Why do we care
about primes?

§



Primes!

* The building block of the integers!
* Fundamental Theorem of Arithmetic



Quick Prime Facts

* There are infinitely many (Euclid)

* They become less common as numbers get larger

» Coprimes are numbers that share no common
prime factors

* Determining a prime factorization can be difficult!

* You can win $150,000 if you discover a prime with
over 100 million digits



A Quick History

* Euclid

* A number which is measured by a unit alone

* Fermat

e Little Theorem

e (Gauss

e Prime Number Theorem

e Riemann
* Hypothesis
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Prime Patterns

* Goldbach Conjecture

e Twin Prime Conjecture

 Riemann Hypothesis

 We want a way to generate primes!



Applications

* 1. Cryptography

e 2. Connections!



Cryptography

“The art of writing or solving codes”

§



Cybersecurity 101

* Pretty much everything you do on the internet is
encrypted

* There are different algorithms to encrypt the data
you transmit and receive

* Without encryption, anyone on your network can
see your personal:

* Messages
 Passwords



Cryptography 101

encryption decryption
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Leonard Adieman)

RSA (Ron Rivest, Adl Shamir,




RSA: Creating a Key Pair

p,q are prime

* n=pq

e: a number chosen to be coprimeto (p —1)(qg — 1)

(e,n) is our public key

Find d such thatde = 1mod((p —1)(q — 1))

(d,p, q) is our private key




RSA: Encryption

p,q are prime

*n =pq

e. a number chosen to be coprime to (p-1)(g-1)

m: message to encrypt

¢ = m® mod(n)




RSA: Decryption

* p,q are prime
e de=1mod((p—1)(gq—1))
* (. cCipertext

« m=c%mod(n)




RSA: Example

<

§

e p=7,q=11



RSA: Example

e p=7,q=11

e n=77

* (p—1D(@—1) =6(10) =60
e Saye=7

* Public Key: (7,77)

* 7d = 1mod(60)

« d = 43

* Private Key: (43,7,11)




RSA: Proof it works

+ m=8 -

K
Encrypt, Public Key: (3,77)
« 8" mod(77) = 57 =
Decrypt, Private Key: (43, 7, 11)
e 57 mod(77) =8 -

ooooooooooo




RSA: Why does it work (Abstract Alg!)

* p,q are prime Q: Why does d always exist?
* n = pq
* ¢e:anumber chosen to be

coprimeto(p —1)(q — 1) _ _ '
* Find d such that de = A: Unit Groups!

1 mod((p — 1)(q — 1))

§



RSA: Why does it work

* p,q are prime

* n = pq R . . . . h . e d

e e:anumber chosen to be Claim: For integers m and ¢ with ¢ = m® mod(n),
coprimeto (p —1)(g — 1)

 Find d such that de = we have m

I mod((p — D(q — 1)

¢d = ¢4 = mmod(n)

§



ed— d

Claim: For integers m and ¢ with ¢ = m® mod(n), we have m = m mod(n)

RSA: Why does it work

« p,qare prime de =14+ k((p —1)(q — 1)) for some integer k

* n=Dpq

* e:anumber chosen to be
coprimeto(p —1)(q — 1)

* Find d such that de =

1mod((p — 1)(q — 1))

meéd = m1tk((p-1)(q-1)
= m * (m(p—l)) k(q-1)
= m * (D*™ mod(p)
= m mod(p)

ed—

Similarly: m m mod(q)



Claim: For integers m and ¢ with ¢ = m® mod(n), we have m®? = ¢4 =

RSA: Why does it work

m mod(n)

ed
ed

m mod (p)

* p,q are prime
m mod(q)

* n=pq
* e:anumber chosen to be

coprime to (p — 1)(q — 1) We also know:
 Find d such that de =

1 mod((p — 1)(q — 1))

S 3

m = m mod(p)

m = mmod(q)

So by the Chinese Remainder Theorem:

Theorem: Let p, g be coprime. Then the system of equations med =m mod(pq)

z=a (mod p) Which implies: ¢ = m mod(n)

z=>b (mod gq)

has a unique solution for  modulo pq.




Symmetric Cryptography

 The same key is used for encryption and decryption

* Used to encrypt/decrypt larger pieces of information
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Symmetric Cryptography

* How are both parties able to agree upon a key?




Diffie-Hellman




DH: The Algorithm

* Two participants (Alice and Bob) want to share a key

* They mutually decide upon a two numbers, a relatively small integer g and
a large prime n

* Alice chooses an integer between 1 and n (private), say a
* Bob chooses an integer between 1 and n (private), say b
 Alice computes g% mod(n) and sends the result to Bob
« Bob computes g? mod(n) and sends the result to Alice

* Using the information they provide each other, Alice computes
(g?)* mod(n) and Bob computes (g%)? mod(n)

g% mod(n) is their secret key




DH: Discrete Logarithm Problem

G i1s a multiplicative cyclic group and g is a generator of G, then from the
definition of cyclic groups, we know every element h in G can be written
as g* for some x.

» The discrete logarithm to the base g of h in the group G is defined to be x

« We NEED n to be prime otherwise the group would not be cyclic and that
would limit the number of options the key could be

« Safe primes: In the form2q + 1

 Avoids the Pohlig—Hellman Algorithm







Nature

A cicada that emerges every

12 years will synchronize with
all predators having a life cycle
of 2, 3, 4, 6 or 12 years, whereas

emerging every 13 years reduces
that chance.




Math Brains?

* https://biologydirect.biomedcentral.com/articles/10.1186,/s13062-

“authors described the 022-00326-w

performance of

Michael, a young man * The Man Who Mistook His Wife for a Hat
with ASD, who could

factorize prime * Oliver Sacks

numbers greater than
10,000 with a 70%
accuracy (compared to
a mathematically
trained control subject
who scored only 40%
accuracy and slower
response times)”




Magic Squares

The smallest magic square composed of
consecutive odd primes including the number
1isof order 12
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Fractals
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