Math 408 Advanced Linear Algebra Homework 6 Your Name

Eight points for each question.

1. Suppose $n = 3$. List all the Horn’s sequences $(u_1, u_2), (v_1, v_2), (w_1, w_2)$ of length 2, and list all the Thompson standard sequences $(u_1, u_2), (v_1, v_2)$ and $(w_1, w_2) = (u_1 + v_1 - 1, u_2 + v_2 - 2)$. Hint: See p.23-24 in http://ciklixx.people.wm.edu/teaching/math408/note.pdf
You should see six sets of Horn’s sequences $(u_1, u_2), (v_1, v_2), (w_1, w_2)$, and one of them not Thompson standard sequences.

2. Let $A, B, C = A + B ∈ M_n$ be Hermitian with eigenvalues $a_1 ≥ ⋯ ≥ a_n, b_1 ≥ ⋯ ≥ b_n$ and $c_1 ≥ ⋯ ≥ c_n$, respectively. Show that if $C = (c_{ij})$ then

\[\sum_{j=1}^{k} c_{jj} ≤ \sum_{j=1}^{k} (a_j + b_j); \]

the equality holds if and only if $A = A_{11} ⊕ A_{22}, B = B_{11} ⊕ B_{22}$ with $A_{11}, B_{11} ∈ M_k$ such that A_{11} and B_{11} have eigenvalues $a_1 ≥ ⋯ ≥ a_k, b_1 ≥ ⋯ ≥ b_k$, respectively.

3. (Weyl’s inequalities.) Suppose $A, B, C = A + B ∈ M_n$ are Hermitian matrices. Let $\{x_1, \ldots, x_n\}, \{y_1, \ldots, y_n\}, \{z_1, \ldots, z_n\}$ be orthonormal sets such that $Ax_j = λ_j(A)x_j, By_j = λ_j(B)y_j, Cz_j = λ_j(C)z_j$. Suppose i, j are positive integers such that $i + j - 1 ≤ n$.

(a) Show that there is a unit vector $v ∈ V_1 ∩ V_2 ∩ V_3$, where $V_1 = \text{span} \{x_i, \ldots, x_n\}, V_2 = \text{span} \{y_j, \ldots, y_n\}$ and $V_3 = \{z_1, \ldots, z_{i+j-1}\}$. Hint: Show that $V_2 ∩ V_3$ has dimension at least $(n - j + 1) + (i + j - 1) - n = i$ by considering the null space of the matrix $[y_j \cdots y_n \ z_1 \cdots z_{i+j-1}]$, and then show that $V_1 ∩ (V_2 ∩ V_3)$ is not the zero space.

(b) Show that the vector v found in (a) satisfies

\[λ_{i+j-1}(C) ≤ v^* Cv, v^* Av ≤ λ_i(A), v^* Bv ≤ λ_j(B), \]

and deduce that

\[λ_{i+j-1}(C) ≤ λ_i(A) + λ_j(B). \]

4. Show that $ℓ_p(v) ≥ ℓ_q(v)$ for any vector $v ∈ R^n$ if $1 ≤ p ≤ q ≤ ∞$. Hint: Only need to prove the result for vector with nonnegative entries; show that $f(v) = \sum v_j^p ≥ 1$ if $g(v) = \sum v_j^q - 1 = 0$. Use Lagrange multipliers to the function $L(μ, v) = f(v) - μg(v)$ and conclude that all nonzero entries of v have to be the same so that $v = γ(1, \ldots, 1, 0, \ldots, 0)$.

5. Show that if $x, y ∈ R^n$ are vectors with positive entries such that $x ≺ y$, then $ℓ_p(x) ≤ ℓ_p(y)$ for any $p ≥ 1$.

Hint: We need only do the special case when x is obtained from y by changing two entries $y_i > y_j$ to $y_i - d, y_j + d$ for $d ∈ (0, y_i - y_j)$.
6. Let \(u = (u_1, \ldots, u_n)^t \) and \(v = (v_1, \ldots, v_n)^t \) be such that \((|u_1|, \ldots, |u_n|) \prec_w (|v_1|, \ldots, |v_n|)\). Show that there is a nonnegative integer \(m \) and a nonnegative \(d \) such that

\[
(|u_1|, \ldots, |u_n|, d, \ldots, d) \prec (|v_1|, \ldots, |v_n|, 0, 0, \ldots, 0).
\]

Deduce from the result of the previous problem that \(\ell_p(u) \leq \ell_p(v) \) for any \(p \geq 1 \).

