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Abstract 

 Minimax is a famous backtracking algorithm that is widely used in decision making and 

game theory. Von Neumann developed first Minimax theorem in 1928, and since then, game 

theory began to flourish. The Minimax theorem is usually used to search for the optimal move for 

a player, with an assumption that your opponent also plays optimally. In this paper, I discussed 

the mathematical connection between optimal move found by Minimax theorem and its 

application in real-life, specifically, in the rock-paper-scissor. This paper also discussed some 

interesting application of Minimax theorem and its significance in real world.  

 

1    Introduction 
 
The fundamental theorem of game theory, Minimax Theorem, was first proved by John von 

Neumann is 1928. It states that any finite, zero-sum, two players game has optimal mixed 

strategies. Player would either play as maximizer who always tries to get the highest score 

possible, or as a minimizer who tries to get the lowest score possible, which is minimizing his/her 

own losses. Finally, two players would reach a subtle balance, which is the optimal point for both 

of them. This approach of problems defines a new relationship in the competition and 

cooperation, and Minimax Theorem became a new guide of economic behavior and was widely 

used in many areas such as economics, mathematics, psychology and sociology. 

 

Minimax Theorem has two assumptions. First, it can only be applied to the two players zero-sum 

game. The zero-sum game is a situation in which one person wins only by causing the other 

person to lose, so the total utility is divided among the player and the payoff is always balanced. 

The common two player based zero-sum games include chess, tic-tac-toe and rock-paper-scissor. 

The second assumption is that, both players are expected to play optimally, i.e., both players will 

play in such a way to maximize their own chance of winning.  

 

This paper examines what is the best strategy to win the popular zero-sum game, the rock-paper-

scissor. This topic is of great interest as finding the optimal move both in games and real-life can 

be hard. People usually make their individual decisions based on motivation and emotion. 



Yet, making a rational and optimal choice requires more than just inner feelings; it requires 

strategy and careful examination about not only advantages but also limitations. Thus, I hope 

by discussion this topic, this paper cold shed more light on choosing best strategy and better 

guide readers in the decision-making process.  

 

2    Problem Introduction  

Why Rock-Paper-Scissors is a classic example of zero-sum game? Recall that, in rock-paper-

scissors, two players choose one alternative among rock, paper, or scissors simultaneously. The 

rule is that rock beats scissors, scissors beats paper, and paper beats rock. Most importantly, rock-

paper-scissors is a zero-sum game. This could be specified by a payoff matrix. First choosing row 

to represent payoff for player A, then choose column to represent payoff for player B. The 

following matrix describes the payoffs in the Rock-Paper-Scissors game: 

 

                     Player A                    

Player B 

Rock 

 

Paper Scissors 

Rock 0 -1 1 

Paper 1 0 -1 

Scissors -1 1 0 

 

Therefore, Rock-Paper-Scissors is two players based zero sum game. So, the essential question is, 

what is the best strategy to win the Rock-Paper-Scissors? Or, does there exist an optimal move 

for both players? According to the Minimax theorem, the answer is yes, there does exist an 

optimal strategy.  

 

We could re-formulate the payoff matrix above into the equations. The payoff matrix is a 

𝑚 ×  𝑛 matrix A, and the row player A picks strategy i ∈ {1, … , 𝑚} with probability 𝑥𝑖, the 

column player B picks strategy j∈ {1, … , 𝑛}  with probability 𝑦𝑗, and player A pays player B 𝑎𝑖𝑗. 

So, if player A uses random strategy x and player B uses y, then expected payoff from row player 

A to column player B is: 

∑ ∑ 𝑥𝑖𝑎𝑖𝑗𝑦𝑗 = 𝑥𝑇 𝐴𝑦

𝑗𝑖

 

For column player B, suppose he adopt strategy y. Then row player A’s best strategy is to use x 

that minimizes the expected payoff: min 𝑥𝑇 𝐴𝑦. So, the column player B should choose the y 

which maximizes his probability to win: max min 𝑥𝑇 𝐴𝑦.  



 

3    Finding Best Strategy  

Specifically, two players, the maximizer and minimizer, will adopt different strategies. The 

maximizer will choose maximin strategy to maximizes one’s worst-case payoff. By adopting 

maximin strategy, the minimum amount of payoff is guaranteed. In contrast, the minimizer will 

choose minimax strategy to minimize opponent’s best-case payoff.  

