1. Let \(A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}. \)

(a) Determine \(S \) such that \(S^{-1}AS \) is a direct sum of the Jordan block.

(b) What is minimal polynomial of \(A \)?

(c) Suppose \(f(z) \) is a polynomial. What are the possible Jordan form of \(f(A) \)?

Hint: Suppose \(f(z) = m_A(z)q(z) + r(z) \). Then \(r(z) = a_0z + a_1 \) because

So, \(f(A) = r(A) \) has Jordan form

2. If \(A \in M_5 \) has distinct eigenvalues \(1, i \), determine all the possible Jordan forms of \(A \).

Hint: \(\det(zI - A) = (x - 1)^r(x - i)^s \) with \(r, s > 0, r + s = 5 \). So, ...

3. Suppose \(A \in M_5 \) is similar to \(J_2(i) \oplus J_2(1) \oplus J_1(1) \). If \(f(z) \) is a polynomial, what are the possible Jordan form of \(f(A) \).

Hint: Suppose \(f(z) = m_A(z)q(z) + r(z) \). For each Jordan block \(J_k(\lambda) \) determine \(r(J_k(\lambda)) \) depending on whether \(r(\lambda) = 0 \).

4. Suppose \(f(z) \) is a polynomial, and \(A \in M_n \).

(a) If \(Ax = \lambda x \) for a nonzero vector \(x \), show that \(f(A)x = f(\lambda)x \).

(b) Show that an eigenvector of \(f(A) \) may not be an eigenvector of \(A \).

Hint: (a) Show that \(A^k = \lambda^k x \) for \(k = 1, 2, \ldots \). Then consider general \(f(z) \).

5. Suppose \(A \) is \(m \times n \) and \(B \) is \(n \times m \). Then \(AB \) and \(BA \) have the same set of nonzero eigenvalues of the same multiplicities.

Hint: Show that \(\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix} \begin{pmatrix} I_m & A \\ 0 & I_n \end{pmatrix} = \begin{pmatrix} I_m & A \\ 0 & B \end{pmatrix} \begin{pmatrix} 0_m & 0 \\ A & BA \end{pmatrix} \).

6. Suppose \(f(z) = z^n + a_1z^{n-1} + \cdots + a_n \). Then

\[
A_f = \sum_{j=1}^{n-1} E_{j+1,j} - \sum_{j=1}^{n} a_j E_{1j} = \begin{pmatrix} -a_1 & -a_2 & \cdots & -a_n \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 1 \end{pmatrix}
\]

is the companion matrix of \(f \). Here \(\{E_{11}, E_{12}, \ldots, E_{nn}\} \) is the standard basis for \(M_n \).

(a) Show that \(\det(zI - A_f) = f(z) \) by expanding \(\det(zI - A_f) \) using the last row, and induction.

(b) Show that \(f(z) \) is the minimal polynomial of \(A_f \).

Hint: Show that \(A - \lambda_i I \) has rank \(n - 1 \) for each distinct eigenvalue \(\lambda_i \).
7. (Extra Credits) Suppose $A = J_m(\lambda)$ and $x'(s) = Ax(s)$. Show that the system of differential equation has a solution of the form:

$$y_k(s) = q_k(s)e^{s\lambda}, \quad k = 1, \ldots, m,$$

where $q_k(s) = c_{k0} + c_{k1}s + \cdots + c_{m-k,m-k} s^{m-k}$ is a polynomial in s of degree $m - k$.

Hint: The result is true for $k = m$. Then show that it is true for $k = m - 1, m - 2, \ldots$ by backward induction.