1. (8 points) Let \(\mathbf{d} = (6, 3, 1)^t \) and \(\mathbf{a} = (8, 2, 0)^t \)

(a) Solving \(a \in [0, 1] \) such that \(\begin{pmatrix} a & 1-a \\ 1-a & a \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \), we have \(a = 2/3 \) so that \(T_1 = \begin{pmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{pmatrix} \oplus [1] \) satisfies \(T_1(8, 2, 0)^t = (6, 4, 0)^t \). Similarly, \(\begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \) so that \(T_2 = [1] \oplus \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix} \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} (6, 4, 0)^t = (6, 3, 1)^t \). Hence, \(T_2T_1\mathbf{a} = \mathbf{b} \).

(b) Suppose \(U_1 = \begin{pmatrix} \sqrt{2/3} & -\sqrt{1/3} \\ -\sqrt{1/3} & \sqrt{2/3} \end{pmatrix} \oplus [1] \). Then \(U_1 \text{diag} (8, 2, 0)U_1^t = \begin{pmatrix} 6 & 2\sqrt{2} \\ 2\sqrt{2} & 4 \end{pmatrix} \oplus [0] \).

Let \(U_2 = [1] \oplus \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \). Then

\[
U_2U_1 \text{diag} (8, 2, 0)U_1^tU_2^t = U_2 \begin{pmatrix} 6 & -2\sqrt{2} & 0 \\ -2\sqrt{2} & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} U_2^* = \begin{pmatrix} 6 & \sqrt{6} & \sqrt{2} \\ \sqrt{6} & 3 & \sqrt{3} \\ \sqrt{2} & \sqrt{6} & 6 \end{pmatrix}.
\]

Note that \(U_1, U_2 \) are orthogonal and so is \(U = U_2U_1 \). So, for \(P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \), we get the matrix

\[
A = PU \text{diag}(8, 2, 0)U^tP^t = \begin{pmatrix} 1 & \sqrt{3} & \sqrt{2} \\ \sqrt{3} & 3 & \sqrt{6} \\ \sqrt{2} & \sqrt{6} & 6 \end{pmatrix}
\]

satisfying the desired conditions (i.e. real symmetric, has eigenvalues (8, 2, 0) and diagonal entries (1, 3, 6)).

2. (8 points) Let \(\mathbf{x} = (x_1, \ldots, x_n)^t, \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n \) with positive entries.

(a) Suppose \(\mathbf{x} \) is obtained from \(\mathbf{y} \) by changing two of its entries \(y_p > y_q \) to \(y_p - d, y_q + d \) with \(d \in (0, y_p - y_q) \). That is,

\[
x_j = \begin{cases}
 y_j & \text{if } j \notin \{p, q\} \\
 y_p - d & \text{if } j = p \\
 y_q + d & \text{if } j = q
\end{cases}
\]

Note that \(d, y_p - y_q - d \geq 0 \). Then

\[
x_px_q = (y_p - d)(y_q + d) = y_p y_q + d(y_p - y_q - d) \geq y_p y_q.
\]

Hence \(\prod_{j=1}^{n} x_j = x_p x_q \prod_{j=1,j\neq p,q}^{n} x_j = x_p x_q \prod_{j=1,j\neq p,q}^{n} y_j \geq \prod_{j=1}^{n} y_j \).

(b) Suppose \(\mathbf{x} < \mathbf{y} \). Then there exists a sequence \((\mathbf{y}_0, \mathbf{y}_1, \ldots, \mathbf{y}_{k+1}) \) such that \(\mathbf{y}_0 = \mathbf{y}, \mathbf{y}_{k+1} = \mathbf{x} \) and \(\mathbf{y}_{r+1} = (y_1^{(r+1)}, \ldots, y_n^{(r+1)}) \) is obtained from \(\mathbf{y}_r = (y_1^{(r)}, \ldots, y_n^{(r)}) \) by changing two of its entries as described in problem (a). Thus for any \(r = 0, \ldots, k \), we have

\[
\prod_{j=1}^{n} y_j^{(r)} \leq \prod_{j=1}^{n} y_j^{(r+1)} \implies \prod_{j=1}^{n} y_j = \prod_{j=1}^{n} y_j^{(0)} \leq \prod_{j=1}^{n} y_j^{(k+1)} = \prod_{j=1}^{n} x_j
\]
3. (8 points) (a) Suppose \(A = (a_{ij}) \in M_n \) is positive semidefinite. Let \(\lambda = (\lambda_1(A), \ldots, \lambda_n(A))^t \) be the vector of eigenvalues of \(A \) and \(d = (a_{11}, \ldots, a_{nn})^t \) be the vector of composed of the diagonal entries of \(A \). By Theorem 3.1.3, \(d \prec \lambda \).

If \(A \) has zero eigenvalues, then \(\det(A) = 0 \). Note that all diagonal entries of \(A \) must be nonnegative since \(A \) is positive semidefinite. Trivially, \(0 = \det(A) \leq \prod_{j=1}^n a_{jj} \).

