

OVERVIE W

I. Significance of Navigation
iI. Geographical \& Astronomical Concepts
III. Celestial Navigation
I. The Latitude Problem
II. The Longitude Problem
IV. Charts \& Dead Reckoning

WHERE ARE WE?

- Navigation a central endeavor for human culture
- Would like to know location accurately and precisely
- Navigation and mapmaking are mathematical arts
- Trigonometry, spherical geometry, projective geometry, astronomy
- Many mathematicians involved: Edward Wright,Johann Lambert, Leonhard Euler (of course), Nathaniel Bowditch, Gladys West, and more
- Navigation became of special scientific, economic, and political interest in the Age of Discovery in the $15^{\text {th }}$ through $18^{\text {th }}$ centuries

THE NED ANERICAN
PRACTICAL NAVIGATOR;
EPITOME OF NAVIGATION;
 NAUTICAL ALMANAC,

L A T 1 T T U
LONGITUDE BY LUNAR ORSERVATIONS; GERTINC A COMFEETE RECKONTSO AT SEA

PZOPER RULES AND KXAMPLES
J O UR N A L,
NOATON 70 MADEIRS

моми:

 HeTHANTI BOWDITCH Ir NATHANIEL BOWDITCH,

EDNUSD N. ELUNT, 1 Propichet
Rn cesture of Atratmon; suico
Rn cesmas of Athtron; yit

N ATHANIELBOWDITCH'S AMERICAN PRACTICAL NAVIGATOR

- Has been in continual publication since 1802
- Current edition guides much of my presentation

THE EARTH \& SPHERICAL
 COORDINATES

- Earth is an oblate spheroid;idealized as sphere
- Imaginary coordinate grid uniquely determines points on sphere
- Lines of latitude and longitude first developed by Eratosthenes in $3^{\text {rd }}$ century BC
- Lines of longitude going 360° around a circle first developed by Hipparchus in $2^{\text {nd }}$ century BC
- Latitude: Vertical angle ϕ above equatorial plane; $90^{\circ} \mathrm{N}$ to $90^{\circ} \mathrm{S}$
- Equator:Intersection of sphere and equatorial plane, the plane that passes through the sphere's center and is perpendicular to the earth's axis of rotation

THE EARTH \& SPHERICAL COORDINATES

- Lines of latitude (parallels): Intersection of sphere and planes that are parallel to the equatorial plane (within Euclidean space!)
- Not straight lines in spherical geometry
- This is why parallels are usually not the shortest path between two points on the globe!
- Great circle: Intersection of sphere and plane through sphere's center; is a line in spherical geometry

THE EARTH \& SPHERICAL COORDINATES

- Lines of Longitude (Meridians): Halves of great circles that pass through axis of rotation
- Prime meridian: Meridian through Greenwich, England arbitrarily chosen to be $0^{\circ} \mathrm{E} / \mathrm{W}$
- Longitude: Horizontal angle λ from plane of prime meridian; $180^{\circ} \mathrm{E}$ to $180^{\circ} \mathrm{W}$

SOME ASTRONOMICAL DEFINITIONS

north
celestial pole

- Celestial sphere: Imaginary sphere that can be centered at earth's center with an infinite radius; celestial bodies are projected onto this sphere
- Aligned through the earth's poles
- Celestial Equator: intersection of equatorial plane and celestial sphere at infinity
- Declination: Angular distance north or south of a heavenly body from the celestial equator
- Altitude: Angular distance of heavenly body above the horizon at the place of observation

AXIALTILT \& DECLINATION OFTHE S U N

- With respect to the earth's orbital plane, the earth's axis of rotation is tilted approx. 23.5°, which causes the sun's declination to vary between $23.5^{\circ} \mathrm{N}$ and $23.5^{\circ} \mathrm{S}$
- Example:the Equator at Noon
- On autumnal and vernal equinoxes, sun is directly overhead; altitude of sun is 90°
- On summer solstice, altitude of sun is 66.5°; toward the north
- On winter solstice, altitude of sun is 66.5°; toward the south

- If above the Tropics: In N. Hemisphere, the sun is always in the south; in S. Hemisphere, the sun is always in the north

What is our latitude?
What is our longitude?

CELESTIAL
 NAVIGATION: THE
 LATITUDE PROBLEM

- Finding latitude is far simpler than finding longitude
- Finding cardinal directions relies on astronomical reference points like Polaris in N. Hemisphere or the Southern Cross in the S. Hemisphere; or magnetic compass
- Using Polaris or Southern Cross, observer only needs altitude of respective star/constellation
- Using the sun, observer needs a cardinal direction, the day of year, the altitude of the sun, and a table of solar declinations

EXAMPLE: USING THE SUN TO DETERMINE LATITUDE

- Find latitude of Williamsburg,VA given the solar declination on May 2, 2024, is $15.7^{\circ} \mathrm{N}$.

