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Alan Turing



Who was Alan Turing!

An English mathematician, computer scientist,

logistician, cryptanalyst, philosopher, and theoretical

biologist

Well-known for his role in the creation of the Enigma
Machine during WWII and in the early creation of

modern-day computers

Died June 1954 from suicide or accidental cyanide

poisoning




Turing and Mathematical Biology

Published The Chemical Basis of Morphogenesis in
1951

Morphogenesis: the development of patterns and

shapes in biological organisms




Turing’s Idea




Important Terms

Morphogen: a signaling molecule that acts directly on cells to produce

specific cellular responses depending on its local concentration
« Diffuses from a localized source to create a concentration gradient
Diffusion-Reaction System: local chemical reactions in which substances

are transformed into each other and diffusion causing the substances to

spread out over a surface in space

Perturbations: a disturbance of motion, arrangement, or state of

equilibrium



Diffusion-Reaction Systems

People thought that diffusion created stable conditions (aka one color)
« Diffusion is a dissipative system

Turing conjected that diffusion actually destabilizess these chemical systems, creating patterns

The system starts with 2 chemicals: an activator and an inhibitor



Diffusion-Reaction Systems

activator inhibitor
Activator Inhibitor
Substance that promotes the production of Substance that suppresses the production of
both itself and the inhibitor the activator, and therefore itself
Creates a positive feedback loop that Creates a negative feedback loop that
amplifies small perturbations counteracts the effects of the activator

Plays a critical role in in controlling the

spatial extent and stability of the patterns

*Important to note that the inhibitor must diffuse faster than the activator



Cheetah-Fire Analogy

Imagine that you have a cheetah with no spots

Think of its fur as a dry forest where fires break out

in multiple locations

However, there are also firefighters stationed
throughout the forest and they can move faster

than the spreading fires

They must put out the fires from the edges, leaving

charred spots throughout the forest




Cheetah-Fire Analogy

Activator: fire

« Makes more of itself and brings in more firefighters

Inhibitor: firefighter

« Reacting to the fires and extinguishing them
Both the firefighters and fires diffuse throughout the forest

Key to putting out all the fires/the cheetah getting its spots is that the
inhibitor moves faster than the activator

By adjusting these variables, we can get many different patterns using

Turing'’s rules
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Examples of Turing Patterns




Turing Instability

Phenomenon in reaction-diffusion systems where homogenous states become unstable and
spontaneously give rise to spatial patterns

. Homogenous state: when concentrations of activator and inhibitor are uniform

This instability arises from the interplay between diffusion and reaction processes within the

system depending on their diffusion coefficients and rates of reaction

As perturbations grow, they eventually reach a size where they become self-sustaining, leading

to the formation of spatial patterns

» Patterns take on different forms based on system parameters



Stripes vs Spots

Spots and stripes are two versions of the same thing

Depends on parameters in reaction-diffusion equation X R
Identical rules playing out on different surfaces ‘ 5 '
When Turing patterns play out on irregular surfaces like an N

animal’s body, different patterns can form on different parts




Stripes vs Spots

« Formation of spots vs stripes can also depend on the surface size

_—
. .




Now...
Math!!



Partial Differential Equations

PDEs are mathematical equations with two or more independent variables,
an unknown function dependent on these variables, and partial derivatives

of the unknown function with respect to the independent variables

Computers a function between various partial derivatives of a multivariable
function

Used to aid in the solution of physical problems involving several variables

e Reaction and diffusion



Turing’s PDEs

u )
5% D,V<u + f(u,v)
% — D,V + g(u,v)

Where:
u and v are the concentrations of the activator and inhibitor substances
D, and D, are the diffusion coefficients

V2 is the Laplacian operation, representing the spatial variation or
curvature

f(u,v) and g(u,v) represent the reaction terms, describing how the

concentrations of u and v change due to chemical reactions



Changing Parameters

Diffusion coefficients D, and D,

» Increasing these can promote the formation of more homogenous patterns

with smoother transitions between areas of high and low concentration

» Decreasing these can lead to the formation of more localized patterns with
sharper transitions between areas of high and low concentration

Reaction rates f(u,v) and g(u,v)

» Increasing rates of activator production or inhibitor inhibition can lead to
amplification of spatial variations and development of more pronounced

patterns

« Decreasing these rates can result in suppression of pattern formation or

emergence of simpler patterns



Changing Parameters

Initial conditions
« Alters the starting point from which the system evolves over time

» Varying initial concentrations of the activator and inhibitor can lead to

the formation of different patterns or no patterns at all

* Final patterns may exhibit different characteristics depending on initial

state of the system



Different Reaction Terms

Turing did not include functional forms of reaction terms in his paper

Instead, he only provided qualitative descriptions of the activator-inhibitor interactions and

their effect on pattern formation



Gierer-Meinhardt Pattern Formation
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Where a, b,c>0,D > 1

