Is in triangular with non-zero diagonal.

The system is always solvable.

Proof of Theorem 1.10

Let \(S = \begin{bmatrix} I_k & X \\ 0 & I_{n-k} \end{bmatrix} \) be such that

\[
\begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} I_k & X \\ 0 & I_{n-k} \end{bmatrix} = \begin{bmatrix} I_k & X \\ 0 & I_{n-k} \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}
\]

Therefore

\[
\begin{bmatrix} A_{11} & A_{11}X + A_{12} \\ 0 & A_{22} \end{bmatrix} = \begin{bmatrix} 0 & XA_{22} \\ 0 & A_{22} \end{bmatrix}
\]

So,\(\exists X \) such that \(A_{11}X + A_{12} = XA_{22} \) and \(A_{11}X - XA_{22} = -A_{12} \).

Such an \(X \) exists by lemma 1.9. So we get the desired \(S = \begin{bmatrix} I_k & X \\ 0 & I_{n-k} \end{bmatrix} \).
Lemma 1.9 Suppose $A \in M_m, B \in M_n$ have no common eigenvalues. Then for any $C \in M_{m,n}$ there is $X \in M_{m,n}$ such that $AX - XB = C$.

Proof. By the theory of linear equations.

Theorem 1.10 Suppose $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in M_n$ such that $A_{11} \in M_k, A_{22} \in M_{n-k}$ have no common eigenvalue. Then A is similar to $A_{11} \oplus A_{22}$.

Corollary 1.11 Suppose $A \in M_n$ has distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. Then A is similar to $A_{11} \oplus \cdots \oplus A_{kk}$ such that A_{jj} has (only one distinct) eigenvalue λ_j for $j = 1, \ldots, k$.

Proof of Lemma 1.9

May assume A, B are in triangular form because of the following

Let $S_1 A S_1 = \hat{A}_{11}$ upper triangular

$S_2 \hat{A}_{11} S_2^{-1} = \hat{B}$ lower triangular

To solve $AX - XB = C$, i.e.

$S_1^{-1} (S_1 \hat{A}_{11} S_1^{-1} X - S_2 \hat{B} S_2) = S_1^{-1} C S_2$

$\hat{A}^{-1} S_1^{-1} X S_1 S_2^{-1} = S_1^{-1} C S_2 = C$

We only need to solve $\hat{A} Y + Y \hat{B} = C$, and then recover

Let $Y = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix}$, $\hat{A} = \begin{pmatrix} \hat{A}_{11} \\ \hat{A}_{21} \end{pmatrix}$, $\hat{B} = \begin{pmatrix} \hat{B}_{11} \\ \hat{B}_{21} \end{pmatrix}$

Then

$n \begin{pmatrix} \hat{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \hat{A}_{11} & \hat{A}_{12} \\ \hat{A}_{21} & \hat{A}_{22} \end{pmatrix} = \begin{pmatrix} \hat{B}_{11} & \hat{B}_{12} \\ \hat{B}_{21} & \hat{B}_{22} \end{pmatrix} = n \begin{pmatrix} \hat{B}_{11} & \hat{B}_{12} \\ \hat{B}_{21} & \hat{B}_{22} \end{pmatrix}$.
Definition 1.12 Let $J_k(\lambda) \in M_k$ such that all the diagonal entries equal λ and all super diagonal entries equal 1. Then $J_k(\lambda)$ is called an upper triangular Jordan block of λ of size k.

Theorem 1.13 Every $A \in M_n$ is similar to a direct sum of Jordan blocks.