1. Use a gnomon (orientated toward North) to determine noon.
2. Measure altitude of sun at noon.
3. Calculate latitude.

TOOLS TO FIND

ALTITUDE

- Kamal: Wooden board attached to string with knots
- Jacob's staff: Staff with vertical beam of fixed length, whose horizontal component can be shortened and lengthened
- Problem:Imprecise;also often inaccurate due to rocking on ship

TOOLS TO FIND

 ALTITUDE- Led to invention of the sextant in $18^{\text {th }}$ century
- Far more precise
- Still in use today by mariners as a back-up!

CELESTIAL NAVIGATION: THE LONGITUDE PROBLEM

- Far more difficult than determining latitude from celestial bodies alone
- Main idea:
- Earth rotates 360° every 24 hours, or 15° every hour, meaning 15° longitude $=1$ hour
- Compare the time of observation of an astronomical event at an unknown longitude with the time of observation of that same event at a known longitude
- Impossible to keep accurate time on ships prior to $18^{\text {th }}$ century
- British Parliament passed Longitude Act of 1714 that established a $£ 20,000$ reward for anyone who could determine a practical method of finding longitude at sea accurate within half a degree
- Reward equivalent to $\$ 3.7$ million in today's money

C E L E S T I A L

NAVIGATION: THE
LONGITUDE PROBLEM

- Solved by the invention of the accurate marine chronometer by John Harrison in 1761
- Now sailors could know their location on the globe with only the stars, a tool to measure altitude, and a chronometer

CHARTS, MAP PROJECTIONS

- Chart:" graphic representation of areas of the Earth ... for use in marine or air navigation" (American Practical Navigator)
- Most popular map projection for marine navigation: Mercator projection
- Developed by Gerardus Mercator in 1569
- Conformal:uses function that locally preserves angles,i.e., preserves direction
- Cylindrical: maps sphere onto cylinder

RHUMB LINES

- Since the Mercator projection preserves direction, all lines of constant bearing (i.e., lines that intersect meridians at the same angle) appear as straight lines called rhumb lines or loxodromes
- Great circles are harder to follow because one must constantly change course

DEAD RECKONING ON MERCATOR CHART

- Dead reckoning: "determines a predicted position by advancing a known position for courses and distances" (APN); dead reckoning plots are made on a chart, often a Mercator chart
- Uses only course and speed; subject to steering error, wind \& ocean currents
- Primary means of determining longitude before use of chronometer
- Used a traverse board and hourglass
- Chronometers at least made this somewhat more accurate
- Method used in modern inertial navigation systems

AREAS FOR FURTHER READING \&

 RESEARCH- Sumner lines / Circles of equal altitude: Discovered in 1837 by Thomas Hubbard Sumner as a method of finding position of ship using altitude of celestial bodies and chronometer
- Interesting math; basically just more spherical trigonometry
- Satellite trilateration: Method used in GPS to determine location
- Three satellites needed to uniquely determine a point on the earth

IMAGE CREDITS

```
https://oceanfdn.org/my-first-capitol-hill-ocean-week/
https://adventuressetravels.wordpress.com/wp-content/uploads/2011/02/sea-fog.jpg
https://www.atlasobscura.com/articles/7-gorgeous-sea-maps-from-the-age-of-exploration
https://library.si.edu/digital-library/book/newamericanpract00bowd
https://www.wave3.com/2020/09/11/behind-forecast-why-our-seasons-change/
https://www.snowshoemag.com/how-to-navigate-by-using-the-stars/
https://en.wikipedia.org/wiki/File:Bastone di Giacobbe inv 3167 IF 46850.jpg
https://en.wikipedia.org/wiki/File:Simple Wooden_Kamal_(Navigation).jpg
https://classic-sailing.com/article/the-many-uses-of-the-marine-sextant/
https://www.rmg.co.uk/stories/topics/harrisons-clocks-longitude-problem
https://jworldannapolis.com/companyinformation/us-sailing-certifications/celestial-navigation/
https://en.wikipedia.org/wiki/Rhumb line
https://www.abebooks.com/maps/Ocean-Atlantic-Mer-Nord-Route-Europe/31538605833/bd
https://www.rmg.co.uk/collections/objects/rmgc-object-43910
https://en.wikipedia.org/wiki/File:Admiralty Chart No 1723 The Houtman Rocks, Published 1845.jpg
```