(Extra credits) Alternatively, show that there is \(\hat{v} = (\hat{v}_1, \ldots, \hat{v}_n) \) such that \(\sum_{j=1}^k \hat{v}_j = \max\{\sum_{j=1}^k |v_j|, \ell_1(u)\} \). Then prove that \((|u_1|, \ldots, |u_n|) \prec (\hat{v}_1, \ldots, \hat{v}_n) \) and

\[
\ell_p(u) \leq \ell_p(\hat{v}) \leq \ell_p(v).
\]

7. (Extra credits) Suppose \(c_1 \geq a_1 \geq c_2 \geq a_2 \geq \cdots \geq a_{n-1} \geq c_n \geq a_n \) are \(2n \) real numbers. Show that there is a nonnegative real vector \(v \in \mathbb{R}^n \) such that \(D + vv^t \) has eigenvalues \(c_1 \geq \cdots \geq c_n \). Assume that \(c_n \geq a_n > 0 \). By interlacing inequalities, there is \(\tilde{C} = \begin{pmatrix} D & y \\ y^t & a \end{pmatrix} \). Show that \(C = D + vv^t \) has eigenvalues \(c_1 \geq \cdots \geq c_n \).

(Extra credit) Suppose \(C = A + iB \) so that \(A \) and \(B \) are Hermitian matrices. Suppose \(A \) has eigenvalues \(a_1, \ldots, a_n \), and \(B \) has eigenvalues \(b_1, \ldots, b_n \) such that \(a_1^2 \geq \cdots \geq a_n^2 \) and \(b_1^2 \geq \cdots \geq b_n^2 \). If \(C \) has singular values \(s_1 \geq \cdots \geq s_n \), show that

\[
(a_1^2 + b_1^2, \ldots, a_n^2 + b_n^2) \prec (s_1^2, \ldots, s_n^2)
\]

and

\[
(s_1^2 + s_n^2, \ldots, s_n^2 + s_1^2) / 2 \prec (a_1^2 + b_1^2, \ldots, a_n^2 + b_n^2).
\]

Hint: \(A^2 + B^2 = (CC^* + C^*C) / 2 \).

8. (Extra credit) Suppose \(A = \begin{pmatrix} \tilde{A} & * \\ 0 & * \end{pmatrix} \). Show that

\[
s_1(A) \geq s_1(\tilde{A}) \geq s_2(A) \geq s_2(\tilde{A}) \geq \cdots \geq s_{n-1}(\tilde{A}) \geq s_n(A).
\]

Hint: Apply interlacing inequalities to \(A^*A \).

9. (Extra credit) Suppose \(A = \begin{pmatrix} \tilde{A} & * \\ 0 & * \end{pmatrix} \). Show that

\[
s_1(A) \geq s_1(\tilde{A}) \geq s_2(A) \geq s_2(\tilde{A}) \geq \cdots \geq s_{n-1}(\tilde{A}) \geq s_n(A).
\]

Hint: Apply interlacing inequalities to \(A^*A \).

10. (Extra credit) Suppose \(A, B \in M_n \). For any subsequences \((u_1, \ldots, u_k), (v_1, \ldots, v_k) \) and \((w_1, \ldots, w_k) \) of \((1, \ldots, n) \) such that \(w_j = u_j + v_j - j \) for \(j = 1, \ldots, k \), and \(u_k + v_k - k \leq n \), we have

\[
\prod_{j=1}^k s_{u_j}(A)s_{v_j}(B) \geq \prod_{j=1}^k s_{w_j}(AB).
\]

Hint: By induction on \(n \). Check the case for \(n = 2 \). Assume that the result holds for matrices of size \(n - 1 \). If \(k = n \), the equality holds. Suppose \(k < n \). Let \(p \) be the largest integer such that \(u_j = j \) for all \(j = 1, \ldots, p \), and \(q \) be the largest integer such that \(v_j = j \) for all \(j = 1, \ldots, q \). We may assume that \(q \leq p \). Let \(\tilde{C} = AB \), \(\{u_1, \ldots, u_n\} \) and \(\{v_1, \ldots, v_n\} \) be orthonormal sets such that

\[
B^*Bu_j = s_j(B)^2u_j \quad \text{and} \quad C^*Cv_j = s_j(C)^2v_j.
\]
Suppose U, V are unitary such that the first $n - 1$ columns span a subspace containing $v_1, \ldots, v_1, u_{q+2}, \ldots, u_n$, and $V^*BU = \left(\begin{array}{cc} \tilde{B} & * \\ 0 & * \end{array} \right)$ with $\tilde{B} \in M_{n-1}$. Let W be unitary such that $W^*BV = \left(\begin{array}{c} \tilde{A} \\ 0 \end{array} \right)$. Then $W^*ABV = \left(\begin{array}{c} \tilde{A} \tilde{B} \\ 0 \end{array} \right)$. Apply induction assumption on $\tilde{A} \tilde{B}$ to finish the proof.