Suppose \(A \) is positive definite (all eigenvalues are positive). Note that this implies that the diagonal entries of \(A \) are all positive (The existence of a zero diagonal entry will imply that the entire column/row of that entry is zero). Applying problem 2b, we get

\[
\prod_{j=1}^n \lambda_j(A) = \det(A) \leq \prod_{j=1}^n a_{jj}.
\]

(b) Suppose \(B \in M_n \) has columns \(b_1, \ldots, b_n \).

Note that for any \(X \), \(\det(\bar{X}) = \overline{\det(X)} \) because in the determinant expansion, all numbers are replaced by its conjugates. Thus \(\det(B^*) = \det(B)^\ast = \det(B) \) and hence

\[
\det(B^*B) = \det(B^*) \det(B) = |\det(B)|^2
\]

Note that the \(j \)th diagonal entry of \(B^*B \) is the the product of the \(j \)th row of \(B^* \) and \(j \)th column of \(B \), i.e., \(b_j^*b_j = ||b_j||^2 \). Since \(B^*B \) is positive semidefinite, we can apply Problem 3a to get

\[
\det(B^*B) = |\det(B)|^2 \leq \prod_{j=1}^n ||b_j||^2
\]

Taking the square root of both sides, we get \(|\det(B)| \leq \prod_{j=1}^n ||b_j|| \).

4. (6 points) Let \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n \) be positive semidefinite with \(A_{11} \in M_k \). Then \(A_{11}, A_{22} \) are also positive semidefinite and \(A_{21} = A_{12}^\ast \). Suppose \(A_{11} = U_1D_1U_1^\ast \) and \(A_{22} = U_2D_2U_2^\ast \), where \(U_1 \) and \(U_2 \) are unitary and \(D_1, D_2 \) are diagonal with nonnegative entries. Then

\[
\hat{A} = \begin{pmatrix} U_1^\ast & 0 \\ 0 & U_2^\ast \end{pmatrix} A \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix} = \begin{pmatrix} D_1 & U_1^\ast A_{12}U_2 \\ U_2^\ast A_{12}^\ast U_1 & D_2 \end{pmatrix}
\]

\(\hat{A} \) is still positive semidefinite since it is unitarily similar to \(A \). Applying problem 3a to \(\hat{A} \), we get

\[
\det(\hat{A}) = \det(A) \leq \det(D_1) \det(D_2) = \det(A_{11}) \det(A_{22})
\]

5. (8 points) Let \(A = A^\ast \in M_n \).

(\(\Leftarrow \)) Suppose \(A \) has \(p \) positive and \(q \) negative eigenvalues. By the spectral decomposition, there exists a unitary \(U \) such that

\[
U^\ast AU = \text{diag} (a_1, \ldots, a_p, -a_{p+1}, \ldots, -a_{p+q}, 0, \ldots, 0),
\]

where \(a_1, \ldots, a_{p+q} > 0 \). For \(j = 1, \ldots, n \), define

\[
d_j = \begin{cases} \frac{1}{\sqrt{a_j}} & \text{if } 1 \leq j \leq p + q \\ 1 & \text{if } j > p + q \end{cases}
\]
and define \(S = U \text{diag}(d_1, \ldots, d_n) \), which is invertible since \(U \) is unitary and \(d_j > 0 \) for all \(j \). Then \(S^*AS = I_p \oplus -I_q \oplus 0_{n-p-q} \).

\((\Rightarrow)\) Suppose \(S^*AS = I_p \oplus -I_q \oplus 0_{n-p-q} \) for some invertible \(S \). Partition \(S = [S_1 \ S_2 \ S_3] \) such that \(S_1 \in M_{n,p}, S_2 \in M_{n,q} \) and \(S_3 \in M_{n,n-p-q} \). Then

\[
\begin{pmatrix}
S_1^*AS_1 & S_1^*AS_2 & S_1^*AS_3 \\
S_2^*AS_1 & S_2^*AS_2 & S_2^*AS_3 \\
S_3^*AS_1 & S_3^*AS_2 & S_3^*AS_3
\end{pmatrix} = \begin{pmatrix}
I_p & 0 & 0 \\
0 & -I_q & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

By the QR decomposition theorem, there exists an invertible upper triangular \(R_1 \in M_p \) and an isometry \(V_1 \in M_{n,p} \), i.e. \(V_1^*V_1 = I_p \) such that \(S_1 = V_1R_1 \). Since \(S_1^* AS_1 = I_p \), then \(V_1^* AV = (R^*)^{-1} R^{-1} \), which is a positive definite \(p \times p \) matrix by Theorem 2.2.5 c. Now, using the min-max characterization of the eigenvalues of \(A \), we have

\[\lambda_p(A) \geq \lambda_p(V_1^*AV_1) = \lambda_p((R^*)^{-1} R^{-1}) > 0\]

Thus, \(A \) must have at least \(p \) positive eigenvalues.

