e ∈ E.
2.While there exists some f-augmenting path P,

a) Assign Γ = min {c(e) - f(e)          if P traverses e forwards 
f(e)                   if P traverses e backward} 

b) For each edge e ∈ P,
f(e) <- {  f (e) + Γ if P traverses e forwards

f(e) - Γ if P traverses e backwards}

- A flow f can only be considered a maximum if there is no 
augmenting path remaining in the network.  

Maximum Flow



An augmented path , P, is a path from 

the source to the sink node on an 

undirected version of the graph such 

that:

1) Every edge traversed in the forward 

direction by P has a flow less than 

that edges capacity.

f(e) < c(e) 

2) Every edge traversed in the backward 

direction has a flow greater than zero:

f(e) > 0

Edmonds-Karp algorithm for Maximum-Flow.
**Just one modification 

Given a graph G = (V, E) with edge capacities 
c :E -> ℤ+ and node s,t ∈ V

1.Set flows f(e) = 0 for all edges e ∈ E.
2.While there exists a shortest f-augmenting path P,

a) Assign Γ = min {c(e) - f(e)          if P travels e forwards 
f(e)                   if P travels e backward} 

b) For each edge e ∈ P,
f(e) <- {  f (e) + Γ if P travels e forwards

f(e) - Γ if P travels e backwards}

The Edmonds-Karp algorithm will terminate at most (|V|*|E|)/2 
augmentations (O(|V|*|E|^{2}) time). 

Maximum Flow



EDMONDS-KARP ALGORITHM

We will consider the following example. 
Initially, f(e) = 0 for all edges e ∈ E.
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The highlighted edges are those that can 
be used by an f-augmenting path.
We use breadth-first search to find a 
shortest f-augmenting path.
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The path has the 
following augmented 
path:

Γ = min c(e) - f(e)
Γ = c((C,t)) – f((C,t))

=2 units of flow



EDMONDS-KARP ALGORITHM
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EDMONDS-KARP ALGORITHM
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The path has the 
following augmented 
path:

Γ = min c(e) - f(e)
Γ = c((E,t)) – f((E,t))

=2 units of flow
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EDMONDS-KARP ALGORITHM
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EDMONDS-KARP ALGORITHM
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shortest f-augmenting path 
among the highlighted 
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But there is no other 

augmentable path from the 

source to the sink, so the 

algorithm terminates
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The maximum (s, t)-flow, 
f, has value 10.

The value of the flow, val (f), is the net flow leaving the source node or entering 

the sink node.

∑             f(e)   - ∑              f(e)       =     ∑             f(e)   - ∑              f(e) 
e ∈ g^{+}(S)      e ∈ g^{-}(S)             e ∈ g^{-}(T)        e ∈ g^{+}(T)  



Edmonds-Karp 

Algorithm

Characteristics

1. Efficient: Guaranteed time complexity of O(VE^2), where V 

is the number of vertices and E is the number of edges. Ford 

Fulkerson depends on how augmented paths are chosen. 

BFS always finds a shortest path

2. Easy implementation: The algorithm is relatively easy to 

understand and implement.

3. Not optimal for certain edge configurations: Only works 

with integer values. 



EDMONDS-KARP ALGORITHM 
APPLICATIONS

•Airline Scheduling

We can utilize this algorithm considering the network of 

possible flight routes as a directed graph. Then each 

flight can be viewed as a directed edge where each 

edge’s capacity is associated with the number of 

available seats per flight. Source and sink nodes will 
represent initial starting point and ultimate endpoint of 

the aircraft. 

Algorithm is used to maximize number of passengers 
reaching the desired destination. Maximum flow 

algorithms are also used in conjunction with minimum 

cost algorithms to reduce costs for airlines. 



EDMONDS-KARP ALGORITHM 
APPLICATIONS

•Optimizing Transportation Networks

•We can view transportation networks as a 
directed graph, where each vertices indicates a 
location, and each edge is associated with a 
road, railway, or some kind of path between 
two locations. An edges capacity is then 
representative of the maximum amount of 
goods/traffic that  flow through this network per 
unit of time.

