## Why do we care about primes?

## Primes!

- 2,3,5,7,11 ................,7841, .............,136395369829,.... 222334565193649
- The building block of the integers!
- Fundamental Theorem of Arithmetic


## Quick Prime Facts

- There are infinitely many (Euclid)
- They become less common as numbers get larger
- Coprimes are numbers that share no common prime factors
- Determining a prime factorization can be difficult!
- You can win \$150,000 if you discover a prime with over 100 million digits


## A Quick History

- Euclid
- A number which is measured by a unit alone
- Fermat
- Little Theorem
- Gauss
- Prime Number Theorem
- Riemann
- Hypothesis


All Images Videos News Shopping : More

[^0]For students (And solutions ) Pdf

About $55,700,000$ results ( 0.43 seconds)

## Famous problems

From sources across the web


Goldbach conjecture

## Prime Patterns

- Goldbach Conjecture
- Twin Prime Conjecture
- Riemann Hypothesis
- We want a way to generate primes!


## Applications

- 1. Cryptography
- 2. Connections!


## Cryptography

"The art of writing or solving codes"

## Cybersecurity 101

- Pretty much everything you do on the internet is encrypted
- There are different algorithms to encrypt the data you transmit and receive
- Without encryption, anyone on your network can see your personal:
- Messages
- Passwords


## Cryptography 101




## RSA

(Ron Rivest, Adi Shamir, Leonard Adleman)

## RSA: Creating a Key Pair

- $p, q$ are prime
- $n=p q$
- $e$ : a number chosen to be coprime to $(p-1)(q-1)$
- $(e, n)$ is our public key
- Find $d$ such that $d e \equiv 1 \bmod ((p-1)(q-1))$
- $(d, p, q)$ is our private key


## RSA: Encryption

- $p, q$ are prime
- $n=p q$
- $e$ : a number chosen to be coprime to $(\mathrm{p}-1)(\mathrm{q}-1)$
- m: message to encrypt
- $c=m^{e} \bmod (n)$


## RSA: Decryption

- $p, q$ are prime
- $d e \equiv 1 \bmod ((p-1)(q-1))$
- $c$ : cipertext
- $m=c^{d} \bmod (n)$


## RSA: Example

- $p=7, q=11$


## RSA: Example

- $p=7, q=11$
- $n=77$
- $(p-1)(q-1)=6(10)=60$
- Say $e=7$
- Public Key: $(7,77)$
- $7 d=1 \bmod (60)$
- $d=43$
- Private Key: $(43,7,11)$


## RSA: Proof it works

- $m=8$

Encrypt, Public Key: $(3,77)$

- $8^{7} \bmod (77)=57$

Decrypt, Private Key: (43, 7, 11)

- $57^{43} \bmod (77)=8$



## RSA: Why does it work (Abstract Alg!)

- $p, q$ are prime
- $n=p q$
- $e$ : a number chosen to be coprime to $(p-1)(q-1)$
- Find $d$ such that $d e \equiv$ $1 \bmod ((p-1)(q-1))$

Q: Why does $d$ always exist?

A: Unit Groups!

## RSA: Why does it work

- $p, q$ are prime
- $n=p q$
- $e$ : a number chosen to be coprime to $(p-1)(q-1)$
- Find $d$ such that $d e \equiv$ $1 \bmod ((p-1)(q-1))$
- Claim: For integers $m$ and $c$ with $c=m^{e} \bmod (n)$,
we have $m^{e d} \equiv c^{d} \equiv m \bmod (n)$


## RSA: Why does it work

- $p, q$ are prime
- $n=p q$
- $e$ : a number chosen to be coprime to $(p-1)(q-1)$
- Find $d$ such that $d e \equiv$ $1 \bmod ((p-1)(q-1))$

$$
\begin{aligned}
& d e=1+k((p-1)(q-1)) \text { for some integer } k \\
& \qquad \begin{array}{c}
m^{e d}=m^{1+k((p-1)(q-1))} \\
\left.=m *\left(m^{(p-1)}\right)\right)^{k(q-1)} \\
\equiv m *(1)^{k(q-1)} \bmod (p) \\
\equiv m \bmod (p)
\end{array}
\end{aligned}
$$

Similarly: $m^{e d} \equiv m \bmod (q)$

## RSA: Why does it work

- $p, q$ are prime

$$
\begin{aligned}
& m^{e d} \equiv m \bmod (p) \\
& m^{e d} \equiv m \bmod (q)
\end{aligned}
$$

