
OPTIMIZING NETWORKS PT.2

RECAP OF FIRST
PRESENTATION

Networks and graphs are fundamental mathematical structures used to model
relationships and connections between entities.

Basic Concepts:

•Nodes (vertices) and edges: Nodes represent entities, and edges represent
relationships or connections between them.
•Types of graphs: Simple, weighted/unweighted, directed/undirected,
cyclic/acyclic, connected/disconnected.

•Common Greedy algorithms: Shortest Path algorithms (e.g., Dijkstra's
algorithm), Minimum Spanning Trees (e.g., Prim's and Kruskal's algorithms),
•Common Non-Greedy algorithms: Graph Traversal (Depth-First and Breath-
First search).
•Minimum Spanning Trees: Subset of edges that connect all vertices together
with minimum total edge weight.

Network Applications in Nature:

•Ant Colony Optimization and Physarum Polycephalum slime mold

Future Advancements/Challenges:
• Integration with smart city technologies.
•Advancements in machine learning and AI.
•Consideration of environmental factors and multi-modal transportation
systems.

DIJKSTRA’S ALGORITHM

Dijkstra Steps:

1) Mark all nodes as unvisited

2) Assume all nodes have a tentative value of infinity before visiting

3) Determine the current node

4) At the current node, compare the distance to any unvisited neighbor nodes

5) Update the shortest distance if applicable

6) Mark current node as visited

7) Choose the next current node as unvisited node with shortest distance

STAR

T

END

DIJKSTRA’S ALGORITHMA* ALGORITHM

A* ALGORITHM

A* score = Cost of Path + Heuristic

A heuristic is a method used to solve a

problem more quickly.

A* score [f(n)] = g(n) + h(n)

Where f(n) is final cost, g(n) is distance

between nodes, and h(n) being a heuristic

estimate for a nodes value.

We can calculate the heuristic exactly or make

an approximation:

Approximating Heuristic

Techniques

Euclidean Distance:

-Calculates Distance between current node and goal

node as a straight line

-This method can be used when trying to move in any

direction.

This method can be utilized assuming every node has

some (x,y) coordinate. An advantage of this path is that

it will never overestimate the optimal route. Essentially,

the travel distance to your destination will never be

shorter than the given line.

APPROXIMATING HEURISTIC

TECHNIQUES

Manhattan Distance:

-This method calculates the sum of absolute

value differences between the current node’s

(x,y) coordinates and the goal nodes (x,y)

coordinates.

-This method can be utilized when moving in

one of the 4 cardinal directions (up, down, left,

right)

1. Initialization:

• Mark all nodes as unvisited.

• Assign a tentative distance value to each node, typically set

to infinity.

• Set the initial node as the current node and its tentative

distance value to 0.

2. Explore Neighbors:

-For each unvisited neighbor of the current node:

• Calculate the tentative distance from the start node to the

neighbor node.

• Update the tentative distance if it's lower than the previous

value.

• Calculate the heuristic estimate (typically the Euclidean

distance) from the neighbor node to the goal node.

• Calculate the total estimated distance (tentative distance +

heuristic) for the neighbor node.

• Update the neighbor node's tentative distance and total

estimated distance.

3. Select Next Node:

• Mark the current node as visited.

• Choose the unvisited node with the lowest

total estimated distance as the next current

node.

4. Termination:

• Continue until the goal node is reached or

there are no more unvisited nodes.

5. Path Reconstruction:

• If the goal node is reached, reconstruct the

shortest path from the start node to the goal

node using the recorded tentative distances.