Changing these parameters can lead to different pattern formations, but

this system favors spots

https://visualpde.com/sim/?preset=GiererMeinhardt



https://visualpde.com/sim/?preset=GiererMeinhardt

Gierer-Meinhardt Pattern Formation

By changing the initial conditions, we can observe the instability of stripe

patterns

u(0,z,y) = 1+ cos (REI), v(0,z,y) = 1,

Where n is an integer

https://visualpde.com/sim/?preset=GiererMeinhardtStripelCs



https://visualpde.com/sim/?preset=GiererMeinhardtStripeICs

Gierer-Meinhardt Pattern Formation

A common way to get a stripey/labyrinth pattern using this model is to

saturate the self-activation term u?/v
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Where K>0 is a saturation constant

https://visualpde.com/sim/?preset=GiererMeinhardtStripes



https://visualpde.com/sim/?preset=GiererMeinhardtStripes

Brusselator Model Showing Turing Instability

2 coupled partial differential equations, each representing one species of a two species chemical

reaction

Brusselator Contour Plots at T=100 and K=11
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Brusselator Model: Varying K Values

Wanted to look closer at the K values 7<K<8, t=2000

Also narrowed the grid to [0,10] x [0,10]

[K = 7.2, £ = 2000

[K =74, t = 2000

[K =76, ¢ = 2000

[K =7.8, ¢ = 2000
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Advancements Since
Turing



Advancements After Turing

2d spatial pattern of activator

concentration at a fixed time

Activator diffusion coefficient D, was
varied on an interval where system is
Turing-unstable; D, fixed at 0.2

= 0.016
= 0.014
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D
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Advancements After Turing
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Diffusiophoresis

Turing'’s explanation of diffusive transport results in patterns with shallower gradients than we

observe in nature
Diffusiophoresis: the propulsion of colloids by a chemical gradient

Proposition that diffusiophoresis is involved in Turing patterns, promoting color sharpening like

we see in nature

Chromatophores: cells containing pigment

* Respond diffusiophoretically to physiological reactions



Gierer-Meinhardt model Cell-cell interaction model
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Introducing Computers

Computers are used for...

* Numerical simulation: computers solve the reaction-diffusion equations that describe Turing

patterns using numerical methods

« Parameter exploration: researchers can explore the effects of different parameter values

systematically
i.e. diffusion coefficients, reaction rates, initial conditions on formation, stability, and
characteristics on Turing patterns
* Visualization:

Color maps, contour plots, and surface plots help show the concentration of activator

and inhibitor substances



Introducing Computers

Comparison with experimental data: compare simulated Turing patterns with experimental data

from chemical, biological, or physical systems
* Gain insights into mechanisms underlying pattern formation in real-world systems
Parameter estimation and model fitting: iterative process comparing simulated patterns with

experimental observations by adjusting model parameters to minimize the difference between

simulated and observed patterns



Generative Art

Generative art: art that in whole or in part has been created with the use of an
autonomous system - one that is non-human and can independently determine

features that would otherwise require human input
Made with the help of some outside system (computer program, algorithm)

The beauty of generative art is that you never know exactly what you'll get



Generative Art

Jonathan McCabe is an Australian generative artist

Began to see the characteristic spots and stripes of Turing patterns in his artwork

To mimic a chemical system, McCabe devised programs that used pixels in place of cells
Program randomly assigned a number to each pixel which produces a color

Number of pixels changes based on surrounding pixels

First saw basic Turing patterns but eventually starting layering multiple Turing processes on top

of each other - called multi-scale Turing patterns

« Saw things like large stripes comprised of small spots



Generative Art

Depending on what McCabe likes and does not like about his products, he can tweak an

algorithm or combine pieces of different algorithms

Many images look like iridescent fish or lizard scales, animal hide, blood vessels, or even

stained tissue samples

All of his artwork is open to interpretation









Sources

https://en.wikipedia.org/wiki/Alan Turing

https://www.youtube.com/watch?v=alH3yc6tX%8

https://visualpde.com/mathematical-biology/gierer-meinhardt.html

https://mason.gmu.edu/~treid5/Math447/Brusselator/

https://www.science.org/doi/10.1126/sciadv.adj2457

https://www.smithsonianmag.com/science-nature/psychedelic-images-find-order-amid-chaos-

180951769/



https://en.wikipedia.org/wiki/Alan_Turing
https://visualpde.com/mathematical-biology/gierer-meinhardt.html
https://mason.gmu.edu/~treid5/Math447/Brusselator/
https://www.science.org/doi/10.1126/sciadv.adj2457
https://www.smithsonianmag.com/science-nature/psychedelic-images-find-order-amid-chaos-180951769/
https://www.smithsonianmag.com/science-nature/psychedelic-images-find-order-amid-chaos-180951769/
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