Other examples: 
- Energy Networks
- Supply Chain Management



Minimum Cost  Flow

The Minimum-Cost-Flow problem 

takes into account edge capacities as 

well as edge costs (may be shortest 

path) at the same time.
A b-flow on a directed graph G = (V,E) 

with edge capacities c ∈ ℝ+ , and node 
balances b: V→ R with ∑v∈V b(v) = 0 is 

a function f: E→ ℝv≥0 satisfying:

1) Capacity: An edge cannot carry 

more flow than its capacity.

f(e) ≤ c(e)  ∀ e ∈ E

2) Balance: the difference in flow entering and leaving a node 

v must equal b(v).

∑ f(e)           - ∑ f(e)             =     b(v)     ∀ v ∈ V

e ∈ g^{+}(V)      e ∈ g^{-}(V)
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MINIMUM COST FLOW PROBLEM

Assume we’re dealing with a directed graph G = (V,E) with edge capacities c: E→ ℝ+, edge weights w: E→ ℝ, 

and node balances b: V→ ℝ with ∑v∈V b(v) = 0, find a b-flow f that minimizes ∑e∈ E  w(e)f(e).
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An augmented cycle, C, is a cycle on the 

undirected version of a graph, G such 

that:

1) Every edge that’s crossed in the 

forward direction by C has a flow 

less than that edges capacity.

f(e) < c(e) 

2) Every edge that’s crossed in the 

backward direction by C has a positive 

flow greater than zero:

f(e) > 0

Assume we are given a directed graph G = (V,E) with edge capacities c: 

E→ ℝ+, edge weights w: E→ ℝ, and node balances b: V→ ℝ with ∑v∈V

b(v) = 0 and a b-flow, f, on G. 

-Traversing an edge in the opposite direction can be denoted as –w(e)

Minimum Cost  

Flow

A

C

B

F

E

GD

5|3

4|1 1|2

1|4 3|3
5|2

7|5

3|3

2|9

2|2

8|4

10|2

2|4

6 1

2

5

3

3

3

22

8

0 -2

1

1 -1

-7



A b-flow obtains a minimum cost when 

there is no f-augmenting cycle with 

negative edge weight. 

Minimum Mean Cycle Canceling 

Algorithm

Assume we are dealing with a directed graph G = (V,E) with edge 

capacities c: E→ ℝ+, edge weights w: E→ ℝ, and node balances b: V→ ℝ
with ∑v∈V b(v) = 0 and a b-flow, f, on G. 

1.Find some b-flow using a Maximum Flow Algorithm (ex: 
Edmonds-Karp)
2.While we can still obtain am f-augmenting cycle C with negative 
total weight and minimum mean weight,

a) Assign Γ = min {c(e) - f(e)          if C traverses e forwards 
f(e)                   if C traverses e backward} 

b) For each edge e ∈ C,
f(e) <- {  f(e) + Γ if C traverses e forwards

f(e) - Γ if C traverses e backwards}

Minimum Cost 

Flow



Conditional 

Networks

Time-Dependent Networks: Algorithms that consider 

time-dependent factors in network optimization, such as 

varying traffic conditions, time-dependent costs, and 

scheduling constraints. Applications in transportation 

planning and real-time routing.

Dynamic Graphs: Algorithms and data structures for handling 

dynamic changes in networks, such as edge insertions, 

deletions, and updates. Concepts include incremental algorithms 
and dynamic connectivity.

1.SCATS (Sydney Coordinated Adaptive Traffic System):

1. Operates on a centralized control system.

2. Two leveled hierarchical structure

3. Coordinates traffic signals centrally based on real-time 

data. Utilizes algorithms for dynamic adaptation.
4. Offers extensive reporting and monitoring capabilities.



http://www.youtube.com/watch?v=9WHUL_Gx2Lg


• System addresses unique 

transportation challenges with 

features tailored to optimize 

traffic flow, reduce congestion, 
and promote sustainable 

mobility.

2. SCOOT (Split Cycle Offset Optimization Technique):

-A centralized adaptive real time traffic control system. Uses flow 

data from traffic sensors, but other forms of detecting are 

increasingly being used. Adjusts cycle lengths and offsets 

dynamically. Known for quick adaptation to changing traffic 
conditions.

Global 

Optimization

Systems
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