A* STEPS

A* ALGORITHM

A

S

D

2

3

3

7

5

B
L

I J

K

H

F

4

3

5

4
4

4 4

10

9

6

8

4

3

3

8

E

G

C

Node Path

Cost

Heuristic

Path

Prior

Node

4

2

1

3 2

2

7

6

6

S 0 10 -

A 7 16 S

A 7 16 S

B 2 9 S

A 7 16 S

C 3 11 S

A 5 14 B D 5 13 B

A 5 14 B

C 3 11 S

A 5 14 B

D 5 13 B

H 3 9 B

S B

Start

End

A* ALGORITHM

A

S

D

2

3

3

7

5

B
L

I J

K

H

F

4

3

5

4
4

4 4

10

9

6

8

4

3

3

8

E

G

C

Node Path

Cost

Heuristic

Path

Prior

Node

4

2

1

3 2

2

7

6

6

S 0 10 -

C 3 11 S

A 5 14 B

D 5 13 B

H 3 9 B

S B

F 6 12 H

A 5 14 B

H

G 5 8 H

A 5 14 B

F 6 12 H D 5 13 B

C 3 11 S

Start

End

D 5 13 B

A* ALGORITHM

A

S

D

2

3

3

7

5

B
L

I J

K

H

F

4

3

5

4
4

4 4

10

9

6

8

4

3

3

8

E

G

C

Node Path

Cost

Heuristic

Path

Prior

Node

4

2

1

3 2

2

7

6

6

S 0 10 -

C 3 11 S

D 5 13 B

S B

F 6 12 H

A 5 4 B

H

G 5 8 H

Start

End

G

E 7 7 G

E

A 5 4 B

F 6 12 H

D 5 13 B

C 3 11 S

A*

ALGORITHM

BEHAVIOR

How different heuristic estimates affect A*:

If h(n)=0,

- A* score, f(n),= g(n).

-The algorithm will essentially only follow Dijkstra’s Algorithm.

If h(n) < the cost from the current node to the goal node:

-A* is guaranteed to find a shortest route.

If h(n) is exactly equal to the cost from the current node to the goal

node:

-A* only follows the best route, never expanding, hence very fast.

If h(n) > the cost from the current node to the goal node, A* is not

guaranteed to find a shortest path, but it can still run faster

http://www.youtube.com/watch?v=-hDiXYoKJlw

Operations

Research

Operations Research (OR) is a discipline that deals with

the application of advanced analytical methods to help

make better decisions. It employs mathematical modeling,

statistical analysis, and optimization techniques to solve

complex problems in various domains, including logistics,
supply chain management, finance, healthcare, and

transportation, among others.

1.Transportation Networks: Network algorithms, such as

shortest path algorithms (like Dijkstra's algorithm) and
minimum spanning tree algorithms, are used to find the

most efficient routes, minimizing costs or travel time.

2.Supply Chain Networks: Network optimization

techniques help in determining the optimal locations for

warehouses and distribution centers, as well as the most
efficient routes for transporting goods between them.

3.Facility Location and Network Design: Operations

Research helps in determining the optimal locations for

facilities, such as factories, hospitals, or schools,

considering factors like demand, transportation costs, and
facility capacities. Network algorithms aid in designing the

layout of the network to minimize overall costs or

maximize service coverage.

Maximum Flow

(Some basics)
Let g(v) denote edges for vertices, v.

Let g^{+}(v) denote outgoing edges that start at vertices, v, and end

elsewhere.

Let g^{-}(v) denote incoming edges that start elsewhere and end at

vertices, v.

EX: g^{+}(C)={(C,T)}

g^{-}(C)={(A,C),(B,C), (D ,C), (E ,C)}

S

A

B

D

E

TC

Maximum Flow

S

A

B

D

E

TC

Flow on a directed graph must satisfy the

following requirements:

1) An edges flow can not be greater than its

capacity

f(e) ≤ c(e) for all e ∈ E

2) The amount of flow entering a node

must equal the amount of flow exiting that

node (barring the source and sink)

∑ f(e) = ∑ f(e)
e ∈ g^{-}(v) e ∈ g^{+}(v)

The value of the flow, val (f), is the net flow leaving the source node or

entering the sink node.