- $n=p q$
- $e$ : a number chosen to be coprime to $(p-1)(q-1)$ We also know:
- Find $d$ such that $d e \equiv$ $1 \bmod ((p-1)(q-1))$

$$
\begin{aligned}
m & \equiv m \bmod (p) \\
m & \equiv m \bmod (q)
\end{aligned}
$$

So by the Chinese Remainder Theorem:

Theorem: Let $p, q$ be coprime. Then the system of equations

$$
\begin{aligned}
& x=a \quad(\bmod p) \\
& x=b \quad(\bmod q)
\end{aligned}
$$

$$
m^{e d} \equiv m \bmod (p q)
$$

Which implies: $c^{d} \equiv m \bmod (n)$

## Symmetric Cryptography

- The same key is used for encryption and decryption
- Used to encrypt/decrypt larger pieces of information



## Symmetric Cryptography

- How are both parties able to agree upon a key?



## Diffie-Hellman

## DH: The Algorithm

- Two participants (Alice and Bob) want to share a key
- They mutually decide upon a two numbers, a relatively small integer g and a large prime n
- Alice chooses an integer between 1 and $n$ (private), say a
- Bob chooses an integer between 1 and $n$ (private), say b
- Alice computes $g^{a} \bmod (n)$ and sends the result to Bob
- Bob computes $g^{b} \bmod (n)$ and sends the result to Alice
- Using the information they provide each other, Alice computes $\left(g^{b}\right)^{a} \bmod (n)$ and Bob computes $\left(g^{a}\right)^{b} \bmod (n)$
- $g^{a b} \bmod (n)$ is their secret key


## DH: Discrete Logarithm Problem

- $G$ is a multiplicative cyclic group and $g$ is a generator of $G$, then from the definition of cyclic groups, we know every element $h$ in $G$ can be written as $g^{x}$ for some $x$.
- The discrete logarithm to the base $g$ of $h$ in the group $G$ is defined to be $x$
- We NEED n to be prime otherwise the group would not be cyclic and that would limit the number of options the key could be
- Safe primes: In the form $2 q+1$
- Avoids the Pohlig-Hellman Algorithm


## Connections!

## Nature

A cicada that emerges every 12 years will synchronize with all predators having a life cycle of $2,3,4,6$ or 12 years, whereas emerging every 13 years reduces that chance.


## Math Brains?

"authors described the performance of Michael, a young man with ASD, who could factorize prime numbers greater than 10,000 with a $70 \%$ accuracy (compared to a mathematically trained control subject who scored only $40 \%$ accuracy and slower response times)"

- https://biologydirect.biomedcentral.com/articles/10.1186/s13062-022-00326-w
- The Man Who Mistook His Wife for a Hat
- Oliver Sacks



## Magic Squares

The smallest magic square composed of consecutive odd primes including the number 1 is of order 12

| 1 | 823 | 821 | 809 | 811 | 797 | 19 | 29 | 313 | 31 | 23 | 37 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 89 | 83 | 211 | 79 | 641 | 631 | 619 | 709 | 617 | 53 | 43 | 739 |
| 97 | 227 | 103 | 107 | 193 | 557 | 719 | 727 | 607 | 139 | 757 | 281 |
| 223 | 653 | 499 | 197 | 109 | 113 | 563 | 479 | 173 | 761 | 587 | 157 |
| 367 | 379 | 521 | 383 | 241 | 467 | 257 | 263 | 269 | 167 | 601 | 599 |
| 349 | 359 | 353 | 647 | 389 | 331 | 317 | 311 | 409 | 307 | 293 | 449 |
| 503 | 523 | 233 | 337 | 547 | 397 | 421 | 17 | 401 | 271 | 431 | 433 |
| 229 | 491 | 373 | 487 | 461 | 251 | 443 | 463 | 137 | 439 | 457 | 283 |
| 509 | 199 | 73 | 541 | 347 | 191 | 181 | 569 | 577 | 571 | 163 | 593 |
| 661 | 101 | 643 | 239 | 691 | 701 | 127 | 131 | 179 | 613 | 277 | 151 |
| 659 | 673 | 677 | 683 | 71 | 67 | 61 | 47 | 59 | 743 | 733 | 41 |
| 827 | 3 | 7 | 5 | 13 | 11 | 787 | 769 | 773 | 419 | 149 | 751 |

## Fractals

- https://www.youtube.com/watch?v=VZSjRgQhvSM



[^0]:    Tools