 

Maximin side 

Let 𝑥𝑖= the probability that player A chooses action i, for i ∈ {Rock, Paper, Scissors}. Then 

Player A’s maximin strategy can be found by solving the following optimization model:  

𝑀𝑎𝑥    min{𝑥2 − 𝑥3, 𝑥3 − 𝑥1, 𝑥1 − 𝑥2} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 + 𝑥3 = 1 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0 

This model is not linear currently, so we need to standardize it by play the linearization 

tricks:   

𝑀𝑎𝑥    z  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 ≤ 𝑥2 − 𝑥3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 ≤ 𝑥3 − 𝑥1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 ≤ 𝑥1 − 𝑥2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 + 𝑥3 = 1 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0 

Now the model is linear, and we want to reorganize it, so all the decision variables are on the 

left-hand side of the constraints, and all constant are on the right-hand side: 

𝑀𝑎𝑥    z  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 − 𝑥2 + 𝑥3 ≤ 0   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 + 𝑥1 − 𝑥3 ≤ 0  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 − 𝑥1 + 𝑥2 ≤ 0 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 + 𝑥3 = 1 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0 



Minimax side 

Let 𝑣𝑖= the probability that player B chooses action j, for j ∈ {Rock, Paper, Scissors}. Then 

Player B’s minimax strategy can be found by solving the following optimization model:  

𝑀𝑖𝑛    max{−𝑣2 + 𝑣3, 𝑣1 − 𝑣3, 𝑣2 − 𝑣1} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣1 + 𝑣2 + 𝑣3 = 1 

𝑣1 ≥ 0, 𝑣2 ≥ 0, 𝑣3 ≥ 0 

This model is not linear currently, so we need to standardize it by play the linearization tricks 

as we did for the Maximin model: 

𝑀𝑖𝑛𝑚𝑖𝑧𝑒    𝑤  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥  𝑣3 − 𝑣2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥ 𝑣1 − 𝑣3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥ 𝑣2 − 𝑣1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣1 + 𝑣2 + 𝑣3 = 1 

𝑣1 ≥ 0, 𝑣2 ≥ 0, 𝑣 ≥ 0 

So now we successfully constructed the linear formulations for each player, and we could go 

back to go maximin model first. Our goal is to solve the 𝑥1, 𝑥2 𝑎𝑛𝑑 𝑥3 for player A and 

𝑣1, 𝑣2 𝑎𝑛𝑑 𝑣3 for player B. Usually, a technique to solve the linear model is to first solve the 

dual problem. Therefore, the next step is to convert the original primal problem to the dual 

problem. 

𝑀𝑎𝑥    z                                                           𝑀𝑖𝑛    𝑤 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 − 𝑥2 + 𝑥3 ≤ 0                     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥  𝑣3 − 𝑣2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 + 𝑥1 − 𝑥3 ≤ 0                    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥ 𝑣1 − 𝑣3 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑧 − 𝑥1 + 𝑥2 ≤ 0                      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤 ≥ 𝑣2 − 𝑣1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 + 𝑥3 = 1                    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑣1 + 𝑣2 + 𝑣3 = 1 

𝑥1 ≥ 0, 𝑥2 ≥ 0, 𝑥3 ≥ 0                                 𝑣1 ≥ 0, 𝑣2 ≥ 0, 𝑣 ≥ 0 

 

It is obvious, now, that through the comparing and contrasting the dual problem of player A 

and primal problem of player B, we found they are exactly the same. This connection 

between solution of player A’s model and solution of Player B’s model is the strong duality 

theory. The Strong Duality Theory states that, if either Primal or Dual has a finite optimal 



value, then so does the other, and optimal solutions to both Primal and Dual exist and are the 

same. Therefore, in this case solution of Maximin model is just the same as the solution of 

Minimax model. 

 

By using AMPL, the solution of model could be solved easily, and it shows that 𝑥1 = 𝑥2 =

 𝑥3 =
1

3
 , same for the solution of Minimax model: 𝑣1 = 𝑣2 =  𝑣3 =

1

3
 . 

 

 
 

Interesting, the optimal strategy is actually to play each alternative randomly, and this is 

exactly why when playing Rock-Paper-Scissors, we need to vary our strategy in order to 

mimic the randomness.  

 

4    Limitation 

The optimal strategy, however, is usually hard to achieve in reality. There are a few reasons we 

might doubt the practical applicability of the Minimax Theorem. Firstly, in order for a mixed 

strategy solution to be played, each player must choose a strategy corresponding to the 

opponent’s strategy. However, it is quite counterintuitive for each player to choose strategy 

based on their opponent’s payoff. Secondly, since people are not genuine random number 

generators, it is almost impossible to truly randomize our choices. Even worse, our failed 

attempts at randomization may leads to predictability that could be utilized by opponents. 

Thirdly, what if the opponent just doesn’t play with equilibrium strategy? In this case, it makes 

no sense for play the mixed strategy as you need to change your strategy accordingly. In the 

end, neither of two players adopt mixed strategy. Consequely, the equilibrium is highly 

unstable.  

 

5  Reflection 



Even the Minimax Theorem is not without its own limitations, it still provides a lot of insight 

into decision-making and it gave birth to the theory of duality. It has several contributions: it 

guides decision making process and has a strong impact on the social sciences including 

economics, political science and psychology.  Furthermore, the Minimax Theorem provides 

us with the tools to analyze payoffs of various situation. The motivation for me to choose this 

topic is because I hope to further the study of Minimax theorem and better guide people in 

decision-making process. I hope I could learn more about it through studying Judgment and 

decision-theory next semester. 
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