∑ f(e) - ∑ f(e) = ∑ f(e) - ∑ f(e)
e ∈ g^{+}(S) e ∈ g^{-}(S) e ∈ g^{-}(T) e ∈ g^{+}(T)

An augmented path , P, is a path from

the source to the sink node on an

undirected version of the graph such

that:

1) Every edge traversed in the forward

direction by P has a flow less than

that edges capacity.

f(e) < c(e)

2) Every edge traversed in the backward

direction has a flow greater than zero:

f(e) > 0

Ford-Fulkerson algorithm for Maximum-Flow:

Given a graph, G = (V, E) with edge capacities
c : E -> ℤ+ and node s,t ∈ V

1.Set flows f(e) = 0 for all edges e ∈ E.
2.While there exists some f-augmenting path P,

a) Assign Γ = min {c(e) - f(e) if P traverses e forwards
f(e) if P traverses e backward}

b) For each edge e ∈ P,
f(e) <- { f (e) + Γ if P traverses e forwards

f(e) - Γ if P traverses e backwards}

- A flow f can only be considered a maximum if there is no
augmenting path remaining in the network.

Maximum Flow

An augmented path , P, is a path from

the source to the sink node on an

undirected version of the graph such

that:

1) Every edge traversed in the forward

direction by P has a flow less than

that edges capacity.

f(e) < c(e)

2) Every edge traversed in the backward

direction has a flow greater than zero:

f(e) > 0

Edmonds-Karp algorithm for Maximum-Flow.
**Just one modification

Given a graph G = (V, E) with edge capacities
c :E -> ℤ+ and node s,t ∈ V

1.Set flows f(e) = 0 for all edges e ∈ E.
2.While there exists a shortest f-augmenting path P,

a) Assign Γ = min {c(e) - f(e) if P travels e forwards
f(e) if P travels e backward}

b) For each edge e ∈ P,
f(e) <- { f (e) + Γ if P travels e forwards

f(e) - Γ if P travels e backwards}

The Edmonds-Karp algorithm will terminate at most (|V|*|E|)/2
augmentations (O(|V|*|E|^{2}) time).

Maximum Flow

EDMONDS-KARP ALGORITHM

We will consider the following example.
Initially, f(e) = 0 for all edges e ∈ E.

S

A

B

D

E

TC

The highlighted edges are those that can
be used by an f-augmenting path.
We use breadth-first search to find a
shortest f-augmenting path.

5

4 1

1 3
5

7

3

2

2

8

10

2
The path has the
following augmented
path:

Γ = min c(e) - f(e)
Γ = c((C,t)) – f((C,t))

=2 units of flow

EDMONDS-KARP ALGORITHM

S

A

B

D

E

TC

5

4 1

1 3
5

7

3

2

2

8

10

2

2 2

2

We again search for a shortest f-augmenting path among the highlighted
edges.

7

5

5

EDMONDS-KARP ALGORITHM

S

A

B

D

E

TC

5

4 1

1 3
5

7

3

2

2

8

10

2

7 2

2

5

5

We again search for a shortest f-augmenting path among the highlighted
edges.

The path has the
following augmented
path:

Γ = min c(e) - f(e)
Γ = c((E,t)) – f((E,t))

=2 units of flow

2

2

23

EDMONDS-KARP ALGORITHM

S

A

B

D

E

TC

5

4 1

1 3
5

7

3

2

2

8

10

2

7 2

2

5

5

We again search for a shortest f-augmenting path among the highlighted
edges.

3

2

223

3

1

6

EDMONDS-KARP ALGORITHM

S

A

B

D

E

TC

5

4 1

1 3
5

7

3

2

2

8

10

2

7 2

2

5

6

We again search for a
shortest f-augmenting path
among the highlighted
edges.

But there is no other

augmentable path from the

source to the sink, so the

algorithm terminates

3

3

23

1

The maximum (s, t)-flow,
f, has value 10.

The value of the flow, val (f), is the net flow leaving the source node or entering

the sink node.

∑ f(e) - ∑ f(e) = ∑ f(e) - ∑ f(e)
e ∈ g^{+}(S) e ∈ g^{-}(S) e ∈ g^{-}(T) e ∈ g^{+}(T)

Edmonds-Karp

Algorithm

Characteristics

1. Efficient: Guaranteed time complexity of O(VE^2), where V

is the number of vertices and E is the number of edges. Ford

Fulkerson depends on how augmented paths are chosen.

BFS always finds a shortest path

2. Easy implementation: The algorithm is relatively easy to

understand and implement.

3. Not optimal for certain edge configurations: Only works

with integer values.