Proof. We may assume that $A = A_{11} \oplus \cdots \oplus A_{kk}$. Then we use a proof of Mark Wildon.

https://www.math.vt.edu/people/rcnardym/class_home/Jordan.pdf

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\]
A SHORT PROOF OF THE EXISTENCE OF JORDAN NORMAL FORM

MARK WILDON

Let V be a finite-dimensional complex vector space and let $T : V \to V$ be a linear map. A fundamental theorem in linear algebra asserts that there is a basis of V in which T is represented by a matrix in Jordan normal form

$$
\begin{pmatrix}
J_1 & 0 & \ldots & 0 \\
0 & J_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & J_k
\end{pmatrix}
$$

where each J_i is a matrix of the form

$$
\begin{pmatrix}
\lambda & 1 & \ldots & 0 \\
0 & \lambda & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda
\end{pmatrix}
$$

for some $\lambda \in \mathbb{C}$.

We shall assume that the usual reduction to the case where some power of T is the zero map has been made. (See [1, §58] for a characteristically clear account of this step.) After this reduction, it is sufficient to prove the following theorem.

\[\mathcal{A} \subset \mathbb{C}^k \rightarrow \mathbb{C}^k \]

Theorem 1. If $T : V \to V$ is a linear transformation of a finite-dimensional vector space such that $T^m = 0$ for some $m \geq 1$, then there is a basis of V of the form

$$
U_1, T U_1, \ldots, T^{a_1-1} U_1, \ldots, U_k, T U_k, \ldots, T^{a_k-1} U_k
$$

where $T^{a_i} U_i = 0$ for $1 \leq i \leq k$.

At this point all the proofs the author has seen (even Halmos' in [1, §57]) become unnecessarily long-winded. In this note we present a simple proof which leads to a straightforward algorithm for finding the required basis.

\[S^{-1} A S = \begin{pmatrix}
J_{b_0} & 0 \\
0 & J_{c_0}
\end{pmatrix} \]

+ λI

Date: December 2007.
Proof. We work by induction on \(\dim V \). For the inductive step we may assume that \(\dim V \geq 1 \). Clearly \(T(V) \) is properly contained in \(V \), since otherwise \(T^m(V) = \cdots = T(V) = V \), a contradiction. Moreover, if \(T \) is the zero map then the result is trivial. We may therefore assume that \(0 \subset T(V) \subset V \). By applying the inductive hypothesis to the map induced by \(T \) on \(T(V) \) we may find \(u_1, \ldots, u_l \in T(V) \) so that

\[
 u_1, Tu_1, \ldots, T^{b_1-1}u_1, \ldots, u_l, Tu_l, \ldots, T^{b_l-1}u_l
\]

is a basis for \(T(V) \) and \(T^{b_i}u_i = 0 \) for \(1 \leq i \leq l \).

For \(1 \leq i \leq l \) choose \(u_i \in V \) such that \(Tu_i = v_i \). Clearly \(\ker T \) contains the linearly independent vectors \(T^{b_1-1}u_1, \ldots, T^{b_l-1}u_l \); extend these to a basis of \(\ker T \), by adjoining the vectors \(w_1, \ldots, w_m \), say. We claim that

\[
 u_1, Tu_1, \ldots, T^{b_1}u_1, \ldots, u_l, Tu_l, \ldots, T^{b_l}u_l, w_1, \ldots, w_m
\]

is a basis for \(V \). Linear independence may easily be checked by applying \(T \) to a given linear relation between the vectors. To show that they span \(V \), we use dimension counting. We know that \(\dim \ker T = l + m \) and that \(\dim T(V) = b_1 + \ldots + b_l \). Hence, by the rank-nullity theorem,

\[
 \dim V = (b_1 + 1) + \ldots + (b_l + 1) + m,
\]

which is the number of vectors in our claimed basis. We have therefore constructed a basis for \(V \) in which \(T \) is in Jordan normal form. \(\square \)

We end by remarking that this proof can be modified to avoid the preliminary reduction. Let \(\lambda \) be an eigenvalue of \(T \). By induction we may find a basis of \((T - \lambda I)V \) in which the map induced by \(T \) on \((T - \lambda I)V \) is in Jordan normal form. This basis can then be extended in a similar way to before to obtain a basis for \(V \) in which \(T \) is in Jordan normal form.

References

E-mail address: m.j.wildon@swan.ac.uk