Similarly, Let \(S_2 = V_2R_2 \) for some \(V_2 \in M_{n,q} \) satisfying \(V_2^*V_2 = I_q \) and an invertible upper triangular \(R_2 \in M_q \). Since \(S_2^*AS_2 = -I_q \), then \(V_2^*AV_2 = -(R_2^*)^{-1} R_2^{-1} \) which is negative definite (all eigenvalues are negative).

\[\lambda_{n-q+1}(A) \leq \lambda_1(V_2AV_2^*) = \lambda_1(-(R_2^*)^{-1} R_2^{-1}) < 0\]

Hence \(\lambda_{n-q+1}(A), \ldots, \lambda_n(A) \) — the last \(q \) eigenvalues of \(A \) are negative.

Now, since \(S \) is invertible, then rank \((A) = \text{rank}(S^*AS) = p + q \). Since \(A \) hermitian, this means that it is diagonalizable and its rank is equal to the number of its nonzero eigenvalues. Therefore \(A \) must have \(n-p-q \) zero eigenvalues. This forces the number of positive eigenvalues of \(A \) to be exactly \(p \) and the number of negative eigenvalues of \(A \) to be exactly \(q \).

6. (8 points) Lidskii’s inequality (Theorem 3.3.2) states that for any \(1 \leq k \leq n \) and \(1 \leq r_1 < r_2 < \cdots < r_k \leq n \), it holds that for any \(n \times n \) Hermitian matrices \(X \) and \(Y \)

\[
\sum_{j=1}^{k} \lambda_{r_j}(X + Y) \leq \sum_{j=1}^{k} \lambda_{r_j}(X) + \lambda_j(Y)
\]

Suppose \(A, B \in M_n \) are Hermitian matrices with eigenvalues \(a_1 \geq \cdots \geq a_n \) and \(b_1 \geq \cdots \geq b_n \), respectively. Let

\[
d = (a_1 + b_n, a_2 + b_{n-1}, \ldots, a_n + b_1) \quad \text{and} \quad u = (a_1 + b_1, \ldots, a_n + b_n).
\]

\((First, \ we\ will\ show\ that\ \lambda(A + B) < u)\)

Obviously, \(\sum_{j=1}^{n} \lambda_j(A + B) = \text{tr}(A + B) = \sum_{j=1}^{n} (a_j + b_j) \). Now, suppose \(1 \leq k < n \). If we apply Lidskii’s inequality to \((r_1, \ldots, r_k) = (1, \ldots, k) \), we get

\[
\sum_{j=1}^{k} \lambda_j(A + B) \leq \sum_{j=1}^{k} a_j + b_j = \text{sum of } k \text{ largest entries of } u
\]
This shows \(\lambda(A + B) < u \).

(Next, we will show that \(d < \lambda(A + B) \))

Obviously, \(\sum_{j=1}^{n} \lambda_j(A + B) = \sum_{j=1}^{n} (a_j + b_j) = \sum_{j=1}^{n} (a_j + b_{n-j+1}) \). Now, suppose \(1 \leq k < n \). Let \((s_1, \ldots, s_n)\) be the rearrangement of \((1, \ldots, n)\) such that

\[
a_{s_1} + b_{n-s_1+1} \geq a_{s_2} + b_{n-s_2+1} \geq \cdots \geq a_{s_n} + b_{n-s_n+1}.
\]

Let \(C = A + B \) so that \(A = (-B) + C \). If we apply Lidskii’s inequalities (Theorem 3.3.2) with \(\{r_1, \ldots, r_k\} = \{s_1, \ldots, s_k\} \)

\[
\sum_{j=1}^{k} \lambda_{r_j}((-B) + C) \leq \sum_{j=1}^{k} \lambda_{r_j}(-B) + \lambda_j(C)
\]

The left hand side of this inequality is

\[
\sum_{j=1}^{k} \lambda_{r_j}((-B) + C) = \sum_{j=1}^{k} \lambda_{r_j}(A) = \sum_{j=1}^{k} a_{r_j} = \sum_{j=1}^{k} a_{s_j}
\]

while the right hand side is

\[
\sum_{j=1}^{k} \lambda_{r_j}(-B) + \lambda_j(C) = \sum_{j=1}^{k} -b_{n-r_j+1} + \lambda_j(A + B) = \sum_{j=1}^{k} -b_{n-s_j+1} + \lambda_j(A + B).
\]

Thus, \(\sum_{j=1}^{k} a_{s_j} \leq \sum_{j=1}^{k} -b_{n-r_j+1} + \lambda_j(A + B) \), which implies

\[
\sum_{j=1}^{k} \lambda_j(A + B) \geq \sum_{j=1}^{k} a_{s_j} + b_{n-s_j+1} = \text{sum of } k \text{ largest entries of } d
\]

Therefore, \(d < \lambda(A + B) \).