EDMONDS-KARP ALGORITHM
APPLICATIONS

•Airline Scheduling

We can utilize this algorithm considering the network of

possible flight routes as a directed graph. Then each

flight can be viewed as a directed edge where each

edge’s capacity is associated with the number of

available seats per flight. Source and sink nodes will
represent initial starting point and ultimate endpoint of

the aircraft.

Algorithm is used to maximize number of passengers
reaching the desired destination. Maximum flow

algorithms are also used in conjunction with minimum

cost algorithms to reduce costs for airlines.

EDMONDS-KARP ALGORITHM
APPLICATIONS

•Optimizing Transportation Networks

•We can view transportation networks as a
directed graph, where each vertices indicates a
location, and each edge is associated with a
road, railway, or some kind of path between
two locations. An edges capacity is then
representative of the maximum amount of
goods/traffic that flow through this network per
unit of time.

Other examples:
- Energy Networks
- Supply Chain Management

Minimum Cost Flow

The Minimum-Cost-Flow problem

takes into account edge capacities as

well as edge costs (may be shortest

path) at the same time.
A b-flow on a directed graph G = (V,E)

with edge capacities c ∈ ℝ+ , and node
balances b: V→ R with ∑v∈V b(v) = 0 is

a function f: E→ ℝv≥0 satisfying:

1) Capacity: An edge cannot carry

more flow than its capacity.

f(e) ≤ c(e) ∀ e ∈ E

2) Balance: the difference in flow entering and leaving a node

v must equal b(v).

∑ f(e) - ∑ f(e) = b(v) ∀ v ∈ V

e ∈ g^{+}(V) e ∈ g^{-}(V)

A

C

B

F

E

GD

5|3

4|1 1|2

1|4 3|3
5|2

7|5

3|3

2|9

2|2

8|4

10|2

2|4

6 1

2

5

3

3

3

22

8

0 -2

1

1 -1

-7

MINIMUM COST FLOW PROBLEM

Assume we’re dealing with a directed graph G = (V,E) with edge capacities c: E→ ℝ+, edge weights w: E→ ℝ,

and node balances b: V→ ℝ with ∑v∈V b(v) = 0, find a b-flow f that minimizes ∑e∈ E w(e)f(e).

A

C

B

F

E

GD

5|3

4|1 1|2

1|4 3|3
5|2

7|5

3|3

2|9

2|2

8|4

10|2

2|4

6 1

2

5

3

3

3

22

8

0 -2

1

1 -1

-7

An augmented cycle, C, is a cycle on the

undirected version of a graph, G such

that:

1) Every edge that’s crossed in the

forward direction by C has a flow

less than that edges capacity.

f(e) < c(e)

2) Every edge that’s crossed in the

backward direction by C has a positive

flow greater than zero:

f(e) > 0

Assume we are given a directed graph G = (V,E) with edge capacities c:

E→ ℝ+, edge weights w: E→ ℝ, and node balances b: V→ ℝ with ∑v∈V

b(v) = 0 and a b-flow, f, on G.

-Traversing an edge in the opposite direction can be denoted as –w(e)

Minimum Cost

Flow

A

C

B

F

E

GD

5|3

4|1 1|2

1|4 3|3
5|2

7|5

3|3

2|9

2|2

8|4

10|2

2|4

6 1

2

5

3

3

3

22

8

0 -2

1

1 -1

-7

A b-flow obtains a minimum cost when

there is no f-augmenting cycle with

negative edge weight.

Minimum Mean Cycle Canceling

Algorithm

Assume we are dealing with a directed graph G = (V,E) with edge

capacities c: E→ ℝ+, edge weights w: E→ ℝ, and node balances b: V→ ℝ
with ∑v∈V b(v) = 0 and a b-flow, f, on G.

1.Find some b-flow using a Maximum Flow Algorithm (ex:
Edmonds-Karp)
2.While we can still obtain am f-augmenting cycle C with negative
total weight and minimum mean weight,

a) Assign Γ = min {c(e) - f(e) if C traverses e forwards
f(e) if C traverses e backward}

b) For each edge e ∈ C,
f(e) <- { f(e) + Γ if C traverses e forwards

f(e) - Γ if C traverses e backwards}

Minimum Cost

Flow

Conditional

Networks

Time-Dependent Networks: Algorithms that consider

time-dependent factors in network optimization, such as

varying traffic conditions, time-dependent costs, and

scheduling constraints. Applications in transportation

planning and real-time routing.

Dynamic Graphs: Algorithms and data structures for handling

dynamic changes in networks, such as edge insertions,

deletions, and updates. Concepts include incremental algorithms
and dynamic connectivity.

1.SCATS (Sydney Coordinated Adaptive Traffic System):

1. Operates on a centralized control system.

2. Two leveled hierarchical structure

3. Coordinates traffic signals centrally based on real-time

data. Utilizes algorithms for dynamic adaptation.
4. Offers extensive reporting and monitoring capabilities.

http://www.youtube.com/watch?v=9WHUL_Gx2Lg

• System addresses unique

transportation challenges with

features tailored to optimize

traffic flow, reduce congestion,
and promote sustainable

mobility.

2. SCOOT (Split Cycle Offset Optimization Technique):

-A centralized adaptive real time traffic control system. Uses flow

data from traffic sensors, but other forms of detecting are

increasingly being used. Adjusts cycle lengths and offsets

dynamically. Known for quick adaptation to changing traffic
conditions.

Global

Optimization

Systems

Melih. (1970, January 1). Graphminator. Ekim 2015. https://melihsozdinler.blogspot.com/2015/10/

Heuristics. (n.d.). https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html

Prasanna. (n.d.). A* algorithm (graph traversal and path search algorithm). enjoyalgorithms. https://www.enjoyalgorithms.com/blog/a-star-search-algorithm

YouTube. (2017, February 15). A* (a star) search algorithm - computerphile. YouTube. https://www.youtube.com/watch?v=ySN5Wnu88nE

YouTube. (2017b, April 20). Airline scheduling – maths delivers. YouTube. https://www.youtube.com/watch?v=-hDiXYoKJlw

Home. The OR Society. (n.d.). https://www.theorsociety.com/about-or/history-of-or/

Schrijver, A. (n.d.). On the history of the transportation and maximum flow . https://homepages.cwi.nl/~lex/files/histtrpclean.pdf

Shen, C. (2016, May 27). Max Flow, Min Cut. https://web.stanford.edu/class/archive/cs/cs161/cs161.1166/lectures/lecture16.pdf

Network flow II. (n.d.). https://www.cs.cmu.edu/~avrim/451f11/lectures/lect1027.pdf

Maximum flow - ford-fulkerson and Edmonds-Karp¶. Maximum flow - Ford-Fulkerson and Edmonds-Karp - Algorithms for Competitive Programming. (2023, September

17). https://cp-algorithms.com/graph/edmonds_karp.html

Daymude, J. (2022, October 20). CSE 550 (2022, fall): 3.5 algorithms for maximum-flow. YouTube. https://www.youtube.com/watch?v=H8kGp1cQO9w&t=793s

Friggstad, Z. (n.d.). Lecture 9 (Sept 26): The mean cycle canceling algorithm. https://webdocs.cs.ualberta.ca/~zacharyf/courses/combopt_2016/notes/lec9.pdf

Network flows. (n.d.-b). https://ac.informatik.uni-freiburg.de/lak_teaching/ws11_12/combopt/notes/network_flows.pdf

Scats. Home. (n.d.). https://www.scats.nsw.gov.au/home

Mercer Scoot. Mercer SCOOT - Transportation. (n.d.). https://www.seattle.gov/transportation/projects-and-programs/programs/technology-program/mercer-scoot

References

THANK YOU

QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: A* STEPS
	Slide 9: A* ALGORITHM
	Slide 10: A* ALGORITHM
	Slide 11: A* ALGORITHM
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: EDMONDS-KARP ALGORITHM
	Slide 20: EDMONDS-KARP ALGORITHM
	Slide 21: EDMONDS-KARP ALGORITHM
	Slide 22: EDMONDS-KARP ALGORITHM
	Slide 23: EDMONDS-KARP ALGORITHM
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: MINIMUM COST FLOW PROBLEM
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: THANK YOU QUESTIONS?

